1
|
Xu M, Shi R, Yang J, Chen H, Liu S, Yu S, Li S, He W, Sy MS, Lu M, Zhang H, Li C. Collagen prolyl 4-hydroxylase subunit α member-induced head and neck squamous cell carcinoma aggressiveness is antagonized by LLGL2 via reduced expression of occludin. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39394821 DOI: 10.3724/abbs.2024140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
There are three isoforms of human collagen prolyl 4-hydroxylases (C-P4Hs), each of which has been reported to play an important role in regulating the progression of a variety of human cancers. By analyzing TGCA datasets on human head and neck squamous cell carcinoma (HNSC), we find that a higher expression of all three C-P4HAs (the α subunit of C-P4Hs) is a superior prognostic indicator than a higher expression of two or a single C-P4HA. Unexpectedly, some patients with higher levels of three C-P4HAs survive longer than patients whose tumors have lower expression of C-P4HAs. Therefore, there may be molecule(s) that can negate the deleterious effects of overexpressing C-P4HAs during cancer progression. By constructing a functional protein interaction network of C-P4HAs and analyzing molecules whose expressions are correlated significantly with that of C-P4HAs, we identify scribble cell polarity complex component 2 (LLGL2) as a factor that antagonizes the effects of overexpressed C-P4HAs on HNSC. Silencing of LLGL2 in the human oral squamous cell line Cal-27 upregulates the expression of occludin and increases cancer cell invasion and migration. In contrast, knocking down C-P4HA alone inhibits cell migration and invasion. Furthermore, simultaneously downregulating three C-P4HAs has more pronounced effects on inhibiting cell migration and invasion. Accordingly, high LLGL2 expression is also a marker indicating improved prognosis in patients with HNSC. These results suggest that the interplay between LLGL2 and C-P4HAs may be targeted to mitigate HNSC tumorigenesis and progression.
Collapse
Affiliation(s)
- Miao Xu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, School of Basic Medical Sciences, University of South China, Hengyang 421001, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Run Shi
- School of Medicine, Pingdingshan University, Pingdingshan 467000, China
| | - Jie Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Heng Chen
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China
| | - Shihua Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shupei Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Sasa Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenqiang He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Mingjian Lu
- Department of Interventional Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Huixia Zhang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chaoyang Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, School of Basic Medical Sciences, University of South China, Hengyang 421001, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China
| |
Collapse
|
2
|
Peglion F, Etienne-Manneville S. Cell polarity changes in cancer initiation and progression. J Cell Biol 2024; 223:e202308069. [PMID: 38091012 PMCID: PMC10720656 DOI: 10.1083/jcb.202308069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Cell polarity, which consists of the morphological, structural, and functional organization of cells along a defined axis, is a feature of healthy cells and tissues. In contrast, abnormal polarity is a hallmark of cancer cells. At the molecular level, key evolutionarily conserved proteins that control polarity establishment and maintenance in various contexts are frequently altered in cancer, but the relevance of these molecular alterations in the oncogenic processes is not always clear. Here, we summarize the recent findings, shedding new light on the involvement of polarity players in cancer development, and discuss the possibility of harnessing cell polarity changes to better predict, diagnose, and cure cancers.
Collapse
Affiliation(s)
- Florent Peglion
- Cell Polarity, Migration and Cancer Unit, Université de Paris, UMR3691 CNRS, Equipe Labellisée Ligue 2023, Institut Pasteur, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Université de Paris, UMR3691 CNRS, Equipe Labellisée Ligue 2023, Institut Pasteur, Paris, France
| |
Collapse
|
3
|
Shaha S, Patel K, Riddell M. Cell polarity signaling in the regulation of syncytiotrophoblast homeostasis and inflammatory response. Placenta 2023; 141:26-34. [PMID: 36443107 DOI: 10.1016/j.placenta.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Maintenance of cell polarity and the structure of the apical surface of epithelial cells is a tightly regulated process necessary for tissue homeostasis. The syncytiotrophoblast of the human placenta is an entirely unique epithelial layer. It is a single giant multinucleate syncytial layer that comprises the maternal-facing surface of the human placenta. Like other epithelia, the syncytiotrophoblast is highly polarized with the apical surface dominated by microvillar membrane protrusions. Syncytiotrophoblast dysfunction is a key feature of pregnancy complications like preeclampsia. Preeclampsia is commonly associated with a heightened maternal immune response and pro-inflammatory environment. Importantly, reports have observed disruption of syncytiotrophoblast apical microvilli in placentas from preeclamptic pregnancies, indicating a loss of apical polarity, but little is known about how the syncytiotrophoblast regulates polarity. Here, we review the evolutionarily conserved mechanisms that regulate apical-basal polarization in epithelial cells, and the emerging evidence that PAR polarity complex components are critical regulators of syncytiotrophoblast homeostasis and apical membrane structure. Pro-inflammatory cytokines have been shown to disrupt the expression of polarity regulating proteins. We also discuss initial data showing that syncytiotrophoblast apical polarity can be disrupted by the addition of the pro-inflammatory cytokine tumor necrosis factor-α, revealing that physiologically relevant signals can modulate syncytiotrophoblast polarization. Since disrupted polarity is a feature of preeclampsia, further elucidation of the syncytiotrophoblast-specific polarity signaling network and testing whether the disruption of polarity-factor signaling networks may contribute to the development of preeclampsia is warranted.
