1
|
Perera M, Brickman JM. Common modes of ERK induction resolve into context-specific signalling via emergent networks and cell-type-specific transcriptional repression. Development 2024; 151:dev202842. [PMID: 39465321 DOI: 10.1242/dev.202842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 10/29/2024]
Abstract
Fibroblast Growth Factor signalling via ERK exerts diverse roles in development and disease. In mammalian preimplantation embryos and naïve pluripotent stem cells ERK promotes differentiation, whereas in primed pluripotent states closer to somatic differentiation ERK sustains self-renewal. How can the same pathway produce different outcomes in two related cell types? To explore context-dependent ERK signalling we generated cell and mouse lines that allow for tissue- and time-specific ERK activation. Using these tools, we find that specificity in ERK response is mostly mediated by repression of transcriptional targets that occur in tandem with reductions in chromatin accessibility at regulatory regions. Furthermore, immediate early ERK responses are largely shared by different cell types but produce cell-specific programmes as these responses interface with emergent networks in the responding cells. Induction in naïve pluripotency is accompanied by chromatin changes, whereas in later stages it is not, suggesting that chromatin context does not shape signalling response. Altogether, our data suggest that cell-type-specific responses to ERK signalling exploit the same immediate early response, but then sculpt it to specific lineages via repression of distinct cellular programmes.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
2
|
Maji S, Waseem M, Sharma MK, Singh M, Singh A, Dwivedi N, Thakur P, Cooper DG, Bisht NC, Fassler JS, Subbarao N, Khurana JP, Bhavesh NS, Thakur JK. MediatorWeb: a protein-protein interaction network database for the RNA polymerase II Mediator complex. FEBS J 2024; 291:3938-3960. [PMID: 38975839 DOI: 10.1111/febs.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
The protein-protein interaction (PPI) network of the Mediator complex is very tightly regulated and depends on different developmental and environmental cues. Here, we present an interactive platform for comparative analysis of the Mediator subunits from humans, baker's yeast Saccharomyces cerevisiae, and model plant Arabidopsis thaliana in a user-friendly web-interface database called MediatorWeb. MediatorWeb provides an interface to visualize and analyze the PPI network of Mediator subunits. The database facilitates downloading the untargeted and unweighted network of Mediator complex, its submodules, and individual Mediator subunits to better visualize the importance of individual Mediator subunits or their submodules. Further, MediatorWeb offers network visualization of the Mediator complex and interacting proteins that are functionally annotated. This feature provides clues to understand functions of Mediator subunits in different processes. In an additional tab, MediatorWeb provides quick access to secondary and tertiary structures, as well as residue-level contact information for Mediator subunits in each of the three model organisms. Another useful feature of MediatorWeb is detection of interologs based on orthologous analyses, which can provide clues to understand the functions of Mediator complex in less explored kingdoms. Thus, MediatorWeb and its features can help the user to understand the role of Mediator complex and its subunits in the transcription regulation of gene expression.
Collapse
Grants
- BT/PR40146/BTIS/137/4/2020 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40169/BTIS/137/71/2023 Department of Biotechnology, Ministry of Science and Technology, India
- BT/HRD/MK-YRFP/50/27/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/HRD/MK-YRFP/50/26/2021 Department of Biotechnology, Ministry of Science and Technology, India
- SERB, Government of India
- ICMR
- Council of Scientific and Industrial Research, India
Collapse
Affiliation(s)
- Sourobh Maji
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mohd Waseem
- National Institute of Plant Genome Research, New Delhi, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Maninder Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Anamika Singh
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nidhi Dwivedi
- National Institute of Plant Genome Research, New Delhi, India
| | - Pallabi Thakur
- National Institute of Plant Genome Research, New Delhi, India
| | - David G Cooper
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, USA
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jitendra P Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Jitendra Kumar Thakur
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
3
|
Yang L, Zhu A, Aman JM, Denberg D, Kilwein MD, Marmion RA, Johnson ANT, Veraksa A, Singh M, Wühr M, Shvartsman SY. ERK synchronizes embryonic cleavages in Drosophila. Dev Cell 2024:S1534-5807(24)00487-8. [PMID: 39208802 DOI: 10.1016/j.devcel.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.
Collapse
Affiliation(s)
- Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Zhu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Javed M Aman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - David Denberg
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marcus D Kilwein
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert A Marmion
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alex N T Johnson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mona Singh
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Flatiron Institute, New York, NY 10010, USA.
| |
Collapse
|
4
|
Kim H. Regulation of Med1 protein by overexpression of BAP1 in breast cancer cells. Mol Cell Oncol 2024; 11:2347827. [PMID: 38708315 PMCID: PMC11067983 DOI: 10.1080/23723556.2024.2347827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Med1 binds to a nuclear receptor and regulates transcription. Elevated Med1 protein expression promotes cancer growth in hormone-dependent breast and prostate cancers. Med1 protein expression was investigated by deubiquitinating enzymes (DUBs) overexpression in breast cancer cell lines. Various DNA constructs of SRT-DUBs were overexpressed in the MCF7 cell line, and Med1 protein expression was investigated by western blotting. The cell growth and in vitro invasion assay were performed in BRCA1-associated protein 1 (BAP1) wild type and mutant (C91A) overexpressed cells. Ubiquitination of the Med1 protein was observed, and Med1 protein expression and transcriptional activity were verified by various DUBs overexpressed. Although Med1 protein expression increased upon the overexpression of BAP1, it was not affected by the overexpression of BAP1 mutant (C91A). BAP1 was increased by the E2 treatment, which has an important effect on the breast cancer growth, and cell growth was decreased by BAP1 C91A overexpression. However, metastatic capacities were decreased by BAP1. In addition, the binding between the Med1 and the BAP1 protein was observed. These data suggested that BAP1 regulated Med1 protein expression in breast cancer cells and involved in cancer cell growth and metastasis by binding to Med1 protein.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| |
Collapse
|
5
|
Chaudhuri SM, Weinberg SE, Wang D, Yalom LK, Montauti E, Iyer R, Tang AY, Torres Acosta MA, Shen J, Mani NL, Wang S, Liu K, Lu W, Bui TM, Manzanares LD, Dehghani Z, Wai CM, Gao B, Wei J, Yue F, Cui W, Singer BD, Sumagin R, Zhang Y, Fang D. Mediator complex subunit 1 architects a tumorigenic Treg cell program independent of inflammation. Cell Rep Med 2024; 5:101441. [PMID: 38428427 PMCID: PMC10983042 DOI: 10.1016/j.xcrm.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Collapse
Affiliation(s)
- Shuvam M Chaudhuri
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel E Weinberg
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dongmei Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lenore K Yalom
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy Y Tang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manuel A Torres Acosta
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikita L Mani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiyuan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Triet M Bui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura D Manzanares
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeinab Dehghani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ching Man Wai
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Friedl MS, Djakovic L, Kluge M, Hennig T, Whisnant AW, Backes S, Dölken L, Friedel CC. HSV-1 and influenza infection induce linear and circular splicing of the long NEAT1 isoform. PLoS One 2022; 17:e0276467. [PMID: 36279270 PMCID: PMC9591066 DOI: 10.1371/journal.pone.0276467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) virion host shut-off (vhs) protein cleaves both cellular and viral mRNAs by a translation-initiation-dependent mechanism, which should spare circular RNAs (circRNAs). Here, we show that vhs-mediated degradation of linear mRNAs leads to an enrichment of circRNAs relative to linear mRNAs during HSV-1 infection. This was also observed in influenza A virus (IAV) infection, likely due to degradation of linear host mRNAs mediated by the IAV PA-X protein and cap-snatching RNA-dependent RNA polymerase. For most circRNAs, enrichment was not due to increased circRNA synthesis but due to a general loss of linear RNAs. In contrast, biogenesis of a circRNA originating from the long isoform (NEAT1_2) of the nuclear paraspeckle assembly transcript 1 (NEAT1) was induced both in HSV-1 infection-in a vhs-independent manner-and in IAV infection. This was associated with induction of novel linear splicing of NEAT1_2 both within and downstream of the circRNA. NEAT1_2 forms a scaffold for paraspeckles, nuclear bodies located in the interchromatin space, must likely remain unspliced for paraspeckle assembly and is up-regulated in HSV-1 and IAV infection. We show that NEAT1_2 splicing and up-regulation can be induced by ectopic co-expression of the HSV-1 immediate-early proteins ICP22 and ICP27, potentially linking increased expression and splicing of NEAT1_2. To identify other conditions with NEAT1_2 splicing, we performed a large-scale screen of published RNA-seq data. This uncovered both induction of NEAT1_2 splicing and poly(A) read-through similar to HSV-1 and IAV infection in cancer cells upon inhibition or knockdown of CDK7 or the MED1 subunit of the Mediator complex phosphorylated by CDK7. In summary, our study reveals induction of novel circular and linear NEAT1_2 splicing isoforms as a common characteristic of HSV-1 and IAV infection and highlights a potential role of CDK7 in HSV-1 or IAV infection.
