1
|
Li F, Liang J, Wei X. Epigenetic modification of Castor zinc finger 1 (CASZ1) is associated with tumor microenvironments and prognosis of clear cell renal cell carcinoma. Int J Surg 2024; 111:01279778-990000000-01932. [PMID: 39235847 PMCID: PMC11745609 DOI: 10.1097/js9.0000000000002070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) represents the predominant and remarkably diverse form of renal cell carcinoma. The involvement of the Castor zinc finger 1 (CASZ1) gene in adverse prognostic outcomes has been observed across different cancer types. Nevertheless, the specific altered activities and associated multi-omics characteristics of CASZ1 in ccRCC remain unelucidated. METHOD In order to explore the expression of CASZ1, evaluate its prognostic significance, and aid in the therapeutic decision-making process for patients with ccRCC, the The Cancer Genome Atlas(TCGA), Gene expression omnibus (GEO), and The Human Protein Atlas (HPA) databases were utilized to gather data on clinicopathological data, prognostic information, genomic, methylomic and immunomic data. Additionally, the Genomics of drug sensitivity in cancer (GDSC) database provided information on drug sensitivity. RESULTS CASZ1 expression was found to be significantly reduced in ccRCC and was associated with unfavorable pathological characteristics and a bleak prognosis. Diminished CASZ1 mRNA levels were notably correlated with heightened cytosine-phosphate-guanine (CpG) methylation , indicating a poorer prognosis for patients with increased methylation. Examination of RNA-seq data from TCGA indicated that the CASZ1-high expression subgroup displayed heightened immune cell infiltration and increased expression of immune checkpoint markers, potentially suggesting a more favorable response to immunotherapy. Furthermore, data from the GDSC database indicated that the CASZ1-low expression subgroup might exhibit greater sensitivity to anti-angiogenetic treatments, such as Sunitinib and Axitinib. CONCLUSIONS These results indicate that CASZ1 may function as a biomarker for distinguishing various tumor microenvironment phenotypes, predicting prognosis, and assisting in treatment decisions for individuals with ccRCC.
Collapse
Affiliation(s)
| | | | - Xin Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, People’s Republic of China
| |
Collapse
|
2
|
Liu RL, Yang K, Zhu WH, Yang YF, Xie L, Yao Y. Identification of a De novo pathogenic missense variant (c.559G>A) in CASZ1 associated with dilated cardiomyopathy. QJM 2024; 117:681-684. [PMID: 38814801 DOI: 10.1093/qjmed/hcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- R-L Liu
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - K Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - W-H Zhu
- Department of Ultrasound, Chenzhou No.1 people's hospital of Hunan province, Chenzhou, China
| | - Y-F Yang
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - L Xie
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Y Yao
- Department of Blood Transflusion, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| |
Collapse
|
3
|
Liu T, Li T, Ke S. Role of the CASZ1 transcription factor in tissue development and disease. Eur J Med Res 2023; 28:562. [PMID: 38053207 DOI: 10.1186/s40001-023-01548-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
The zinc finger transcription factor gene, CASZ1/Castor (Castor zinc finger 1), initially identified in Drosophila, plays a critical role in neural, cardiac, and cardiovascular development, exerting a complex, multifaceted influence on cell fate and tissue morphogenesis. During neurogenesis, CASZ1 exhibits dynamic expression from early embryonic development to the perinatal period, constituting a key regulator in this process. Additionally, CASZ1 controls the transition between neurogenesis and gliomagenesis. During human cardiovascular system development, CASZ1 is essential for cardiomyocyte differentiation, cardiac morphogenesis, and vascular morphology homeostasis and formation. The deletion or inactivation of CASZ1 mutations can lead to human developmental diseases or tumors, including congenital heart disease, cardiovascular disease, and neuroblastoma. CASZ1 can be used as a biomarker for disease prevention and diagnosis as well as a prognostic indicator for cancer. This review explores the unique functions of CASZ1 in tissue morphogenesis and associated diseases, offering new insights for elucidating the molecular mechanisms underlying diseases and identifying potential therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Tiantian Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shaorui Ke
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| |
Collapse
|
4
|
Jian H, Poetsch A. CASZ1: Current Implications in Cardiovascular Diseases and Cancers. Biomedicines 2023; 11:2079. [PMID: 37509718 PMCID: PMC10377389 DOI: 10.3390/biomedicines11072079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Castor zinc finger 1 (CASZ1) is a C2H2 zinc finger family protein that has two splicing variants, CASZ1a and CASZ1b. It is involved in multiple physiological processes, such as tissue differentiation and aldosterone antagonism. Genetic and epigenetic alternations of CASZ1 have been characterized in multiple cardiovascular disorders, such as congenital heart diseases, chronic venous diseases, and hypertension. However, little is known about how CASZ1 mechanically participates in the pathogenesis of these diseases. Over the past decades, at first glance, paradoxical influences on cell behaviors and progressions of different cancer types have been discovered for CASZ1, which may be explained by a "double-agent" role for CASZ1. In this review, we discuss the physiological function of CASZ1, and focus on the association of CASZ1 aberrations with the pathogenesis of cardiovascular diseases and cancers.
