1
|
Bader AS, Bushell M. Damage-Net: A program for DNA repair meta-analysis identifies a network of novel repair genes that facilitate cancer evolution. DNA Repair (Amst) 2021; 105:103158. [PMID: 34147942 PMCID: PMC8385418 DOI: 10.1016/j.dnarep.2021.103158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
The advent of genome-wide methods for identifying novel components in biological processes including CRISPR screens and proteomic studies, has transformed the research landscape within the biological sciences. However, each study normally investigates a single aspect of a process without integration of other published datasets. Here, we present Damage-Net, a program with a curated database of published results from a broad range of studies investigating DNA repair, that facilitates simple and quick meta-analysis. Users can incorporate their own datasets for analysis, and query genes of interest in the database. Importantly, this program also allows users to examine the correlation of genes of interest with pan-cancer patient survival and mutational burden effects. Interrogating these datasets revealed a network of genes that associated with cancer progression in adrenocortical carcinoma via facilitating mutational burden, ultimately contributing substantially to adrenocortical carcinoma's poor prognosis. Download at www.damage-net.co.uk.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
2
|
Li L, Li B, Xie C, Zhang T, Borassi C, Estevez JM, Li X, Liu X. Arabidopsis RAD23B regulates pollen development by mediating degradation of KRP1. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4010-4019. [PMID: 32242227 DOI: 10.1093/jxb/eraa167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The ubiquitin (Ub)/26S proteasome system (UPS) plays a key role in plant growth, development, and survival by directing the turnover of numerous regulatory proteins. In the UPS, the ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains function as hubs for ubiquitin-mediated protein degradation. Radiation sensitive 23 (RAD23), which has been identified as a UBL/UBA protein, contributes to the progression of the cell cycle, stress responses, ER proteolysis, and DNA repair. Here, we report that pollen development is arrested at the microspore stage in a rad23b null mutant. We demonstrate that RAD23B can directly interact with KIP-related protein 1 (KRP1) through its UBL-UBA domains. In addition, plants overexpressing KRP1 have defects in pollen development, which is a phenotype similar to the rad23b mutant. RAD23B promotes the degradation of KRP1 in vivo, which is accumulated following treatment with the proteasome inhibitor MG132. Our results indicate that RAD23B plays an important in pollen development by controlling the turnover of the key cell cycle protein, KRP1.
Collapse
Affiliation(s)
- Lan Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Bin Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Chong Xie
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Teng Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Xiushan Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| | - Xuanming Liu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, P. R. China
| |
Collapse
|
3
|
Yu CY, Liu BH, Tang SY, Liang RY, Hsu KH, Chuang SM. HR23A-knockdown lung cancer cells exhibit epithelial-to-mesenchymal transition and gain stemness properties through increased Twist1 stability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118537. [DOI: 10.1016/j.bbamcr.2019.118537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 07/16/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
|
4
|
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019; 72:89-105. [PMID: 31769197 DOI: 10.1002/iub.2192] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
GATA1 is considered as the "master" transcription factor in erythropoiesis. It regulates at the transcriptional level all aspects of erythroid maturation and function, as revealed by gene knockout studies in mice and by genome-wide occupancies in erythroid cells. The GATA1 protein contains two zinc finger domains and an N-terminal transactivation domain. GATA1 translation results in the production of the full-length protein and of a shorter variant (GATA1s) lacking the N-terminal transactivation domain, which is functionally deficient in supporting erythropoiesis. GATA1 protein abundance is highly regulated in erythroid cells at different levels, including transcription, mRNA translation, posttranslational modifications, and protein degradation, in a differentiation-stage-specific manner. Maintaining high GATA1 protein levels is essential in the early stages of erythroid maturation, whereas downregulating GATA1 protein levels is a necessary step in terminal erythroid differentiation. The importance of maintaining proper GATA1 protein homeostasis in erythropoiesis is demonstrated by the fact that both GATA1 loss and its overexpression result in lethal anemia. Importantly, alterations in any of those GATA1 regulatory checkpoints have been recognized as an important cause of hematological disorders such as dyserythropoiesis (with or without thrombocytopenia), β-thalassemia, Diamond-Blackfan anemia, myelodysplasia, or leukemia. In this review, we provide an overview of the multilevel regulation of GATA1 protein homeostasis in erythropoiesis and of its deregulation in hematological disease.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Noemí Caballero
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Fernández-Calleja
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Crete, Greece
| | - John Strouboulis