Collapse
Affiliation(s)
- Marie-Sophie Friedl
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Kluge
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Simone Backes
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
7
|
Chen Z, Ye Z, Soccio RE, Nakadai T, Hankey W, Zhao Y, Huang F, Yuan F, Wang H, Cui Z, Sunkel B, Wu D, Dzeng RK, Thomas-Ahner JM, Huang THM, Clinton SK, Huang J, Lazar MA, Jin VX, Roeder RG, Wang Q. Phosphorylated MED1 links transcription recycling and cancer growth. Nucleic Acids Res 2022; 50:4450-4463. [PMID: 35394046 PMCID: PMC9071494 DOI: 10.1093/nar/gkac246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Mediator activates RNA polymerase II (Pol II) function during transcription, but it remains unclear whether Mediator is able to travel with Pol II and regulate Pol II transcription beyond the initiation and early elongation steps. By using in vitro and in vivo transcription recycling assays, we find that human Mediator 1 (MED1), when phosphorylated at the mammal-specific threonine 1032 by cyclin-dependent kinase 9 (CDK9), dynamically moves along with Pol II throughout the transcribed genes to drive Pol II recycling after the initial round of transcription. Mechanistically, MED31 mediates the recycling of phosphorylated MED1 and Pol II, enhancing mRNA output during the transcription recycling process. Importantly, MED1 phosphorylation increases during prostate cancer progression to the lethal phase, and pharmacological inhibition of CDK9 decreases prostate tumor growth by decreasing MED1 phosphorylation and Pol II recycling. Our results reveal a novel role of MED1 in Pol II transcription and identify phosphorylated MED1 as a targetable driver of dysregulated Pol II recycling in cancer.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhenqing Ye
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Raymond E Soccio
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - William Hankey
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yue Zhao
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang 110122, China
| | - Furong Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fuwen Yuan
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongyan Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhifen Cui
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Benjamin Sunkel
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Dayong Wu
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Richard K Dzeng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer M Thomas-Ahner
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Tim H M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Steven K Clinton
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jiaoti Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Jagomast T, Idel C, Klapper L, Kuppler P, Offermann A, Dreyer E, Bruchhage KL, Ribbat-Idel J, Perner S. CDK7 Predicts Worse Outcome in Head and Neck Squamous-Cell Cancer. Cancers (Basel) 2022; 14:492. [PMID: 35158760 PMCID: PMC8833595 DOI: 10.3390/cancers14030492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
HNSCC is the sixth most common cancer worldwide and the prognosis is still poor. Here, we investigated the prognostic implications of CDK7 and pMED1. Both proteins affect transcription, and their expression is altered throughout different tumor entities. pMED1 is phosphorylated by CDK7. Importantly, CDK7 and MED1 have been ascribed prognostic implications by various studies. However, their prognostic value in head and neck squamous-cell cancer (HNSCC) remains elusive. We applied immunohistochemical staining of CDK7 and pMED1 on our large and clinically well-characterized HNSCC tissue cohort comprising 419 patients. Software-aided quantification of staining intensity was performed as a measure of protein expression. The following results were linked to the clinicopathological features of our cohort and correlated in different tissue types (primary tumor, lymph node metastasis, distant metastasis, recurrence). Upregulation CDK7 was associated with worse 5-year overall survival as well as disease-free survival in HNSCC while being independent of other known prognostic factors such as p16-status. Also, CDK7 expression was significantly elevated in immune cell infiltrated tumors. In HNSCC CDK7 might serve as a novel prognostic marker to indicate the prognosis of patients. Furthermore, in vitro studies proved the feasibility of CDK7 inhibition with attenuating effects on cell proliferation underlining its remarkable translational potential for future therapeutic regimes.
Collapse
Affiliation(s)
- Tobias Jagomast
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Christian Idel
- Department of Otorhinolaryngology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (C.I.); (K.-L.B.)
| | - Luise Klapper
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Patrick Kuppler
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Eva Dreyer
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (C.I.); (K.-L.B.)
| | - Julika Ribbat-Idel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
- Pathology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany
| |
Collapse
|
9
|
Epigenetic Coregulation of Androgen Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:277-293. [DOI: 10.1007/978-3-031-11836-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Liang P, Mao L, Ma Y, Ren W, Yang S. A systematic review on Zhilong Huoxue Tongyu capsule in treating cardiovascular and cerebrovascular diseases: Pharmacological actions, molecular mechanisms and clinical outcomes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114234. [PMID: 34044079 DOI: 10.1016/j.jep.2021.114234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular and cerebrovascular diseases have become a severe threat for human health worldwide, however, optimal therapeutic options are still developed. Zhilong Huoxue Tongyu capsule (ZL capsule) is mainly composed of Astragalus membranaceus, Leech, Earthworm, Cinnamomum cassia and Sargentodoxa cuneata, having functions of replenishing qi and activating blood, dispelling wind and reducing phlegm. It is an expanded application on the basis of traditional uses of above TCMs, acquiring a satisfactory curative effect on cardiovascular and cerebrovascular diseases over twenty years. AIM OF THE STUDY To comprehensively summarize the main components of ZL capsule, understand the mechanisms of ZL capsule, and conclude clinical regimens of ZL capsule for cardiovascular and cerebrovascular diseases. MATERIALS AND METHODS We selected network pharmacology technology to analyze main active compounds and predict underlying mechanism of ZL capsule against atherosclerosis. Molecular docking was performed to simulate the interaction pattern between the active components of ZL capsule and putative targets. Further, PubMed, Web of Science, China National Knowledge Infrastructure and Google Scholar were used to search literatures, with the key words of "Zhilong Huoxue Tongyu capsule", "cardiovascular and cerebrovascular diseases", "atherosclerosis", "clinical study" and their combinations, mainly from 2000 to 2020. RESULTS Both network pharmacology analysis, molecular docking and animal experiments studies confirmed that mechanisms of ZL capsule plays the role of anti-inflammatory, anti-apoptosis and promoting angiogenesis in treating cardiovascular and cerebrovascular diseases by multi-components acting on multi-targets via multi-pathways. Over 1000 clinical cases were benefited from the treatment of ZL capsule, suggesting a holistic concept of "the same therapy for different myocardial and cerebral diseases". CONCLUSIONS For the first time, this systematic review may supply meaningful information for further studies to explore material basis and pharmacodynamics of ZL capsule and also provide a basis for sharing the "Chinese patent medicine" for cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Ma
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Enhancer rewiring in tumors: an opportunity for therapeutic intervention. Oncogene 2021; 40:3475-3491. [PMID: 33934105 DOI: 10.1038/s41388-021-01793-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Enhancers are cis-regulatory sequences that fine-tune expression of their target genes in a spatiotemporal manner. They are recognized by sequence-specific transcription factors, which in turn recruit transcriptional coactivators that facilitate transcription by promoting assembly and activation of the basal transcriptional machinery. Their functional importance is underscored by the fact that they are often the target of genetic and nongenetic events in human disease that disrupt their sequence, interactome, activation potential, and/or chromatin environment. Dysregulation of transcription and addiction to transcriptional effectors that interact with and modulate enhancer activity are common features of cancer cells and are amenable to therapeutic intervention. Here, we discuss the current knowledge on enhancer biology, the broad spectrum of mechanisms that lead to their malfunction in tumor cells, and recent progress in developing drugs that efficaciously target their dependencies.