Collapse
Affiliation(s)
- Sumaiyah Shaha
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Khushali Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Meghan Riddell
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada.
| |
Collapse
|
4
|
Bii VM, Rudoy D, Klezovitch O, Vasioukhin V. Lethal giant larvae gene family ( Llgl1 and Llgl2 ) functions as a tumor suppressor in mouse skin epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531408. [PMID: 36945368 PMCID: PMC10028895 DOI: 10.1101/2023.03.06.531408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Loss of cell polarity and tissue disorganization occurs in majority of epithelial cancers. Studies in simple model organisms identified molecular mechanisms responsible for the establishment and maintenance of cellular polarity, which play a pivotal role in establishing proper tissue architecture. The exact role of these cell polarity pathways in mammalian cancer is not completely understood. Here we analyzed the mammalian orthologs of drosophila apical-basal polarity gene lethal giant larvae ( lgl ), which regulates asymmetric stem cell division and functions as a tumor suppressor in flies. There are two mammalian orthologs of lgl ( Llgl1 and Llgl2 ). To determine the role of the entire lgl signaling pathway in mammals we generated mice with ablation of both Llgl1 and Llgl2 in skin epidermis using K14-Cre ( Llgl1/2 -/- cKO mice). Surprisingly, we found that ablation of Llgl1/2 genes does not impact epidermal polarity in adult mice. However, old Llgl1/2 cKO mice present with focal skin lesions which are missing epidermal layer and ripe with inflammation. To determine the role of lgl signaling pathway in cancer we generated Trp53 -/- /Llgl1/2 -/- cKO and Trp53 -/+ /Llgl1/2 -/- cKO mice. Loss of Llgl1/2 promoted squamous cell carcinoma (SCC) development in Trp53 -/- cKO and caused SCC in Trp53 -/+ cKO mice, while no cancer was observed in Trp53 -/+ cKO controls. Mechanistically, we show that ablation of Llgl1/2 causes activation of aPKC and upregulation of NF-kB signaling pathway, which may be necessary for SCC in Trp53 -/+ /Llgl1/2 -/- cKO mice. We conclude that Lgl signaling pathway functions as a tumor suppressor in mammalian skin epidermis.
Collapse
|
5
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
6
|
Ma R, Gong D, You H, Xu C, Lu Y, Bergers G, Werb Z, Klein OD, Petritsch CK, Lu P. LGL1 binds to Integrin β1 and inhibits downstream signaling to promote epithelial branching in the mammary gland. Cell Rep 2022; 38:110375. [PMID: 35172155 PMCID: PMC9113222 DOI: 10.1016/j.celrep.2022.110375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin β1 and inhibits its downstream signaling, and Integrin β1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin β1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct. Ma et al. show that Lgl1 is essential for mammary gland branching morphogenesis but not epithelial polarity. Lgl1 is required for directional migration by regulating Integrin β1 signaling levels and focal adhesion strengths. Finally, branching mechanisms are distinct between mammary gland and Drosophila systems where directional migration is indispensable.
Collapse
Affiliation(s)
- Rongze Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Difei Gong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huanyang You
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chongshen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gabriele Bergers
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Zena Werb
- Department of Anatomy and Program in Developmental and Stem Cell Biology, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, UCSF Box 0422, 513 Parnassus Avenue, HSE1508, San Francisco, CA 94143-0422, USA
| | - Claudia K Petritsch
- Department of Neurological Surgery, Stanford University, Palo Alto, CA 94305, USA
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
7
|
Jung MK, Okekunle AP, Lee JE, Sung MK, Lim YJ. Role of Branched-chain Amino Acid Metabolism in Tumor Development and Progression. J Cancer Prev 2021; 26:237-243. [PMID: 35047449 PMCID: PMC8749315 DOI: 10.15430/jcp.2021.26.4.237] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Branched-chain amino acids (BCAAs), isoleucine, leucine and valine, are essential amino acids with vital roles in protein synthesis and energy production. We reviewed the fundamentals of BCAA metabolism in advanced cancer patients. BCAAs and various catabolic products act as signalling molecules, which activate mechanisms ranging from protein synthesis to insulin secretion. Recently, BCAA metabolism has been suggested to contribute to cancer progression. Of particular interest is the modulation of the mTOR activity by BCAAs. There are likely multiple pathways involved in BCAA metabolism implicated in carcinogenesis. Understanding the mechanism(s) underlying altered BCAAs metabolism will significantly advance the current understanding of nutrient involvement in carcinogenesis and direct future studies to unravel the significance of BCCA metabolites in tumor development and progression.
Collapse
Affiliation(s)
- Min Kyu Jung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Akinkunmi Paul Okekunle
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Mi Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
8
|
Tocan V, Hayase J, Kamakura S, Kohda A, Ohga S, Kohjima M, Sumimoto H. Hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC in conjunction with Lgl. J Biol Chem 2021; 297:101354. [PMID: 34717957 PMCID: PMC8637150 DOI: 10.1016/j.jbc.2021.101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatocytes differ from columnar epithelial cells by their multipolar organization, which follows the initial formation of central lumen-sharing clusters of polarized cells as observed during liver development and regeneration. The molecular mechanism for hepatocyte polarity establishment, however, has been comparatively less studied than those for other epithelial cell types. Here, we show that the tight junction protein Par3 organizes hepatocyte polarization via cooperating with the small GTPase Cdc42 to target atypical protein kinase C (aPKC) to a cortical site near the center of cell-cell contacts. In 3D Matrigel culture of human hepatocytic HepG2 cells, which mimics a process of liver development and regeneration, depletion of Par3, Cdc42, or aPKC results in an impaired establishment of apicobasolateral polarity and a loss of subsequent apical lumen formation. The aPKC activity is also required for bile canalicular (apical) elongation in mouse primary hepatocytes. The lateral membrane-associated proteins Lgl1 and Lgl2, major substrates of aPKC, seem to be dispensable for hepatocyte polarity establishment because Lgl-depleted HepG2 cells are able to form a single apical lumen in 3D culture. On the other hand, Lgl depletion leads to lateral invasion of aPKC, and overexpression of Lgl1 or Lgl2 prevents apical lumen formation, indicating that they maintain proper lateral integrity. Thus, hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC; Par3 cooperates with Cdc42 to recruit aPKC, which plays a crucial role in apical membrane development and regulation of the lateral maintainer Lgl.