Collapse
Affiliation(s)
- Heng Jian
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ansgar Poetsch
- Queen Mary School, Nanchang University, Nanchang 330006, China
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Taheri Baghmisheh S, Wu YY, Wu JE, Hsu KF, Chen YL, Hong TM. CASZ1 promotes migration, invasion, and metastasis of lung cancer cells by controlling expression of ITGAV. Am J Cancer Res 2023; 13:176-189. [PMID: 36777515 PMCID: PMC9906072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/27/2022] [Indexed: 02/14/2023] Open
Abstract
CASZ1, a zinc finger transcription factor with two isoforms, is known to play important roles in cardiac and neural development. The abnormal expression of CASZ1 is also frequently found in a variety of tumors but has different effects on different tumors; for example, it acts as a tumor suppressor in neuroblastoma but promotes cancer metastasis in ovarian cancer. However, the effect of CASZ1 in lung cancer, the most lethal cancer, remains unclear. Here, we found that the expression of CASZ1 in lung cancer is positively associated with cancer metastasis and poor prognosis. The overexpression of CASZ1b promotes lung cancer cell migration, invasion, and epithelial-mesenchymal transition and is associated with poor prognosis in lung cancer patients. The knockdown of CASZ1 resulted in the suppression of epithelial-mesenchymal transition, migration, and invasion of lung cancer cells and reduced metastasis in vivo. The results of an RNA-sequencing analysis of CASZ1-silenced cells showed that CASZ1 considerably affected the integrin-mediated pathways. CASZ1 bound to the ITGAV promoter and transcriptionally regulated ITGAV expression. Our findings demonstrate that CASZ1 plays an oncogenic role in lung cancer and that CASZ1 promotes lung cancer migration, invasion and metastasis is mediated by ITGAV.
Collapse
Affiliation(s)
- Sina Taheri Baghmisheh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yi-Ying Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jia-En Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Keng-Fu Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
6
|
Zhang J, Liu X, Huang Z, Wu C, Zhang F, Han A, Stalin A, Lu S, Guo S, Huang J, Liu P, Shi R, Zhai Y, Chen M, Zhou W, Bai M, Wu J. T cell-related prognostic risk model and tumor immune environment modulation in lung adenocarcinoma based on single-cell and bulk RNA sequencing. Comput Biol Med 2023; 152:106460. [PMID: 36565482 DOI: 10.1016/j.compbiomed.2022.106460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND T cells are present in all stages of tumor formation and play an important role in the tumor microenvironment. We aimed to explore the expression profile of T cell marker genes, constructed a prognostic risk model based on these genes in Lung adenocarcinoma (LUAD), and investigated the link between this risk model and the immunotherapy response. METHODS We obtained the single-cell sequencing data of LUAD from the literature, and screened out 6 tissue biopsy samples, including 32,108 cells from patients with non-small cell lung cancer, to identify T cell marker genes in LUAD. Combined with TCGA database, a prognostic risk model based on T-cell marker gene was constructed, and the data from GEO database was used for verification. We also investigated the association between this risk model and immunotherapy response. RESULTS Based on scRNA-seq data 1839 T-cell marker genes were identified, after which a risk model consisting of 9 gene signatures for prognosis was constructed in combination with the TCGA dataset. This risk model divided patients into high-risk and low-risk groups based on overall survival. The multivariate analysis demonstrated that the risk model was an independent prognostic factor. Analysis of immune profiles showed that high-risk groups presented discriminative immune-cell infiltrations and immune-suppressive states. Risk scores of the model were closely correlated with Linoleic acid metabolism, intestinal immune network for IgA production and drug metabolism cytochrome P450. CONCLUSION Our study proposed a novel prognostic risk model based on T cell marker genes for LUAD patients. The survival of LUAD patients as well as treatment outcomes may be accurately predicted by the prognostic risk model, and make the high-risk population present different immune cell infiltration and immunosuppression state.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhihong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aiqing Han
- School of Management, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiyan Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meilin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Zhou
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Meirong Bai
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, China.