Collapse
|
12
|
Asangani I, Blair IA, Van Duyne G, Hilser VJ, Moiseenkova-Bell V, Plymate S, Sprenger C, Wand AJ, Penning TM. Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. J Biol Chem 2021; 296:100240. [PMID: 33384381 PMCID: PMC7949100 DOI: 10.1074/jbc.rev120.012411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Castration resistant prostate cancer (CRPC) continues to be androgen receptor (AR) driven. Inhibition of AR signaling in CRPC could be advanced using state-of-the-art biophysical and biochemical techniques. Structural characterization of AR and its complexes by cryo-electron microscopy would advance the development of N-terminal domain (NTD) and ligand-binding domain (LBD) antagonists. The structural basis of AR function is unlikely to be determined by any single structure due to the intrinsic disorder of its NTD, which not only interacts with coregulators but likely accounts for the constitutive activity of AR-splice variants (SV), which lack the LBD and emerge in CRPC. Using different AR constructs lacking the LBD, their effects on protein folding, DNA binding, and transcriptional activity could reveal how interdomain coupling explains the activity of AR-SVs. The AR also interacts with coregulators that promote chromatin looping. Elucidating the mechanisms involved can identify vulnerabilities to treat CRPC, which do not involve targeting the AR. Phosphorylation of the AR coactivator MED-1 by CDK7 is one mechanism that can be blocked by the use of CDK7 inhibitors. CRPC gains resistance to AR signaling inhibitors (ARSI). Drug resistance may involve AR-SVs, but their role requires their reliable quantification by SILAC-mass spectrometry during disease progression. ARSI drug resistance also occurs by intratumoral androgen biosynthesis catalyzed by AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase), which is unique in that its acts as a coactivator of AR. Novel bifunctional inhibitors that competitively inhibit AKR1C3 and block its coactivator function could be developed using reverse-micelle NMR and fragment-based drug discovery.
Collapse
Affiliation(s)
- Irfan Asangani
- Department Cancer Biology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian A Blair
- Department Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vera Moiseenkova-Bell
- Department Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, and GRECC, Seattle, Washington, USA
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, and GRECC, Seattle, Washington, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, USA
| | - Trevor M Penning
- Department Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
13
|
Russo JW, Nouri M, Balk SP. Androgen Receptor Interaction with Mediator Complex Is Enhanced in Castration-Resistant Prostate Cancer by CDK7 Phosphorylation of MED1. Cancer Discov 2020; 9:1490-1492. [PMID: 31676563 DOI: 10.1158/2159-8290.cd-19-1028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this issue of Cancer Discovery, Rasool and colleagues show that TF11H/CDK7 phosphorylates the MED1 component of the Mediator complex, which enhances its interaction with androgen receptor (AR), and that this phosphorylation is increased in prostate cancer that is resistant to castration and enzalutamide. A covalent CDK7-specific inhibitor (THZ1) impairs AR-mediated MED1 recruitment to chromatin, and can suppress enzalutamide resistance in vitro and induce tumor regression in a castration-resistant prostate cancer xenograft model, suggesting a novel therapeutic approach for advanced prostate cancer.See related article by Rasool et al., p. 1538.
Collapse
Affiliation(s)
- Joshua W Russo
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Mannan Nouri
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
14
|
Femia MR, Evans RM, Zhang J, Sun X, Lebegue CJ, Roggero VR, Allison LA. Mediator subunit MED1 modulates intranuclear dynamics of the thyroid hormone receptor. J Cell Biochem 2019; 121:2909-2926. [PMID: 31692077 DOI: 10.1002/jcb.29532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022]
Abstract
The thyroid hormone receptors (TRs) mediate thyroid hormone (T3 )-dependent gene expression. The nuclear import and export signals that direct TR shuttling are well characterized, but little is known about factors modulating nuclear retention. We used fluorescence-based nucleocytoplasmic scoring and fluorescence recovery after photobleaching in transfected cells to investigate whether Mediator subunits MED1 and MED13 play a role in nuclear retention of TR. When MED1 was overexpressed, there was a striking shift towards a greater nuclear localization of TRβ1 and the oncoprotein v-ErbA, subtypes with cytosolic populations at steady-state, and TRβ1 intranuclear mobility was reduced. For TRα1, there was no observable change in its predominantly nuclear distribution pattern or mobility. Consistent with a role for MED1 in nuclear retention, the cytosolic TRα1 and TRβ1 population were significantly greater in MED1-/- cells, compared with MED1+/+ cells. Exposure to T3 and epidermal growth factor, which induces MED1 phosphorylation, also altered TR intranuclear dynamics. Overexpression of miR-208a, which downregulates MED13, led to a more cytosolic distribution of nuclear-localized TRα1; however, overexpression of MED13 had no effect on TRβ1 localization. The known binding site of MED1 overlaps with a transactivation domain and nuclear export signal in helix 12 of TR's ligand-binding domain (LBD). Coimmunoprecipitation assays demonstrated that TR's LBD interacts directly with exportins 5 and 7, suggesting that binding of exportins and MED1 to TR may be mutually exclusive. Collectively, our data provide evidence that MED1 promotes nuclear retention of TR, and highlight the dual functionality of helix 12 in TR transactivation and nuclear export.
Collapse
Affiliation(s)
- Matthew R Femia
- Department of Biology, William and Mary, Williamsburg, Viginia
| | | | - Jibo Zhang
- Department of Biology, William and Mary, Williamsburg, Viginia
| | - Xiaopeng Sun
- Department of Biology, William and Mary, Williamsburg, Viginia
| | | | | | | |
Collapse
|
15
|
Rasool RU, Natesan R, Deng Q, Aras S, Lal P, Sander Effron S, Mitchell-Velasquez E, Posimo JM, Carskadon S, Baca SC, Pomerantz MM, Siddiqui J, Schwartz LE, Lee DJ, Palanisamy N, Narla G, Den RB, Freedman ML, Brady DC, Asangani IA. CDK7 Inhibition Suppresses Castration-Resistant Prostate Cancer through MED1 Inactivation. Cancer Discov 2019; 9:1538-1555. [PMID: 31466944 PMCID: PMC7202356 DOI: 10.1158/2159-8290.cd-19-0189] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/09/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is a fatal disease, primarily resulting from the transcriptional addiction driven by androgen receptor (AR). First-line CRPC treatments typically target AR signaling, but are rapidly bypassed, resulting in only a modest survival benefit with antiandrogens. Therapeutic approaches that more effectively block the AR-transcriptional axis are urgently needed. Here, we investigated the molecular mechanism underlying the association between the transcriptional coactivator MED1 and AR as a vulnerability in AR-driven CRPC. MED1 undergoes CDK7-dependent phosphorylation at T1457 and physically engages AR at superenhancer sites, and is essential for AR-mediated transcription. In addition, a CDK7-specific inhibitor, THZ1, blunts AR-dependent neoplastic growth by blocking AR/MED1 corecruitment genome-wide, as well as reverses the hyperphosphorylated MED1-associated enzalutamide-resistant phenotype. In vivo, THZ1 induces tumor regression of AR-amplified human CRPC in a xenograft mouse model. Together, we demonstrate that CDK7 inhibition selectively targets MED1-mediated, AR-dependent oncogenic transcriptional amplification, thus representing a potential new approach for the treatment of CRPC. SIGNIFICANCE: Potent inhibition of AR signaling is critical to treat CRPC. This study uncovers a driver role for CDK7 in regulating AR-mediated transcription through phosphorylation of MED1, thus revealing a therapeutically targetable potential vulnerability in AR-addicted CRPC.See related commentary by Russo et al., p. 1490.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shweta Aras
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priti Lal
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samuel Sander Effron
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica M Posimo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon Carskadon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Javed Siddiqui
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lauren E Schwartz
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Lee
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Parrini M, Meissl K, Ola MJ, Lederer T, Puga A, Wienerroither S, Kovarik P, Decker T, Müller M, Strobl B. The C-Terminal Transactivation Domain of STAT1 Has a Gene-Specific Role in Transactivation and Cofactor Recruitment. Front Immunol 2018; 9:2879. [PMID: 30574148 PMCID: PMC6291510 DOI: 10.3389/fimmu.2018.02879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/23/2018] [Indexed: 01/12/2023] Open
Abstract
STAT1 has a key role in the regulation of innate and adaptive immunity by inducing transcriptional changes in response to cytokines, such as all types of interferons (IFN). STAT1 exist as two splice isoforms, which differ in regard to the C-terminal transactivation domain (TAD). STAT1β lacks the C-terminal TAD and has been previously reported to be a weaker transcriptional activator than STAT1α, although this was strongly dependent on the target gene. The mechanism of this context-dependent effects remained unclear. By using macrophages from mice that only express STAT1β, we investigated the role of the C-terminal TAD during the distinct steps of transcriptional activation of selected target genes in response to IFNγ. We show that the STAT1 C-terminal TAD is absolutely required for the recruitment of RNA polymerase II (Pol II) and for the establishment of active histone marks at the class II major histocompatibility complex transactivator (CIIta) promoter IV, whereas it is dispensable for histone acetylation at the guanylate binding protein 2 (Gbp2) promoter but required for an efficient recruitment of Pol II, which correlated with a strongly reduced, but not absent, transcriptional activity. IFNγ-induced expression of Irf7, which is mediated by STAT1 in complex with STAT2 and IRF9, did not rely on the presence of the C-terminal TAD of STAT1. Moreover, we show for the first time that the STAT1 C-terminal TAD is required for an efficient recruitment of components of the core Mediator complex to the IFN regulatory factor (Irf) 1 and Irf8 promoters, which both harbor an open chromatin state under basal conditions. Our study identified novel functions of the STAT1 C-terminal TAD in transcriptional activation and provides mechanistic explanations for the gene-specific transcriptional activity of STAT1β.