Collapse
Affiliation(s)
- Vlad Tocan
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; Department of Medicine and Regulatory Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
9
|
Leng S, Xie F, Liu J, Shen J, Quan G, Wen T. LLGL2 Increases Ca 2+ Influx and Exerts Oncogenic Activities via PI3K/AKT Signaling Pathway in Hepatocellular Carcinoma. Front Oncol 2021; 11:683629. [PMID: 34178676 PMCID: PMC8223678 DOI: 10.3389/fonc.2021.683629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Background Lethal giant larvae (Lgl), scaffolding proteins, regulate the epithelial cell apicobasal polarity in Drosophila. They play important roles in asymmetric cell division, cell migration, and progenitor cells self-renewal as tumor suppressors. One of Lgl mammalian homologues proteins, LLGL2 overexpression has been reported in ER+ breast cancer and promotes tumor proliferation through regulating leucine uptake. Nonetheless, the role of LLGL2 in hepatocellular carcinoma (HCC) is still unknown. Methods TCGA dataset mining, qRT-PCR, Western blot along with immunohistochemistry assays were employed to explore LLGL2 expression in human HCC samples and cell lines. Moreover, the clinical value of LLGL2 was investigated in 156 HCC patients. Furthermore, the role as well as the molecular mechanism of LLGL2 in the progression of HCC was explored through a series of in vitro and in vivo experiments. Results LLGL2 was up-regulated in HCC tissues, which was related with certain clinicopathological features including tumor number, vascular invasion as well as advanced stage. High expression of LLGL2 predicted poor prognosis after hepatectomy. LLGL2 promoted HCC cells proliferation, migration and invasion through PI3K/ATK signaling by promoting calcium ion influx. Conclusion Our study identified that LLGL2 is a tumor promoter in HCC for the first time, which could potentially be utilized as a new biomarker and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Shusheng Leng
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China.,General Surgery Department, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Fei Xie
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The First People's Hospital of Neijiang City, Neijiang, China
| | - Junyi Liu
- Central Laboratory, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Junyi Shen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Guangqian Quan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Tianfu Wen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Ventura G, Moreira S, Barros-Carvalho A, Osswald M, Morais-de-Sá E. Lgl cortical dynamics are independent of binding to the Scrib-Dlg complex but require Dlg-dependent restriction of aPKC. Development 2020; 147:dev.186593. [PMID: 32665243 DOI: 10.1242/dev.186593] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/02/2020] [Indexed: 01/06/2023]
Abstract
Apical-basal polarity underpins the formation of epithelial barriers that are crucial for metazoan physiology. Although apical-basal polarity is long known to require the basolateral determinants Lethal Giant Larvae (Lgl), Discs Large (Dlg) and Scribble (Scrib), mechanistic understanding of their function is limited. Lgl plays a role as an aPKC inhibitor, but it remains unclear whether Lgl also forms complexes with Dlg or Scrib. Using fluorescence recovery after photobleaching, we show that Lgl does not form immobile complexes at the lateral domain of Drosophila follicle cells. Optogenetic depletion of plasma membrane PIP2 or dlg mutants accelerate Lgl cortical dynamics. However, Dlg and Scrib are required only for Lgl localization and dynamic behavior in the presence of aPKC function. Furthermore, light-induced oligomerization of basolateral proteins indicates that Lgl is not part of the Scrib-Dlg complex in the follicular epithelium. Thus, Scrib and Dlg are necessary to repress aPKC activity in the lateral domain but do not provide cortical binding sites for Lgl. Our work therefore highlights that Lgl does not act in a complex but in parallel with Scrib-Dlg to antagonize apical determinants.
Collapse
Affiliation(s)
- Guilherme Ventura
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sofia Moreira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Barros-Carvalho
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mariana Osswald
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Eurico Morais-de-Sá
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
11
|
Zhu YX, Li CH, Li G, Feng H, Xia T, Wong CH, Fung FKC, Tong JHM, To KF, Chen R, Chen Y. LLGL1 Regulates Gemcitabine Resistance by Modulating the ERK-SP1-OSMR Pathway in Pancreatic Ductal Adenocarcinoma. Cell Mol Gastroenterol Hepatol 2020; 10:811-828. [PMID: 32615164 PMCID: PMC7505810 DOI: 10.1016/j.jcmgh.2020.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Gemcitabine resistance is rapidly acquired by pancreatic ductal adenocarcinoma (PDAC) patients. Novel approaches that predict the gemcitabine response of patients and enhance gemcitabine chemosensitivity are important to improve patient survival. We aimed to identify genes as novel biomarkers to predict the gemcitabine response and the therapeutic targets to attenuate chemoresistance in PDAC cells. METHODS Genome-wide RNA interference screening was conducted to identify genes that regulated gemcitabine chemoresistance. A cell proliferation assay and a tumor formation assay were conducted to study the role of lethal giant larvae homolog 1 (LLGL1) in gemcitabine chemoresistance. Levels of LLGL1 and its regulating targets were measured by immunohistochemical staining in tumor tissues obtained from patients who received gemcitabine as a single therapeutic agent. A gene-expression microarray was conducted to identify the targets regulated by LLGL1. RESULTS Silencing of LLGL1 markedly reduced the gemcitabine chemosensitivity in PDAC cells. Patients had significantly shorter survival (6 months) if they bore tumors expressing low LLGL1 level than tumors with high LLGL1 level (20 months) (hazard ratio, 0.1567; 95% CI, 0.05966-0.4117). Loss of LLGL1 promoted cytokine receptor oncostatin M receptor (OSMR) expression in PDAC cells that led to gemcitabine resistance, while knockdown of OSMR effectively rescued the chemoresistance phenotype. The LLGL1-OSMR regulatory pathway showed great clinical importance because low LLGL1 and high OSMR expressions were observed frequently in PDAC tissues. Silencing of LLGL1 induced phosphorylation of extracellular signal-regulated kinase 2 and specificity protein 1 (Sp1), promoted Sp1 (pThr453) binding at the OSMR promoter, and enhanced OSMR transcription. CONCLUSIONS LLGL1 possessed a tumor-suppressor role as an inhibitor of chemoresistance by regulating OSMR-extracellular signal-regulated kinase 2/Sp1 signaling. The data sets generated and analyzed during the current study are available in the Gene Expression Omnibus repository (ID: GSE64681).
Collapse
Affiliation(s)
- Yin-Xin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Han Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Guolin Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Huiyi Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tian Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Frederic Khe Cheong Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Joanna Hung-Man Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rufu Chen
- Guangdong Provincial People's Hospital, Guangzhou, Guangdong Province, China.