- Cancer Comprehensive Center, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Maia de Oliveira da Silva JP, Brugnerotto AF, S. Romanello K, K. L. Teixeira K, Lanaro C, S. Duarte A, G. L. Costa G, da Silva Araújo A, C. Bezerra MA, de Farias Domingos I, Pereira Martins DA, Malavazi I, F. Costa F, Cunha AF. Global gene expression reveals an increase of HMGB1 and APEX1 proteins and their involvement in oxidative stress, apoptosis and inflammation pathways among beta‐thalassaemia intermedia and major phenotypes. Br J Haematol 2019; 186:608-619. [DOI: 10.1111/bjh.16062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ana Flávia Brugnerotto
- Centro de Hematologia e Hemoterapia Universidade Estadual de Campinas CampinasSão PauloBrazil
| | - Karen S. Romanello
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos São CarlosSão PauloBrazil
| | - Karina K. L. Teixeira
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos São CarlosSão PauloBrazil
| | - Carolina Lanaro
- Centro de Hematologia e Hemoterapia Universidade Estadual de Campinas CampinasSão PauloBrazil
| | - Adriana S. Duarte
- Centro de Hematologia e Hemoterapia Universidade Estadual de Campinas CampinasSão PauloBrazil
| | - Gustavo G. L. Costa
- Centro Nacional de Processamento de Alto Desempenho em São Paulo. CENAPAD‐SP Campinas São PauloBrazil
| | | | | | | | | | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos São CarlosSão PauloBrazil
| | - Fernando F. Costa
- Centro de Hematologia e Hemoterapia Universidade Estadual de Campinas CampinasSão PauloBrazil
| | - Anderson F. Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos São CarlosSão PauloBrazil
| |
Collapse
|
6
|
Huang D, Qiao XL, Liang QJ, Wei W, Kong JR, Huan Kang CSZ, Liu Y, Wang WN. Molecular characterization and function analysis of a nucleotide excision repair gene Rad23 from Litopenaeus vannamei after Vibrio alginolyticus challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 83:190-204. [PMID: 30195911 DOI: 10.1016/j.fsi.2018.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Nucleotide excision repair (NER) removes many different types of DNA lesions, and NER related host factors are reported to aid recovery steps during viral integration. Here, we report the identification and characterization of a DNA repair gene Rad23 from Litopenaeus vannamei and explore its role in innate immunity of crustaceans. LvRad23 contains a1149 bp open reading frame (ORF) which encodes a 382 amino acids protein with predicted theoretical isoelectric point of 4.21. LvRad23 was ubiquitously expressed in the muscle, eyestalk, gill, stomach, heart, legs, intestine, and hepatopancreas in order from high to low and LvRad23 protein was showed to be located in the cytoplasm of Drosophila S2 cells. The homology analysis showed that it has a high sequence homology with Rad23 protein from Marsupenaeus japonicus. Vibrio alginolyticus challenge induced a remarkable up-regulation of LvRad23 mRNA in hepatopancreas. Knocking down LvRad23can interfere the NER pathway by down regulating the expression of replication protein A (RPA) and proliferating cell nuclear antigen (PCNA). However it didn't cause any significant difference on total hemocyte count (THC) between LvRad23-silenced and non-silenced group.LvRad23-silenced then challenge with V. alginolyticus inducing high level of reactive oxygen species (ROS) and DNA damage in hemolymph. As well as decreased THC, which seriously diminished the innate immune system of L. vannamei. Meanwhile, the NER pathway was reactived by enhancing the expression of LvRad23 and promoting the production of LvPCNA to resist apoptosis and maintain proliferation of hemolymph cells in the later stage. Our results suggest that LvRad23 plays a vital role in shrimp specific immune response to V. alginolytcus through its participation in NER pathway.
Collapse
Affiliation(s)
- Di Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xue-Li Qiao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qing-Jian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Jing-Rong Kong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chang-Sheng Zhao Huan Kang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
7
|
Yokoi M, Hanaoka F. Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins. Gene 2017; 597:1-9. [DOI: 10.1016/j.gene.2016.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
8
|
Tan X, Liang RY, Chuang SM. hHR23A is required to control the basal turnover of Chk1. Cell Signal 2015; 27:2304-13. [DOI: 10.1016/j.cellsig.2015.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/15/2015] [Indexed: 11/26/2022]
|
9
|
Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells. Proc Natl Acad Sci U S A 2015; 112:E2317-26. [PMID: 25901318 DOI: 10.1073/pnas.1505569112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The embryonic stem cell (ESC) state is transcriptionally controlled by OCT4, SOX2, and NANOG with cofactors, chromatin regulators, noncoding RNAs, and other effectors of signaling pathways. Uncovering components of these regulatory circuits and their interplay provides the knowledge base to deploy ESCs and induced pluripotent stem cells. We recently identified the DNA-repair complex xeroderma pigmentosum C (XPC)-RAD23B-CETN2 as a stem cell coactivator (SCC) required for OCT4/SOX2 transcriptional activation. Here we investigate the role of SCC genome-wide in murine ESCs by mapping regions bound by RAD23B and analyzing transcriptional profiles of SCC-depleted ESCs. We establish OCT4 and SOX2 as the primary transcription factors recruiting SCC to regulatory regions of pluripotency genes and identify the XPC subunit as essential for interaction with the two proteins. The present study reveals new mechanistic and functional aspects of SCC transcriptional activity, and thus underscores the diversified functions of this regulatory complex.
Collapse
|