Collapse
Affiliation(s)
- Matthias Parrini
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katrin Meissl
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mojoyinola Joanna Ola
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Therese Lederer
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana Puga
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,University Center Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
17
|
Amoasii L, Olson EN, Bassel-Duby R. Control of Muscle Metabolism by the Mediator Complex. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029843. [PMID: 28432117 DOI: 10.1101/cshperspect.a029843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exercise represents an energetic challenge to whole-body homeostasis. In skeletal muscle, exercise activates a variety of signaling pathways that culminate in the nucleus to regulate genes involved in metabolism and contractility; however, much remains to be learned about the transcriptional effectors of exercise. Mediator is a multiprotein complex that links signal-dependent transcription factors and other transcriptional regulators with the basal transcriptional machinery, thereby serving as a transcriptional "hub." In this article, we discuss recent studies highlighting the role of Mediator subunits in metabolic regulation and glucose metabolism, as well as exercise responsiveness. Elucidation of the roles of Mediator subunits in metabolic control has revealed new mechanisms and molecular targets for the modulation of metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| |
Collapse
|
18
|
Chen Q, Weng Z, Lu Y, Jia Y, Ding L, Bai F, Ge M, Lin Q, Wu K. An Experimental Analysis of the Molecular Effects of Trastuzumab (Herceptin) and Fulvestrant (Falsodex), as Single Agents or in Combination, on Human HR+/HER2+ Breast Cancer Cell Lines and Mouse Tumor Xenografts. PLoS One 2017; 12:e0168960. [PMID: 28045951 PMCID: PMC5207527 DOI: 10.1371/journal.pone.0168960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the effects of trastuzumab (herceptin) and fulvestrant (falsodex) either in combination or alone, on downstream cell signaling pathways in lab-cultured human HR+/HER2+ breast cancer cell lines ZR-75-1 and BT-474, as well as on protein expression levels in mouse xenograft tissue. METHODS Cells were cultivated in the presence of trastuzumab or fulvestrant or both. Molecular events that resulted in an inhibition of cell proliferation and cell cycle progression or in an increased rate of apoptosis were studied. The distribution and abundance of the proteins p-Akt and p-Erk expressed in these cells in response to single agents or combinatorial treatment were also investigated. In addition, the effects of trastuzumab and fulvestrant, either as single agents or in combination on tumor growth as well as on expression of the protein p-MED1 expressed in in vivo mouse xenograft models was also examined. RESULTS Cell proliferation was increasingly inhibited by trastuzumab or fulvestrant or both, with a CI<1 and DRI>1 in both human cell lines. The rate of apoptosis increased only in the BT-474 cell line and not in the ZR-75-1 cell line upon treatment with fulvestrant and not trastuzumab as a single agent (P<0.05). Interestingly, fulvestrant, in combination with trastuzumab, did not significantly alter the rate of apoptosis (in comparison with fulvestrant alone), in the BT-474 cell line (P>0.05). Cell accumulation in the G1 phase of cell cycle was investigated in all treatment groups (P<0.05), and the combination of trastuzumab and fulvestrant reversed the effects of fulvestrant alone on p-Akt and p-Erk protein expression levels. Using ZR-75-1 or BT-474 to generate in vivo tumor xenografts in BALB/c athymic mouse models, we showed that a combination of both drugs resulted in a stronger inhibition of tumor growth (P<0.05) and a greater decrease in the levels of activated MED1 (p-MED1) expressed in tumor issues compared with the use of either drug as a single agent. CONCLUSIONS We demonstrate that the administration of trastuzumab and fulvestrant in combination results in positive synergistic effects on both, ZR-75-1 and BT-474 cell lines. This combinatorial approach is likely to reduce physiological side effects of both drugs, thus providing a theoretical basis for the use of such combination treatment in order to resolve HR+/HER2+ triple positive breast cancer that has previously been shown to be resistant to endocrine treatment alone.
Collapse
Affiliation(s)
- Qing Chen
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Weng
- Department of General Surgery, Shanghai International Medical Center, Shanghai, China
| | - Yunshu Lu
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Jia
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longlong Ding
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Bai
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meixin Ge
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Lin
- Department of Radiation Oncology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
19
|
Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16:155-66. [PMID: 25693131 DOI: 10.1038/nrm3951] [Citation(s) in RCA: 616] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
Collapse
Affiliation(s)
- Benjamin L Allen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
20
|
Abstract
Skeletal and cardiac muscles play key roles in the regulation of systemic energy homeostasis and display remarkable plasticity in their metabolic responses to caloric availability and physical activity. In this Perspective we discuss recent studies highlighting transcriptional mechanisms that govern systemic metabolism by striated muscles. We focus on the participation of the Mediator complex in this process, and suggest that tissue-specific regulation of Mediator subunits impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Kedryn K Baskin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Benjamin R Winders
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.
| |
Collapse
|
21
|
Waters KM, Cummings BS, Shankaran H, Scholpa NE, Weber TJ. ERK oscillation-dependent gene expression patterns and deregulation by stress response. Chem Res Toxicol 2014; 27:1496-503. [PMID: 25068892 PMCID: PMC4163986 DOI: 10.1021/tx500085u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Studies were undertaken to determine
whether extracellular signal
regulated kinase (ERK) oscillations regulate a unique subset of genes
in human keratinocytes and subsequently whether the p38 stress response
inhibits ERK oscillations. A DNA microarray identified many genes
that were unique to ERK oscillations, and network reconstruction predicted
an important role for the mediator complex subunit 1 (MED1) node in
mediating ERK oscillation-dependent gene expression. Increased ERK-dependent
phosphorylation of MED1 was observed in oscillating cells compared
to nonoscillating counterparts as validation. Treatment of keratinocytes
with a p38 inhibitor (SB203580) increased ERK oscillation amplitudes
and MED1 and phospho-MED1 protein levels. Bromate is a probable human
carcinogen that activates p38. Bromate inhibited ERK oscillations
in human keratinocytes and JB6 cells and induced an increase in phospho-p38
and a decrease in phospho-MED1 protein levels. Treatment of normal
rat kidney cells and primary salivary gland epithelial cells with
bromate decreased phospho-MED1 levels in a reversible fashion upon
treatment with p38 inhibitors (SB202190; SB203580). Our results indicate
that oscillatory behavior in the ERK pathway alters homeostatic gene
regulation patterns and that the cellular response to perturbation
may manifest differently in oscillating vs nonoscillating cells.