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
12
|
Jaeger-Ruckstuhl CA, Hinterbrandner M, Höpner S, Correnti CE, Lüthi U, Friedli O, Freigang S, Al Sayed MF, Bührer ED, Amrein MA, Schürch CM, Radpour R, Riether C, Ochsenbein AF. TNIK signaling imprints CD8 + T cell memory formation early after priming. Nat Commun 2020; 11:1632. [PMID: 32242021 PMCID: PMC7118140 DOI: 10.1038/s41467-020-15413-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/04/2020] [Indexed: 01/15/2023] Open
Abstract
Co-stimulatory signals, cytokines and transcription factors regulate the balance between effector and memory cell differentiation during T cell activation. Here, we analyse the role of the TRAF2-/NCK-interacting kinase (TNIK), a signaling molecule downstream of the tumor necrosis factor superfamily receptors such as CD27, in the regulation of CD8+ T cell fate during acute infection with lymphocytic choriomeningitis virus. Priming of CD8+ T cells induces a TNIK-dependent nuclear translocation of β-catenin with consecutive Wnt pathway activation. TNIK-deficiency during T cell activation results in enhanced differentiation towards effector cells, glycolysis and apoptosis. TNIK signaling enriches for memory precursors by favouring symmetric over asymmetric cell division. This enlarges the pool of memory CD8+ T cells and increases their capacity to expand after re-infection in serial re-transplantation experiments. These findings reveal that TNIK is an important regulator of effector and memory T cell differentiation and induces a population of stem cell-like memory T cells. Coordinate expression of multiple factors play critical roles in the regulation between effector and memory CD8+ T cell differentiation. Here the authors show upon acute viral infection TNIK is critically required as a regulator of effector and memory T cell differentiation.
Collapse
Affiliation(s)
- Carla A Jaeger-Ruckstuhl
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland.,Program in Immunology, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - Magdalena Hinterbrandner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Sabine Höpner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - Ursina Lüthi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Olivier Friedli
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland.,Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Stefan Freigang
- Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Mohamad F Al Sayed
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Elias D Bührer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Michael A Amrein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Christian M Schürch
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland. .,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
13
|
Choi J, Troyanovsky RB, Indra I, Mitchell BJ, Troyanovsky SM. Scribble, Erbin, and Lano redundantly regulate epithelial polarity and apical adhesion complex. J Cell Biol 2019; 218:2277-2293. [PMID: 31147384 PMCID: PMC6605793 DOI: 10.1083/jcb.201804201] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/05/2018] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
The basolateral protein Scribble (Scrib), a member of the LAP protein family, is essential for epithelial apicobasal polarity (ABP) in Drosophila However, a conserved function for this protein in mammals is unclear. Here we show that the crucial role for Scrib in ABP has remained obscure due to the compensatory function of two other LAP proteins, Erbin and Lano. A combined Scrib/Erbin/Lano knockout disorganizes the cell-cell junctions and the cytoskeleton. It also results in mislocalization of several apical (Par6, aPKC, and Pals1) and basolateral (Llgl1 and Llgl2) identity proteins. These defects can be rescued by the conserved "LU" region of these LAP proteins. Structure-function analysis of this region determined that the so-called LAPSDb domain is essential for basolateral targeting of these proteins, while the LAPSDa domain is essential for supporting the membrane basolateral identity and binding to Llgl. In contrast to the key role in Drosophila, mislocalization of Llgl proteins does not appear to be critical in the scrib ABP phenotype.
Collapse
Affiliation(s)
- Jongho Choi
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL
| | - Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL
| | - Brian J Mitchell
- Department of Cell and Molecular Biology, The Feinberg School of Medicine, Chicago, IL
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
14
|
Hakanen J, Ruiz-Reig N, Tissir F. Linking Cell Polarity to Cortical Development and Malformations. Front Cell Neurosci 2019; 13:244. [PMID: 31213986 PMCID: PMC6558068 DOI: 10.3389/fncel.2019.00244] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Cell polarity refers to the asymmetric distribution of signaling molecules, cellular organelles, and cytoskeleton in a cell. Neural progenitors and neurons are highly polarized cells in which the cell membrane and cytoplasmic components are compartmentalized into distinct functional domains in response to internal and external cues that coordinate polarity and behavior during development and disease. In neural progenitor cells, polarity has a prominent impact on cell shape and coordinate several processes such as adhesion, division, and fate determination. Polarity also accompanies a neuron from the beginning until the end of its life. It is essential for development and later functionality of neuronal circuitries. During development, polarity governs transitions between multipolar and bipolar during migration of postmitotic neurons, and directs the specification and directional growth of axons. Once reaching final positions in cortical layers, neurons form dendrites which become compartmentalized to ensure proper establishment of neuronal connections and signaling. Changes in neuronal polarity induce signaling cascades that regulate cytoskeletal changes, as well as mRNA, protein, and vesicle trafficking, required for synapses to form and function. Hence, defects in establishing and maintaining cell polarity are associated with several neural disorders such as microcephaly, lissencephaly, schizophrenia, autism, and epilepsy. In this review we summarize the role of polarity genes in cortical development and emphasize the relationship between polarity dysfunctions and cortical malformations.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
15
|
Campbell FC, Loughrey MB, McClements J, Deevi RK, Javadi A, Rainey L. Mechanistic Insights into Colorectal Cancer Phenomics from Fundamental and Organotypic Model Studies. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1936-1948. [PMID: 30028958 PMCID: PMC6240511 DOI: 10.1016/j.ajpath.2018.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/02/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) diagnosis and prognostic stratification are based on histopathologic assessment of cell or nuclear pleomorphism, aberrant mitotic figures, altered glandular architecture, and other phenomic abnormalities. This complexity is driven by oncogenic perturbation of tightly coordinated spatiotemporal signaling to disrupt multiple scales of tissue organization. This review clarifies molecular and cellular mechanisms underlying common CRC histologic features and helps understand how the CRC genome controls core aspects of tumor aggressiveness. It further explores a spatiotemporal framework for CRC phenomics based on regulation of living cells in fundamental and organotypic model systems. The review also discusses tissue homeostasis, considers distinct classes of oncogenic perturbations, and evolution of cellular or multicellular cancer phenotypes. It further explores the molecular controls of cribriform, micropapillary, and high-grade CRC morphology in organotypic culture models and assesses relevant translational studies. In addition, the review delves into complexities of morphologic plasticity whereby a single molecular signature generates heterogeneous cancer phenotypes, and, conversely, morphologically homogeneous tumors show substantive molecular diversity. Principles outlined may aid mechanistic interpretation of omics data in a setting of cancer pathology, provide insight into CRC consensus molecular subtypes, and better define principles for CRC prognostic stratification.