Collapse
Affiliation(s)
- Katrina M Waters
- Computational Biology and Bioinformatics, ‡Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | |
Collapse
|
22
|
Jia Y, Viswakarma N, Reddy JK. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis. Gene Expr 2014; 16:63-75. [PMID: 24801167 PMCID: PMC4093800 DOI: 10.3727/105221614x13919976902219] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic diseases associated with increased energy combustion in liver.
Collapse
Affiliation(s)
- Yuzhi Jia
- *Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Navin Viswakarma
- †Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Janardan K. Reddy
- *Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
23
|
Kapadia B, Viswakarma N, Parsa KVL, Kain V, Behera S, Suraj SK, Babu PP, Kar A, Panda S, Zhu YJ, Jia Y, Thimmapaya B, Reddy JK, Misra P. ERK2-mediated phosphorylation of transcriptional coactivator binding protein PIMT/NCoA6IP at Ser298 augments hepatic gluconeogenesis. PLoS One 2013; 8:e83787. [PMID: 24358311 PMCID: PMC3866170 DOI: 10.1371/journal.pone.0083787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser(298) and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMT(S298D)) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMT(S298D) but not PIMT(S298A) augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser(298) phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser(298) is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia.
Collapse
Affiliation(s)
- Bandish Kapadia
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Navin Viswakarma
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Kishore V. L. Parsa
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Vasundhara Kain
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Soma Behera
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Sashidhara Kaimal Suraj
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Phanithi Prakash Babu
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | - Anand Kar
- Department of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Sunanda Panda
- Department of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Yi-jun Zhu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Janardan K. Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (PM); (JKR)
| | - Parimal Misra
- Department of Biology, Dr Reddy’s Institute of Life Sciences, An Associate Institute of University of Hyderabad, Hyderabad, Andhra Pradesh, India
- * E-mail: (PM); (JKR)
| |
Collapse
|
24
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
25
|
Viswakarma N, Jia Y, Bai L, Gao Q, Lin B, Zhang X, Misra P, Rana A, Jain S, Gonzalez FJ, Zhu YJ, Thimmapaya B, Reddy JK. The Med1 subunit of the mediator complex induces liver cell proliferation and is phosphorylated by AMP kinase. J Biol Chem 2013; 288:27898-911. [PMID: 23943624 DOI: 10.1074/jbc.m113.486696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mediator, a large multisubunit protein complex, plays a pivotal role in gene transcription by linking gene-specific transcription factors with the preinitiation complex and RNA polymerase II. In the liver, the key subunit of the Mediator complex, Med1, interacts with several nuclear receptors and transcription factors to direct gene-specific transcription. Conditional knock-out of Med1 in the liver showed that hepatocytes lacking Med1 did not regenerate following either partial hepatectomy or treatment with certain nuclear receptor activators and failed to give rise to tumors when challenged with carcinogens. We now report that the adenovirally driven overexpression of Med1 in mouse liver stimulates hepatocyte DNA synthesis with enhanced expression of DNA replication, cell cycle control, and liver-specific genes, indicating that Med1 alone is necessary and sufficient for liver cell proliferation. Importantly, we demonstrate that AMP-activated protein kinase (AMPK), an important cellular energy sensor, interacts with, and directly phosphorylates, Med1 in vitro at serine 656, serine 756, and serine 796. AMPK also phosphorylates Med1 in vivo in mouse liver and in cultured primary hepatocytes and HEK293 and HeLa cells. In addition, we demonstrate that PPARα activators increase AMPK-mediated Med1 phosphorylation in vivo. Inhibition of AMPK by compound C decreased hepatocyte proliferation induced by Med1 and also by the PPARα activators fenofibrate and Wy-14,643. Co-treatment with compound C attenuated PPARα activator-inducible fatty acid β-oxidation in liver. Our results suggest that Med1 phosphorylation by its association with AMPK regulates liver cell proliferation and fatty acid oxidation, most likely as a downstream effector of PPARα and AMPK.
Collapse
Affiliation(s)
- Navin Viswakarma
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Proteomic analysis of coregulators bound to ERα on DNA and nucleosomes reveals coregulator dynamics. Mol Cell 2013; 51:185-99. [PMID: 23850489 DOI: 10.1016/j.molcel.2013.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/02/2013] [Accepted: 06/04/2013] [Indexed: 11/21/2022]
Abstract
Chromatin immunoprecipitation studies have mapped protein occupancies at many genomic loci. However, a detailed picture of the complexity of coregulators (CoRs) bound to a defined enhancer along with a transcription factor is missing. To address this, we used biotin-DNA pull-down assays coupled with mass spectrometry-immunoblotting to identify at least 17 CoRs from nuclear extracts bound to 17β-estradiol (E2)-liganded estrogen receptor-α on estrogen response elements (EREs). Unexpectedly, these complexes initially are biochemically stable and contain certain atypical corepressors. Addition of ATP dynamically converts these complexes to an "activated" state by phosphorylation events, primarily mediated by DNA-dependent protein kinase. Importantly, a "natural" ERE-containing enhancer and nucleosomal EREs recruit similar complexes. We further discovered the mechanism whereby H3K4me3 stimulates ERα-mediated transcription as compared with unmodified nucleosomes. H3K4me3 templates promote specific CoR dynamics in the presence of ATP and AcCoA, as manifested by CBP/p300 and SRC-3 dismissal and SAGA and TFIID stabilization/recruitment.
Collapse
|
27
|
Jin F, Irshad S, Yu W, Belakavadi M, Chekmareva M, Ittmann MM, Abate-Shen C, Fondell JD. ERK and AKT signaling drive MED1 overexpression in prostate cancer in association with elevated proliferation and tumorigenicity. Mol Cancer Res 2013; 11:736-47. [PMID: 23538858 DOI: 10.1158/1541-7786.mcr-12-0618] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MED1 is a key coactivator of the androgen receptor (AR) and other signal-activated transcription factors. Whereas MED1 is overexpressed in prostate cancer cell lines and is thought to coactivate distinct target genes involved in cell-cycle progression and castration-resistant growth, the underlying mechanisms by which MED1 becomes overexpressed and its oncogenic role in clinical prostate cancer have remained unclear. Here, we report that MED1 is overexpressed in the epithelium of clinically localized human prostate cancer patients, which correlated with elevated cellular proliferation. In a Nkx3.1:Pten mutant mouse model of prostate cancer that recapitulates the human disease, MED1 protein levels were markedly elevated in the epithelium of both invasive and castration-resistant adenocarcinoma prostate tissues. Mechanistic evidence showed that hyperactivated ERK and/or AKT signaling pathways promoted MED1 overexpression in prostate cancer cells. Notably, ectopic MED1 overexpression in prostate cancer xenografts significantly promoted tumor growth in nude mice. Furthermore, MED1 expression in prostate cancer cells promoted the expression of a number of novel genes involved in inflammation, cell proliferation, and survival. Together, these findings suggest that elevated MED1 is a critical molecular event associated with prostate oncogenesis.
Collapse
Affiliation(s)
- Feng Jin
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, UMDNJ, 683 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Klein AM, Zaganjor E, Cobb MH. Chromatin-tethered MAPKs. Curr Opin Cell Biol 2013; 25:272-7. [PMID: 23434067 DOI: 10.1016/j.ceb.2013.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 01/15/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that are essential nodes in many cellular regulatory circuits including those that take place on DNA. Most members of the four MAPK subgroups that exist in canonical three kinase cascades-extracellular signal-regulated kinases 1 and 2 (ERK1/2), ERK5, c-Jun N-terminal kinases (JNK1-3), and p38 (α, β, γ, and δ) families-have been shown to perform regulatory functions on chromatin. This review offers a brief update on the variety of processes that involve MAPKs and available mechanisms garnered in the last two years.
Collapse
Affiliation(s)
- Aileen M Klein
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, United States
| | | | | |
Collapse
|
29
|
Miller C, Matic I, Maier KC, Schwalb B, Roether S, Strässer K, Tresch A, Mann M, Cramer P. Mediator phosphorylation prevents stress response transcription during non-stress conditions. J Biol Chem 2012; 287:44017-26. [PMID: 23135281 PMCID: PMC3531718 DOI: 10.1074/jbc.m112.430140] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription that is required for the regulated expression of protein-coding genes. Mediator serves as an end point of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are not well understood. Here, we used mass spectrometry and dynamic transcriptome analysis to investigate a functional role of Mediator phosphorylation in gene expression. Affinity purification and mass spectrometry revealed that Mediator from the yeast Saccharomyces cerevisiae is phosphorylated at multiple sites of 17 of its 25 subunits. Mediator phosphorylation levels change upon an external stimulus set by exposure of cells to high salt concentrations. Phosphorylated sites in the Mediator tail subunit Med15 are required for suppression of stress-induced changes in gene expression under non-stress conditions. Thus dynamic and differential Mediator phosphorylation contributes to gene regulation in eukaryotic cells.
Collapse
Affiliation(s)
- Christian Miller
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany and
| | - Ivan Matic
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried near Munich, Germany
| | - Kerstin C. Maier
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany and
| | - Björn Schwalb
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany and
| | - Susanne Roether
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany and
| | - Katja Strässer
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany and
| | - Achim Tresch
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany and
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried near Munich, Germany
| | - Patrick Cramer
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany and
| |
Collapse
|
30
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
31
|
Cui J, Germer K, Wu T, Wang J, Luo J, Wang SC, Wang Q, Zhang X. Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells. Cancer Res 2012; 72:5625-34. [PMID: 22964581 DOI: 10.1158/0008-5472.can-12-1305] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the fact that most breast cancer patients have estrogen receptor (ER) α-positive tumors, up to 50% of the patients are or soon develop resistance to endocrine therapy. It is recognized that HER2 activation is one of the major mechanisms contributing to endocrine resistance. In this study, we report that the ER coactivator MED1 is a novel cross-talk point for the HER2 and ERα pathways. Tissue microarray analysis of human breast cancers revealed that MED1 expression positively correlates most strongly with HER2 status of the tumors. MED1 was highly phosphorylated, in a HER2-dependent manner, at the site known to be critical for its activation. Importantly, RNAi-mediated attenuation of MED1 sensitized HER2-overexpressing cells to tamoxifen treatment. MED1 and its phosphorylated form, but not the corepressors N-CoR and SMRT, were recruited to the ERα target gene promoter by tamoxifen in HER2-overexpressing cells. Significantly, MED1 attenuation or mutation of MED1 phosphorylation sites was sufficient to restore the promoter recruitment of N-CoR and SMRT. Notably, we found that MED1 is required for the expression of not only traditional E2-ERα target genes but also the newly described EGF-ERα target genes. Our results additionally indicated that MED1 is recruited to the HER2 gene and required for its expression. Taken together, these findings support a key role for MED1 in HER2-mediated tamoxifen resistance and suggest its potential usage as a therapeutic target to simultaneously block both ERα and HER2 pathways for the treatment of this type of endocrine resistant breast cancer.
Collapse
Affiliation(s)
- Jiajun Cui
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene 2012; 32:2891-9. [PMID: 22869146 DOI: 10.1038/onc.2012.300] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deregulation of microRNA (miRNA) expression can have a critical role in carcinogenesis. Here we show in prostate cancer that miRNA-205 (miR-205) transcription is commonly repressed and the MIR-205 locus is hypermethylated. LOC642587, the MIR-205 host gene of unknown function, is also concordantly inactivated. We show that miR-205 targets mediator 1 (MED1, also called TRAP220 and PPARBP) for transcriptional silencing in normal prostate cells, leading to reduction in MED1 mRNA levels, and in total and active phospho-MED1 protein. Overexpression of miR-205 in prostate cancer cells negatively affects cell viability, consistent with a tumor suppressor function. We found that hypermethylation of the MIR-205 locus was strongly related with a decrease in miR-205 expression and an increase in MED1 expression in primary tumor samples (n=14), when compared with matched normal prostate (n=7). An expanded patient cohort (tumor n=149, matched normal n=30) also showed significant MIR-205 DNA methylation in tumors compared with normal, and MIR-205 hypermethylation is significantly associated with biochemical recurrence (hazard ratio=2.005, 95% confidence interval (1.109, 3.625), P=0.02), in patients with low preoperative prostate specific antigen. In summary, these results suggest that miR-205 is an epigenetically regulated tumor suppressor that targets MED1 and may provide a potential biomarker in prostate cancer management.
Collapse
|
33
|
The Mediator complex in thyroid hormone receptor action. Biochim Biophys Acta Gen Subj 2012; 1830:3867-75. [PMID: 22402254 DOI: 10.1016/j.bbagen.2012.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Mediator is an evolutionarily conserved multisubunit complex that plays an essential regulatory role in eukaryotic transcription of protein-encoding genes. The human complex was first isolated as a transcriptional coactivator bound to the thyroid hormone receptor (TR) and has since been shown to play a key coregulatory role for a broad range of nuclear hormone receptors (NRs) as well as other signal-activated transcription factors. SCOPE OF REVIEW We provide a general overview of Mediator structure and function, summarize the mechanisms by which Mediator is targeted to NRs, and outline recent evidence revealing Mediator as a regulatory axis for other distinct coregulatory factors, chromatin modifying enzymes and cellular signal transduction pathways. MAJOR CONCLUSIONS Besides serving as a functional interface with the RNA polymerase II basal transcription machinery, Mediator plays a more versatile role in regulating transcription including the ability to: a) facilitate gene-specific chromatin looping events; b) coordinate chromatin modification events with preinitiation complex assembly; and c) regulate critical steps that occur during transcriptional elongation. The variably associated MED1 subunit continues to emerge as a pivotal player in Mediator function, not only as the primary interaction site for NRs, but also as a crucial interaction hub for other coregulatory factors, and as an important regulatory target for signal-activated kinases. GENERAL SIGNIFICANCE Mediator plays an integral coregulatory role at NR target genes by functionally interacting with the basal transcription apparatus and by coordinating the action of chromatin modifying enzymes and transcription elongation factors. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
|
34
|
Nagalingam A, Tighiouart M, Ryden L, Joseph L, Landberg G, Saxena NK, Sharma D. Med1 plays a critical role in the development of tamoxifen resistance. Carcinogenesis 2012; 33:918-30. [PMID: 22345290 DOI: 10.1093/carcin/bgs105] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the molecular pathways that contribute to the development of tamoxifen resistance is a critical research priority as acquired tamoxifen resistance is the principal cause of poor prognosis and death of patients with originally good prognosis hormone-responsive breast tumors. In this report, we provide evidence that Med1, an important subunit of mediator coactivator complex, is spontaneously upregulated during acquired tamoxifen-resistance development potentiating agonist activities of tamoxifen. Phosphorylated Med1 and estrogen receptor (ER) are abundant in tamoxifen-resistant breast cancer cells due to persistent activation of extracellular signal-regulated kinases. Mechanistically, phosphorylated Med1 exhibits nuclear accumulation, increased interaction with ER and higher tamoxifen-induced recruitment to ER-responsive promoters, which is abrogated by inhibition of Med1 phosphorylation. Stable knockdown of Med1 in tamoxifen-resistant cells not only reverses tamoxifen resistance in vitro but also in vivo. Finally, higher expression levels of Med1 in the tumor significantly correlated with tamoxifen resistance in ER-positive breast cancer patients on adjuvant tamoxifen monotherapy. In silico analysis of breast cancer, utilizing published profiling studies showed that Med1 is overexpressed in aggressive subsets. These findings provide what we believe is the first evidence for a critical role for Med1 in tamoxifen resistance and identify this coactivator protein as an essential effector of the tamoxifen-induced breast cancer growth.