Collapse
Affiliation(s)
- Frederick C Campbell
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom; Belfast Health and Social Care Trust, Belfast, United Kingdom.
| | - Maurice Bernard Loughrey
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom; Belfast Health and Social Care Trust, Belfast, United Kingdom; Northern Ireland Molecular Pathology Laboratory, Belfast, United Kingdom
| | - Jane McClements
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ravi Kiran Deevi
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Arman Javadi
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Lisa Rainey
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| |
Collapse
|
16
|
Daynac M, Chouchane M, Collins HY, Murphy NE, Andor N, Niu J, Fancy SPJ, Stallcup WB, Petritsch CK. Lgl1 controls NG2 endocytic pathway to regulate oligodendrocyte differentiation and asymmetric cell division and gliomagenesis. Nat Commun 2018; 9:2862. [PMID: 30131568 PMCID: PMC6104045 DOI: 10.1038/s41467-018-05099-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPC) undergo asymmetric cell division (ACD) to generate one OPC and one differentiating oligodendrocyte (OL) progeny. Loss of pro-mitotic proteoglycan and OPC marker NG2 in the OL progeny is the earliest immunophenotypic change of unknown mechanism that indicates differentiation commitment. Here, we report that expression of the mouse homolog of Drosophila tumor suppressor Lethal giant larvae 1 (Lgl1) is induced during OL differentiation. Lgl1 conditional knockout OPC progeny retain NG2 and show reduced OL differentiation, while undergoing more symmetric self-renewing divisions at the expense of asymmetric divisions. Moreover, Lgl1 and hemizygous Ink4a/Arf knockouts in OPC synergistically induce gliomagenesis. Time lapse and total internal reflection microscopy reveals a critical role for Lgl1 in NG2 endocytic routing and links aberrant NG2 recycling to failed differentiation. These data establish Lgl1 as a suppressor of gliomagenesis and positive regulator of asymmetric division and differentiation in the healthy and demyelinated murine brain.
Collapse
Affiliation(s)
- Mathieu Daynac
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Malek Chouchane
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hannah Y Collins
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA
| | - Nicole E Murphy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Noemi Andor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Jianqin Niu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Stephen P J Fancy
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Claudia K Petritsch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, 94158, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
17
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
18
|
Deletion of the Syncytin A receptor Ly6e impairs syncytiotrophoblast fusion and placental morphogenesis causing embryonic lethality in mice. Sci Rep 2018; 8:3961. [PMID: 29500366 PMCID: PMC5834536 DOI: 10.1038/s41598-018-22040-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Fetal growth and survival is dependent on the elaboration and propinquity of the fetal and maternal circulations within the placenta. Central to this is the formation of the interhaemal membrane, a multi-cellular lamina facilitating exchange of oxygen, nutrients and metabolic waste products between the mother and fetus. In rodents, this cellular barrier contains two transporting layers of syncytiotrophoblast, which are multinucleated cells that form by cell-cell fusion. Previously, we reported the expression of the GPI-linked cell surface protein LY6E by the syncytial layer closest to the maternal sinusoids of the mouse placenta (syncytiotrophoblast layer I). LY6E has since been shown to be a putative receptor for the fusogenic protein responsible for fusion of syncytiotrophoblast layer I, Syncytin A. In this report, we demonstrate that LY6E is essential for the normal fusion of syncytiotrophoblast layer I, and for the proper morphogenesis of both fetal and maternal vasculatures within the placenta. Furthermore, specific inactivation of Ly6e in the epiblast, but not in placenta, is compatible with embryonic development, indicating the embryonic lethality reported for Ly6e−/− embryos is most likely placental in origin.
Collapse
|
19
|
Daniel SG, Russ AD, Guthridge KM, Raina AI, Estes PS, Parsons LM, Richardson HE, Schroeder JA, Zarnescu DC. miR-9a mediates the role of Lethal giant larvae as an epithelial growth inhibitor in Drosophila. Biol Open 2018; 7:bio.027391. [PMID: 29361610 PMCID: PMC5829493 DOI: 10.1242/bio.027391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drosophila lethal giant larvae (lgl) encodes a conserved tumor suppressor with established roles in cell polarity, asymmetric division, and proliferation control. Lgl's human orthologs, HUGL1 and HUGL2, are altered in human cancers, however, its mechanistic role as a tumor suppressor remains poorly understood. Based on a previously established connection between Lgl and Fragile X protein (FMRP), a miRNA-associated translational regulator, we hypothesized that Lgl may exert its role as a tumor suppressor by interacting with the miRNA pathway. Consistent with this model, we found that lgl is a dominant modifier of Argonaute1 overexpression in the eye neuroepithelium. Using microarray profiling we identified a core set of ten miRNAs that are altered throughout tumorigenesis in Drosophila lgl mutants. Among these are several miRNAs previously linked to human cancers including miR-9a, which we found to be downregulated in lgl neuroepithelial tissues. To determine whether miR-9a can act as an effector of Lgl in vivo, we overexpressed it in the context of lgl knock-down by RNAi and found it able to reduce the overgrowth phenotype caused by Lgl loss in epithelia. Furthermore, cross-comparisons between miRNA and mRNA profiling in lgl mutant tissues and human breast cancer cells identified thrombospondin (tsp) as a common factor altered in both fly and human breast cancer tumorigenesis models. Our work provides the first evidence of a functional connection between Lgl and the miRNA pathway, demonstrates that miR-9a mediates Lgl's role in restricting epithelial proliferation, and provides novel insights into pathways controlled by Lgl during tumor progression. Summary: Mir-9a overexpression can suppress the overgrowth phenotype caused by Lgl knock-down in epithelia. Gene profiling identifies pathways dysregulated in lgl mutants and shared features between flies and human cancer cells.