Collapse
Affiliation(s)
- Arumugam Nagalingam
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Room 145, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Mediator subunits MED1 and MED24 cooperatively contribute to pubertal mammary gland development and growth of breast carcinoma cells. Mol Cell Biol 2012; 32:1483-95. [PMID: 22331469 DOI: 10.1128/mcb.05245-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mediator subunit MED1 is essential for mammary gland development and lactation, whose contribution through direct interaction with estrogen receptors (ERs) is restricted to involvement in pubertal mammary gland development and luminal cell differentiation. Here, we provide evidence that the MED24-containing submodule of Mediator functionally communicates specifically with MED1 in pubertal mammary gland development. Mammary glands from MED1/MED24 double heterozygous knockout mice showed profound retardation in ductal branching during puberty, while single haploinsufficient glands developed normally. DNA synthesis of both luminal and basal cells were impaired in double mutant mice, and the expression of ER-targeted genes encoding E2F1 and cyclin D1, which promote progression through the G(1)/S phase of the cell cycle, was attenuated. Luciferase reporter assays employing double mutant mouse embryonic fibroblasts showed selective impairment in ER functions. Various breast carcinoma cell lines expressed abundant amounts of MED1, MED24, and MED30, and attenuated expression of MED1 and MED24 in breast carcinoma cells led to attenuated DNA synthesis and growth. These results indicate functional communications between the MED1 subunit and the MED24-containing submodule that mediate estrogen receptor functions and growth of both normal mammary epithelial cells and breast carcinoma cells.
Collapse
|
36
|
Jin F, Claessens F, Fondell JD. Regulation of androgen receptor-dependent transcription by coactivator MED1 is mediated through a newly discovered noncanonical binding motif. J Biol Chem 2011; 287:858-70. [PMID: 22102282 DOI: 10.1074/jbc.m111.304519] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nuclear receptor (NR) activation by cognate ligand generally involves allosteric realignment of C-terminal α-helices thus generating a binding surface for coactivators containing canonical LXXLL α-helical motifs. The androgen receptor (AR) is uncommon among NRs in that ligand triggers an intramolecular interaction between its N- and C-terminal domains (termed the N/C interaction) and that coactivators can alternatively bind to surfaces in the AR N-terminal or hinge regions. The evolutionary conserved Mediator complex plays a key coregulatory role in steroid hormone-dependent transcription and is chiefly targeted to NRs via the LXXLL-containing MED1 subunit. Whereas MED1 has been demonstrated to serve as a key transcriptional coactivator for AR, the mechanisms by which AR recruits MED1 have remained unclear. Here we show that MED1 binds to a distinct AR N-terminal region termed transactivation unit-1 (Tau-1) via two newly discovered noncanonical α-helical motifs located between MED1 residues 505 and 537. Neither of the two MED1 LXXLL motifs is required for AR binding, whereas loss of the intramolecular AR N/C interaction decreases MED1 binding. We further demonstrate that mitogen-activated protein kinase phosphorylation of MED1 enhances the AR-MED1 interaction in prostate cancer cells. In sum, our findings reveal a novel AR-coactivator binding mechanism that may have clinical implications for AR activity in prostate cancer.
Collapse
Affiliation(s)
- Feng Jin
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
37
|
Abstract
How is specificity transmitted over long distances at the molecular level? REs (regulatory elements) are often far from transcription start sites. In the present review we discuss possible mechanisms to explain how information from specific REs is conveyed to the basal transcription machinery through TFs (transcription factors) and the Mediator complex. We hypothesize that this occurs through allosteric pathways: binding of a TF to a RE results in changes in the AD (activation domain) of the TF, which binds to Mediator and alters the distribution of the Mediator conformations, thereby affecting transcription initiation/activation. We argue that Mediator is formed by highly disordered proteins with large densely packed interfaces that make efficient long-range signal propagation possible. We suggest two possible general mechanisms for Mediator action: one in which Mediator influences PIC (pre-initiation complex) assembly and transcription initiation, and another in which Mediator exerts its effect on the already assembled but stalled transcription complex. We summarize (i) relevant information from the literature about Mediator composition, organization and structure; (ii) Mediator interaction partners and their effect on Mediator conformation, function and correlation to the RNA Pol II (polymerase II) CTD (C-terminal domain) phosphorylation; and (iii) propose that different allosteric signal propagation pathways in Mediator relate to PIC assembly and polymerase activation of the stalled transcription complex. The emerging picture provides for the first time a mechanistic view of allosteric signalling from the RE sequence to transcription activation, and an insight into how gene specificity and signal transmission can take place in transcription initiation.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702, U.S.A
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
38
|
Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 2011; 94:579-87. [PMID: 21983542 DOI: 10.1016/j.biochi.2011.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/15/2011] [Indexed: 01/13/2023]
Abstract
Mediator (MED) is a fundamental component of the RNA polymerase II-mediated transcription machinery. This multiprotein complex plays a pivotal role in the regulation of eukaryotic mRNA synthesis. The yeast Mediator complex consists of 26 different subunits. Recent studies indicate additional pathogenic roles for Mediator, for example during transcription elongation and non-coding RNA production. Mediator subunits have been emerging also to have pathophysiological roles suggesting MED-dependent therapeutic targets involving in several diseases, such as cancer, cardiovascular disease (CVD), metabolic and neurological disorders.
Collapse
|
39
|
Chen W, Roeder RG. Mediator-dependent nuclear receptor function. Semin Cell Dev Biol 2011; 22:749-58. [PMID: 21854863 DOI: 10.1016/j.semcdb.2011.07.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/24/2022]
Abstract
As gene-specific transcription factors, nuclear receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss our current understanding of (i) pathways involved in Mediator recruitment and function through nuclear receptor target gene enhancers and promoters, (ii) conditional requirements for the strong nuclear receptor-Mediator interactions mediated by NR AF2 domains and the MED1 LXXLL motifs, (iii) Mediator functions, through different nuclear receptor-interacting subunits, in different metabolic pathways, (iv) emerging functions of Mediator as a corepressor in addition to its major role as a coactivator and (v) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. As a nuclear receptor coregulator with increasingly diverse functions, Mediator may thus modulate nuclear receptor signaling through several different mechanisms.
Collapse
Affiliation(s)
- Wei Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| | | |
Collapse
|
40
|
Interactions between subunits of the Mediator complex with gene-specific transcription factors. Semin Cell Dev Biol 2011; 22:759-68. [PMID: 21839847 DOI: 10.1016/j.semcdb.2011.07.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 11/24/2022]
Abstract
The Mediator complex forms the bridge between gene-specific transcription factors and the RNA polymerase II (RNAP II) machinery. Mediator is a large polypetide complex consisting of about thirty polypeptides that are mostly conserved from yeast to human. Mediator coordinates RNAP II recruitment, phosphorylation of the C-terminal domain of RNAP II, enhancer-loop formation and post-initiation events. The focus of the review is to summarize the current knowledge of transcription factor/Mediator interactions in higher eukaryotes and illuminate the physiological and gene-selective roles of Mediator.
Collapse
|
41
|
Mediator and human disease. Semin Cell Dev Biol 2011; 22:776-87. [PMID: 21840410 DOI: 10.1016/j.semcdb.2011.07.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 01/21/2023]
Abstract
Since the identification of a metazoan counterpart to yeast Mediator nearly 15 years ago, a convergent body of biochemical and molecular genetic studies have confirmed their structural and functional relationship as an integrative hub through which regulatory information conveyed by signal activated transcription factors is transduced to RNA polymerase II. Nonetheless, metazoan Mediator complexes have been shaped during evolution by substantive diversification and expansion in both the number and sequence of their constituent subunits, with important implications for the development of multicellular organisms. The appearance of unique interaction surfaces within metazoan Mediator complexes for transcription factors of diverse species-specific origins extended the role of Mediator to include an essential function in coupling developmentally coded signals with precise gene expression output sufficient to specify cell fate and function. The biological significance of Mediator in human development, suggested by genetic studies in lower metazoans, is emphatically illustrated by an expanding list of human pathologies linked to genetic variation or aberrant expression of its individual subunits. Here, we review our current body of knowledge concerning associations between individual Mediator subunits and specific pathological disorders. When established, molecular etiologies underlying genotype-phenotype correlations are addressed, and we anticipate that future progress in this critical area will help identify therapeutic targets across a range of human pathologies.
Collapse
|
42
|
Abstract
The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| | | |
Collapse
|
43
|
Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth. EMBO J 2011; 30:2405-19. [PMID: 21556051 DOI: 10.1038/emboj.2011.154] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 04/18/2011] [Indexed: 01/12/2023] Open
Abstract
The UBE2C oncogene is overexpressed in many types of solid tumours including the lethal castration-resistant prostate cancer (CRPC). The underlying mechanisms causing UBE2C gene overexpression in CRPC are not fully understood. Here, we show that CRPC-specific enhancers drive UBE2C overexpression in both AR-negative and -positive CRPC cells. We further show that co-activator MED1 recruitment to the UBE2C enhancers is required for long-range UBE2C enhancer/promoter interactions. Importantly, we find that the molecular mechanism underlying MED1-mediated chromatin looping involves PI3K/AKT phosphorylated MED1-mediated recruitment of FoxA1, RNA polymerase II and TATA binding protein and their subsequent interactions at the UBE2C locus. MED1 phosphorylation leads to UBE2C locus looping, UBE2C gene expression and cell growth. Our results not only define a causal role of a post-translational modification (phosphorylation) of a co-activator (MED1) in forming or sustaining an active chromatin structure, but also suggest that development of specific therapies for CRPC should take account of targeting phosphorylated MED1.
Collapse
|
44
|
Zhang D, Jiang P, Xu Q, Zhang X. Arginine and glutamate-rich 1 (ARGLU1) interacts with mediator subunit 1 (MED1) and is required for estrogen receptor-mediated gene transcription and breast cancer cell growth. J Biol Chem 2011; 286:17746-54. [PMID: 21454576 DOI: 10.1074/jbc.m110.206029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Estrogen receptor is a nuclear receptor superfamily member of transcriptional activators that regulate gene expression by recruiting diverese transcriptional coregulators. The Mediator complex is a central transcriptional coactivator complex that acts as a bridge between transcriptional activators and RNA polymerase II. MED1 (Mediator subunit 1) is the key Mediator subunit that directly interacts with estrogen receptor to mediate its functions both in vitro and in vivo. Interestingly, our previous biochemical analyses indicated that MED1 exists only in a subpopulation of the Mediator complex that is enriched with a number of distinct Mediator subunits and RNA polymerase II. Here, we report ARGLU1 as a MED1/Mediator-associated protein. We found that ARGLU1 (arginine and glutamate rich 1) not only colocalizes with MED1 in the nucleus, but also directly interacts with a far C-terminal region of MED1. Reporter assays indicate that ARGLU1 is able to cooperate with MED1 to regulate estrogen receptor-mediated gene transcription. Importantly, ARGLU1 is recruited, in a ligand-dependent manner, to endogenous estrogen receptor target gene promoters and is required for their expression. Furthermore, by ChIP-reChIP assay, we confirm that ARGLU1 and MED1 colocalize on the same estrogen receptor target gene promoter upon estrogen induction. Moreover, we found that depletion of ARGLU1 significantly impairs the growth, as well as anchorage-dependent and -independent colony formation of breast cancer cells. Taken together, these results establish ARGLU1 as a new MED1-interacting protein required for estrogen-dependent gene transcription and breast cancer cell growth.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Department of Cancer and Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
45
|
Genomic collaboration of estrogen receptor alpha and extracellular signal-regulated kinase 2 in regulating gene and proliferation programs. Mol Cell Biol 2010; 31:226-36. [PMID: 20956553 DOI: 10.1128/mcb.00821-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nuclear hormone receptor, estrogen receptor α (ERα), and mitogen-activated protein kinases (MAPKs) play key roles in hormone-dependent cancers, and yet their interplay and the integration of their signaling inputs remain poorly understood. In these studies, we document that estrogen-occupied ERα activates and interacts with extracellular signal-regulated kinase 2 (ERK2), a downstream effector in the MAPK pathway, resulting in ERK2 and ERα colocalization at chromatin binding sites across the genome of breast cancer cells. This genomic colocalization, predominantly at conserved distal enhancer sites, requires the activation of both ERα and ERK2 and enables ERK2 modulation of estrogen-dependent gene expression and proliferation programs. The ERK2 substrate CREB1 was also activated and recruited to ERK2-bound chromatin following estrogen treatment and found to cooperate with ERα/ERK2 in regulating gene transcription and cell cycle progression. Our study reveals a novel paradigm with convergence of ERK2 and ERα at the chromatin level that positions this kinase to support nuclear receptor activities in crucial and direct ways, a mode of collaboration likely to underlie MAPK regulation of gene expression by other nuclear receptors as well.
Collapse
|
46
|
Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 2010; 11:761-72. [PMID: 20940737 DOI: 10.1038/nrg2901] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
| | | |
Collapse
|
47
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha, beta (also known as delta), and gamma function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-alpha bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.
Collapse
|
48
|
Taatjes DJ. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci 2010; 35:315-22. [PMID: 20299225 DOI: 10.1016/j.tibs.2010.02.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
The Mediator complex interacts extensively with the RNA polymerase II enzyme and regulates its ability to express protein-coding genes. The mechanisms by which Mediator regulates gene expression remain poorly understood, in part because the structure of Mediator and even its composition can change, depending upon the promoter context. Combined with the sheer size of the human Mediator complex (26 subunits, 1.2 MDa), this structural adaptability bestows seemingly unlimited regulatory potential within the complex. Recent efforts to understand Mediator structure and function have identified expanded roles that include control of both pre- and post-initiation events; it is also evident that Mediator performs both general and gene-specific roles to regulate gene expression.
Collapse
Affiliation(s)
- Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
49
|
Cyclin-dependent kinase 8 positively cooperates with Mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol Cell Biol 2010; 30:2437-48. [PMID: 20231357 DOI: 10.1128/mcb.01541-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mediator is a multisubunit assemblage of proteins originally identified in humans as a coactivator bound to thyroid hormone receptors (TRs) and essential for thyroid hormone (T3)-dependent transcription. Cyclin-dependent kinase 8 (CDK8), cyclin C, MED12, and MED13 form a variably associated Mediator subcomplex (termed the CDK8 module) whose functional role in TR-dependent transcription remains unclear. Using in vitro and cellular approaches, we show here that Mediator complexes containing the CDK8 module are specifically recruited into preinitiation complexes at the TR target gene type I deiodinase (DioI) together with RNA polymerase II (Pol II) in a TR- and T3-dependent manner. We found that CDK8 is essential for robust T3-dependent Dio1 transcription and that CDK8 knockdown via RNA interference decreased Pol II occupancy, and also the recruitment of the Pol II kinase CDK9, at the DioI promoter. Chromatin immunoprecipitation revealed CDK8 occupancy at the DioI promoter concurrent with active transcription, thus suggesting CDK8 involvement in transcriptional reinitiation. Mutagenesis assays showed that CDK8 kinase activity is necessary for full T3-dependent DioI activation, whereas in vitro kinase studies indicated that CDK8 may contribute to Pol II phosphorylation. Collectively, our data suggest CDK8 plays an important coactivator role in TR-dependent transcription by promoting Pol II recruitment and activation at TR target gene promoters.
Collapse
|
50
|
Han SJ, Lonard DM, O'Malley BW. Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends Endocrinol Metab 2009; 20:8-15. [PMID: 19019695 PMCID: PMC3642869 DOI: 10.1016/j.tem.2008.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 01/23/2023]
Abstract
Nuclear receptor (NR) coactivators are recruited to DNA by NRs, potentiating NR-dependent gene transcription. To obtain the complexity of NR-mediated gene regulation with a finite number of coactivators, the molecular properties of coactivators are dynamically modulated by posttranslational modifications (PTMs) in response to external stimuli. PTMs can regulate the molecular interactions of coactivators with transcription factors and other coactivators, in addition to their cellular location, protein stability, conformation and enzymatic activity. Therefore, dynamic regulation of the molecular properties of coactivators by PTMs allows for the complexity of NR-dependent gene expression and influences the regulation of NR-mediated physiological processes. This review focuses on recent progress in our understanding of how coactivator PTMs influence NR-mediated gene transcription and addresses their biological relevance.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|