Collapse
Affiliation(s)
- Scott G Daniel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Atlantis D Russ
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Kathryn M Guthridge
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia
| | - Ammad I Raina
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Patricia S Estes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Linda M Parsons
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Department of Genetics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3000, Australia.,Department of Biochemistry & Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Joyce A Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA .,Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
21
|
Meyers-Wallen VN, Boyko AR, Danko CG, Grenier JK, Mezey JG, Hayward JJ, Shannon LM, Gao C, Shafquat A, Rice EJ, Pujar S, Eggers S, Ohnesorg T, Sinclair AH. XX Disorder of Sex Development is associated with an insertion on chromosome 9 and downregulation of RSPO1 in dogs (Canis lupus familiaris). PLoS One 2017; 12:e0186331. [PMID: 29053721 PMCID: PMC5650465 DOI: 10.1371/journal.pone.0186331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022] Open
Abstract
Remarkable progress has been achieved in understanding the mechanisms controlling sex determination, yet the cause for many Disorders of Sex Development (DSD) remains unknown. Of particular interest is a rare XX DSD subtype in which individuals are negative for SRY, the testis determining factor on the Y chromosome, yet develop testes or ovotestes, and both of these phenotypes occur in the same family. This is a naturally occurring disorder in humans (Homo sapiens) and dogs (C. familiaris). Phenotypes in the canine XX DSD model are strikingly similar to those of the human XX DSD subtype. The purposes of this study were to identify 1) a variant associated with XX DSD in the canine model and 2) gene expression alterations in canine embryonic gonads that could be informative to causation. Using a genome wide association study (GWAS) and whole genome sequencing (WGS), we identified a variant on C. familiaris autosome 9 (CFA9) that is associated with XX DSD in the canine model and in affected purebred dogs. This is the first marker identified for inherited canine XX DSD. It lies upstream of SOX9 within the canine ortholog for the human disorder, which resides on 17q24. Inheritance of this variant indicates that XX DSD is a complex trait in which breed genetic background affects penetrance. Furthermore, the homozygous variant genotype is associated with embryonic lethality in at least one breed. Our analysis of gene expression studies (RNA-seq and PRO-seq) in embryonic gonads at risk of XX DSD from the canine model identified significant RSPO1 downregulation in comparison to XX controls, without significant upregulation of SOX9 or other known testis pathway genes. Based on these data, a novel mechanism is proposed in which molecular lesions acting upstream of RSPO1 induce epigenomic gonadal mosaicism.
Collapse
Affiliation(s)
- Vicki N. Meyers-Wallen
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Adam R. Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Charles G. Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Jennifer K. Grenier
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Jason G. Mezey
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Jessica J. Hayward
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Laura M. Shannon
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Chuan Gao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
| | - Afrah Shafquat
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
| | - Edward J. Rice
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, United States of America
| | - Shashikant Pujar
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, United States of America
| | - Stefanie Eggers
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Thomas Ohnesorg
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Jossin Y, Lee M, Klezovitch O, Kon E, Cossard A, Lien WH, Fernandez TE, Cooper JA, Vasioukhin V. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells. Dev Cell 2017; 41:481-495.e5. [PMID: 28552558 DOI: 10.1016/j.devcel.2017.05.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 04/11/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1fl/fl), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells.
Collapse
Affiliation(s)
- Yves Jossin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Mammalian Development & Cell Biology Unit, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Minhui Lee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Elif Kon
- Mammalian Development & Cell Biology Unit, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Alexia Cossard
- Mammalian Development & Cell Biology Unit, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Wen-Hui Lien
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Tania E Fernandez
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Valera Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
aPKC regulates apical localization of Lgl to restrict elongation of microridges in developing zebrafish epidermis. Nat Commun 2016; 7:11643. [PMID: 27249668 PMCID: PMC4895443 DOI: 10.1038/ncomms11643] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/15/2016] [Indexed: 12/05/2022] Open
Abstract
Epithelial cells exhibit apical membrane protrusions, which confer specific functions to epithelial tissues. Microridges are short actin protrusions that are laterally long and form a maze-like pattern in the apical domain. They are widely found on vertebrate squamous epithelia including epidermis and have functions in mucous retention, membrane storage and abrasion resistance. It is largely unknown how the formation of these laterally long actin projections is regulated. Here, we show that antagonistic interactions between aPKC and Lgl–regulators of apical and basolateral domain identity, respectively,–control the length of microridges in the zebrafish periderm, the outermost layer of the epidermis. aPKC regulates the levels of Lgl and the active form of non-muscle myosinII at the apical cortex to prevent actin polymerization-dependent precocious fusion and elongation of microridges. Our data unravels the functional significance of exclusion of Lgl from the apical domain in epithelial cells. Squamous epithelia present actin-rich microridges on the apical surface, but the mechanism of their formation is not known. Here the authors show that, in zebrafish epidermis, the exclusion of the basolateral regulator Lgl from the apical domain by atypical protein kinase C prevents precocious elongation and fusion of microridges.
Collapse
|
24
|
Abstract
The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.
Collapse
Key Words
- AJ, adherens junction
- AMOT, angiomotin
- AMPK, Adenosine Monophosphate-Activated Protein Kinase
- APC, adenomatous poliposis coli
- CD2AP, CD2-associated protein
- CGN, cingulin
- CGNL1, paracingulin
- Cdc42
- Cdc42, cell division cycle 42
- DLC, deleted in liver cancer
- Dbl, diffuse B-cell lymphoma
- EPLIN, epithelial protein lost in neoplasm
- ERK, extracellular regulated kinase
- FERM, four.point.one, ezrin, radixin, moesin
- FGD5, FYVE, RhoGEF and PH domain containing 5
- GAP, GTPase activating protein
- GEF, guanine nucleotide exchange factor
- GST, glutathione -S- transferase; JAM = junctional adhesion molecule
- MCF-7, Michigan Cancer Foundation - 7
- MDCK, Madin Darby Canine Kidney
- MKLP1, mitotic kinesin-like protein-1
- MRCK, myotonic dystrophy-related Cdc42-binding kinase
- MgcRacGAP, male germ cell racGAP
- PA, puncta adhaerentia
- PAK, p21-activated kinase; PATJ, Pals1 associated tight junction protein
- PCNA, proliferating cell nuclear antigen
- PDZ, Post synaptic density protein (PSD95), Drosophila, disc large tumour suppressor (DlgA), and zonula occludens-1
- PLEKHA7, pleckstrin homology domain containing, family A member 7
- RICH-1, RhoGAP interacting with CIP4 homologues
- ROCK, Rho-associated protein kinase
- Rac
- Rho
- SH3BP1, (SH3 domain 490 binding protein-1)
- TJ, tight junction
- Tbx-3, T-box-3
- Tiam, Tumor invasion and metastasis
- WASP, Wiskott-Aldrich Syndrome Protein
- WAVE, WASP family Verprolin-homologous protein
- ZA, zonula adhaerens
- ZO, zonula occludens
- ZONAB, (ZO-1)–associated nucleic acid binding protein.
- cytoseleton
- epithelium
- junctions
Collapse
Affiliation(s)
- Sandra Citi
- a Department of Cell Biology ; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
25
|
Nadeau V, Charron J. Essential role of the ERK/MAPK pathway in blood-placental barrier formation. Development 2014; 141:2825-37. [PMID: 24948605 DOI: 10.1242/dev.107409] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mammalian genome contains two ERK/MAP kinase kinase genes, Map2k1 and Map2k2, which encode dual-specificity kinases responsible for ERK activation. Loss of Map2k1 function in mouse causes embryonic lethality due to placental defects, whereas Map2k2 mutants have a normal lifespan. The majority of Map2k1(+/-) Map2k2(+/-) embryos die during gestation from the underdevelopment of the placenta labyrinth, demonstrating that both kinases are involved in placenta formation. Map2k1(+/-) Map2k2(+/-) mutants show reduced vascularization of the labyrinth and defective formation of syncytiotrophoblast layer II (SynT-II) leading to the accumulation of multinucleated trophoblast giant cells (MTGs). To define the cell type-specific contribution of the ERK/MAPK pathway to placenta development, we performed deletions of Map2k1 function in different Map2k1 Map2k2 allelic backgrounds. Loss of MAP kinase kinase activity in pericytes or in allantois-derived tissues worsens the MTG phenotype. These results define the contribution of the ERK/MAPK pathway in specific embryonic and extraembryonic cell populations for normal placentation. Our data also indicate that MTGs could result from the aberrant fusion of SynT-I and -II. Using mouse genetics, we demonstrate that the normal development of SynT-I into a thin layer of multinucleated cells depends on the presence of SynT-II. Lastly, the combined mutations of Map2k1 and Map2k2 alter the expression of several genes involved in cell fate specification, cell fusion and cell polarity. Thus, appropriate ERK/MAPK signaling in defined cell types is required for the proper growth, differentiation and morphogenesis of the placenta.
Collapse
Affiliation(s)
- Valérie Nadeau
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, Canada G1R 2J6
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, Canada G1R 2J6
| |
Collapse
|
26
|
Hawkins ED, Oliaro J, Ramsbottom KM, Ting SB, Sacirbegovic F, Harvey M, Kinwell T, Ghysdael J, Johnstone RW, Humbert PO, Russell SM. Lethal giant larvae 1 tumour suppressor activity is not conserved in models of mammalian T and B cell leukaemia. PLoS One 2014; 9:e87376. [PMID: 24475281 PMCID: PMC3903681 DOI: 10.1371/journal.pone.0087376] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/24/2013] [Indexed: 01/04/2023] Open
Abstract
In epithelial and stem cells, lethal giant larvae (Lgl) is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1−/− mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts.
Collapse
Affiliation(s)
- Edwin D. Hawkins
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (EDH); (SMR)
| | - Jane Oliaro
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly M. Ramsbottom
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen B. Ting
- Stem Cell Research Group, Australian Centre for Blood Diseases, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Faruk Sacirbegovic
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Harvey
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tanja Kinwell
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jacques Ghysdael
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
- Centre National de la Recherche Scientifique UMR 3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
| | - Ricky W. Johnstone
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick O. Humbert
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sarah M. Russell
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
- * E-mail: (EDH); (SMR)
| |
Collapse
|
27
|
Tay HG, Schulze SK, Compagnon J, Foley FC, Heisenberg CP, Yost HJ, Abdelilah-Seyfried S, Amack JD. Lethal giant larvae 2 regulates development of the ciliated organ Kupffer's vesicle. Development 2013; 140:1550-9. [PMID: 23482490 DOI: 10.1242/dev.087130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Motile cilia perform crucial functions during embryonic development and throughout adult life. Development of organs containing motile cilia involves regulation of cilia formation (ciliogenesis) and formation of a luminal space (lumenogenesis) in which cilia generate fluid flows. Control of ciliogenesis and lumenogenesis is not yet fully understood, and it remains unclear whether these processes are coupled. In the zebrafish embryo, lethal giant larvae 2 (lgl2) is expressed prominently in ciliated organs. Lgl proteins are involved in establishing cell polarity and have been implicated in vesicle trafficking. Here, we identified a role for Lgl2 in development of ciliated epithelia in Kupffer's vesicle, which directs left-right asymmetry of the embryo; the otic vesicles, which give rise to the inner ear; and the pronephric ducts of the kidney. Using Kupffer's vesicle as a model ciliated organ, we found that depletion of Lgl2 disrupted lumen formation and reduced cilia number and length. Immunofluorescence and time-lapse imaging of Kupffer's vesicle morphogenesis in Lgl2-deficient embryos suggested cell adhesion defects and revealed loss of the adherens junction component E-cadherin at lateral membranes. Genetic interaction experiments indicate that Lgl2 interacts with Rab11a to regulate E-cadherin and mediate lumen formation that is uncoupled from cilia formation. These results uncover new roles and interactions for Lgl2 that are crucial for both lumenogenesis and ciliogenesis and indicate that these processes are genetically separable in zebrafish.
Collapse
Affiliation(s)
- Hwee Goon Tay
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bell SM, Zhang L, Xu Y, Besnard V, Wert SE, Shroyer N, Whitsett JA. Kruppel-like factor 5 controls villus formation and initiation of cytodifferentiation in the embryonic intestinal epithelium. Dev Biol 2012; 375:128-39. [PMID: 23266329 DOI: 10.1016/j.ydbio.2012.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/29/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
Abstract
Kruppel-like factor 5 (Klf5) is a transcription factor expressed by embryonic endodermal progenitors that form the lining of the gastrointestinal tract. A Klf5 floxed allele was efficiently deleted from the intestinal epithelium by a Cre transgene under control of the Shh promoter resulting in the inhibition of villus morphogenesis and epithelial differentiation. Although proliferation of the intestinal epithelium was maintained, the expression of Elf3, Pparγ, Atoh1, Ascl2, Neurog3, Hnf4α, Cdx1, and other genes associated with epithelial cell differentiation was inhibited in the Klf5-deficient intestines. At E18.5, Klf5(Δ/Δ) fetuses lacked the apical brush border characteristic of enterocytes, and a loss of goblet and enteroendocrine cells was observed. The failure to form villi was not attributable to the absence of HH or PDGF signaling, known mediators of this developmental process. Klf5-deletion blocked the decrease in FoxA1 and Sox9 expression that accompanies normal villus morphogenesis. KLF5 directly inhibited activity of the FoxA1 promoter, and in turn FOXA1 inhibited Elf3 gene expression in vitro, linking the observed loss of Elf3 with the persistent expression of FoxA1 observed in Klf5-deficient mice. Genetic network analysis identified KLF5 as a key transcription factor regulating intestinal cell differentiation and cell adhesion. These studies indicate a novel requirement for KLF5 to initiate morphogenesis of the early endoderm into a compartmentalized intestinal epithelium comprised of villi and terminally differentiated cells.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute, Divisions of Neonatology-Perinatal-Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 2012; 53:141-68. [PMID: 22928514 DOI: 10.1042/bse0530141] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Scribble, Par and Crumbs modules were originally identified in the vinegar (fruit) fly, Drosophila melanogaster, as being critical regulators of apico-basal cell polarity. In the present chapter we focus on the Scribble polarity module, composed of Scribble, discs large and lethal giant larvae. Since the discovery of the role of the Scribble polarity module in apico-basal cell polarity, these proteins have also been recognized as having important roles in other forms of polarity, as well as regulation of the actin cytoskeleton, cell signalling and vesicular trafficking. In addition to these physiological roles, an important role for polarity proteins in cancer progression has also been uncovered, with loss of polarity and tissue architecture being strongly correlated with metastatic disease.
Collapse
|
30
|
Hugl1 and Hugl2 in mammary epithelial cells: polarity, proliferation, and differentiation. PLoS One 2012; 7:e47734. [PMID: 23110097 PMCID: PMC3479147 DOI: 10.1371/journal.pone.0047734] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
Loss of epithelial polarity is described as a hallmark of epithelial cancer. To determine the role of Hugl1 and Hugl2 expression in the breast, we investigated their localization in human mammary duct tissue and the effects of expression modulation in normal and cancer cell lines on polarity, proliferation and differentiation. Expression of Hugl1 and Hugl2 was silenced in both MCF10A cells and Human Mammary Epithelial Cells and cell lines were grown in 2-D on plastic and in 3-D in Matrigel to form acini. Cells in monolayer were compared for proliferative and phenotypic changes while acini were examined for differences in size, ability to form a hollow lumen, nuclear size and shape, and localization of key domain-specific proteins as a measure of polarity. We detected overlapping but distinct localization of Hugl1 and Hugl2 in the human mammary gland, with Hugl1 expressed in both luminal and myoepithelium and Hugl2 largely restricted to myoepithelium. On a plastic surface, loss of Hugl1 or Hugl2 in normal epithelium induced a mesenchymal phenotype, and these cells formed large cellular masses when grown in Matrigel. In addition, loss of Hugl1 or Hugl2 expression in MCF10A cells resulted in increased proliferation on Matrigel, while gain of Hugl1 expression in tumor cells suppressed proliferation. Loss of polarity was also observed with knockdown of either Hugl1 or Hugl2, with cells growing in Matrigel appearing as a multilayered epithelium, with randomly oriented Golgi and multiple enlarged nuclei. Furthermore, Hugl1 knock down resulted in a loss of membrane identity and the development of cellular asymmetries in Human Mammary Epithelial Cells. Overall, these data demonstrate an essential role for both Hugl1 and Hugl2 in the maintenance of breast epithelial polarity and differentiated cell morphology, as well as growth control.
Collapse
|
31
|
Schlüter MA, Margolis B. Apicobasal polarity in the kidney. Exp Cell Res 2012; 318:1033-9. [PMID: 22421511 DOI: 10.1016/j.yexcr.2012.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/24/2012] [Indexed: 01/27/2023]
Abstract
The apicobasal polarization of epithelia is critical for many aspects of kidney function. Over the last decade there have been major advances in our understanding of the mechanisms that underlie this polarity. Critical to this understanding has been the identification of protein complexes on the apical and basolateral sides of epithelial cells that act in a mutually antagonistic manner to define these domains. Concomitant with the creation of apical and basolateral domains is the formation of highly specialized cell-cell junctions including adherens junctions and tight junctions. Recent research points to variability in the polarity and junctional complexes amongst different species and between different cell types of the kidney. Defects in apicobasal polarity are prominent in several disorders including acute renal failure and polycystic kidney disease.
Collapse
Affiliation(s)
- Marc A Schlüter
- Department of Internal Medicine D, University Hospital of Münster, Germany
| | | |
Collapse
|
32
|
Dahan I, Yearim A, Touboul Y, Ravid S. The tumor suppressor Lgl1 regulates NMII-A cellular distribution and focal adhesion morphology to optimize cell migration. Mol Biol Cell 2012; 23:591-601. [PMID: 22219375 PMCID: PMC3279388 DOI: 10.1091/mbc.e11-01-0015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Drosophila tumor suppressor Lethal (2) giant larvae (Lgl) regulates the apical-basal polarity in epithelia and asymmetric cell division. However, little is known about the role of Lgl in cell polarity in migrating cells. In this study we show direct physiological interactions between the mammalian homologue of Lgl (Lgl1) and the nonmuscle myosin II isoform A (NMII-A). We demonstrate that Lgl1 and NMII-A form a complex in vivo and provide data that Lgl1 inhibits NMII-A filament assembly in vitro. Furthermore, depletion of Lgl1 results in the unexpected presence of NMII-A in the cell leading edge, a region that is not usually occupied by this protein, suggesting that Lgl1 regulates the cellular localization of NMII-A. Finally, we show that depletion of Lgl1 affects the size and number of focal adhesions, as well as cell polarity, membrane dynamics, and the rate of migrating cells. Collectively these findings indicate that Lgl1 regulates the polarity of migrating cells by controlling the assembly state of NMII-A, its cellular localization, and focal adhesion assembly.
Collapse
Affiliation(s)
- Inbal Dahan
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|