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Identification of a Novel de Novo Variant in the CASZ1 Causing a Rare Type of Dilated Cardiomyopathy. Int J Mol Sci 2022; 23:ijms232012506. [PMID: 36293425 PMCID: PMC9603937 DOI: 10.3390/ijms232012506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
A new de novo frameshift variant has been identified in the CASZ1 gene leading to severe dilated cardiomyopathy. Methods: The proband was analyzed with WES NGS, post-mortem, using dried blood spots on filters. The variant was verified with Sanger sequencing for the proband and her parents. Results: We reported a proband with a new de novo frameshift mutation, c.3781del (p.(Trp1261GlyfsTer29)), in the CASZ1 gene. The clinical presentation was similar to the severe phenotype described in previous studies. Conclusions: In this study, we described a new case with a frameshift mutation in CASZ1 causing a severe phenotype of dilated cardiomyopathy.
Collapse
|
8
|
Loss of CASZ1 tumor suppressor linked to oncogenic subversion of neuroblastoma core regulatory circuitry. Cell Death Dis 2022; 13:871. [PMID: 36243768 PMCID: PMC9569368 DOI: 10.1038/s41419-022-05314-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
The neural crest lineage regulatory transcription factors (TFs) form a core regulatory circuitry (CRC) in neuroblastoma (NB) to specify a noradrenergic tumor phenotype. Oncogenic subversion of CRC TFs is well documented, but the role of loss of tumor suppressors plays remains unclear. Zinc-finger TF CASZ1 is a chromosome 1p36 (chr1p36) tumor suppressor. Single-cell RNA sequencing data analyses indicate that CASZ1 is highly expressed in developing chromaffin cells coincident with an expression of NB CRC TFs. In NB tumor cells, the CASZ1 tumor suppressor is silenced while CRC components are highly expressed. We find the NB CRC component HAND2 directly represses CASZ1 expression. ChIP-seq and transcriptomic analyses reveal that restoration of CASZ1 upregulates noradrenergic neuronal genes and represses expression of CRC components by remodeling enhancer activity. Our study identifies that the restored CASZ1 forms a negative feedback regulatory circuit with the established NB CRC to induce noradrenergic neuronal differentiation of NB.
Collapse
|
9
|
Kuick CH, Tan JY, Jasmine D, Sumanty T, Ng AYJ, Venkatesh B, Chen H, Loh E, Jain S, Seow WY, Ng EHQ, Lian DWQ, Soh SY, Chang KTE, Chen ZX, Loh AHP. Mutations of 1p genes do not consistently abrogate tumor suppressor functions in 1p-intact neuroblastoma. BMC Cancer 2022; 22:717. [PMID: 35768791 PMCID: PMC9245282 DOI: 10.1186/s12885-022-09800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Deletion of 1p is associated with poor prognosis in neuroblastoma, however selected 1p-intact patients still experience poor outcomes. Since mutations of 1p genes may mimic the deleterious effects of chromosomal loss, we studied the incidence, spectrum and effects of mutational variants in 1p-intact neuroblastoma. Methods We characterized the 1p status of 325 neuroblastoma patients, and correlated the mutational status of 1p tumor suppressors and neuroblastoma candidate genes with survival outcomes among 100 1p-intact cases, then performed functional validation of selected novel variants of 1p36 genes identified from our patient cohort. Results Among patients with adverse disease characteristics, those who additionally had 1p deletion had significantly worse overall survival. Among 100 tumor-normal pairs sequenced, somatic mutations of 1p tumor suppressors KIF1Bβ and CHD5 were most frequent (2%) after ALK and ATRX (8%), and BARD1 (3%). Mutations of neuroblastoma candidate genes were associated with other synchronous mutations and concurrent 11q deletion (P = 0.045). In total, 24 of 38 variants identified were novel and predicted to be deleterious or pathogenic. Functional validation identified novel KIF1Bβ I1355M variant as a gain-of-function mutation with increased expression and tumor suppressive activity, correlating with indolent clinical behavior; another novel variant CHD5 E43Q was a loss-of-function mutation with decreased expression and increased long-term cell viability, corresponding with aggressive disease characteristics. Conclusions Our study showed that chromosome 1 gene mutations occurred frequently in 1p-intact neuroblastoma, but may not consistently abrogate the function of bonafide 1p tumor suppressors. These findings may augment the evolving model of compounding contributions of 1p gene aberrations toward tumor suppressor inactivation in neuroblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09800-0.
Collapse
Affiliation(s)
- Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Jia Ying Tan
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Deborah Jasmine
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tohari Sumanty
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Alvin Y J Ng
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Byrrappa Venkatesh
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Huiyi Chen
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eva Loh
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Sudhanshi Jain
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Wan Yi Seow
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eileen H Q Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Shui Yen Soh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Zhi Xiong Chen
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,National University Cancer Institute, Singapore, 119074, Singapore.
| | - Amos H P Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,Duke NUS Medical School, Singapore, 169857, Singapore. .,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, 229899, Singapore.
| |
Collapse
|
10
|
Liu Z, Zhang X, Lei H, Lam N, Carter S, Yockey O, Xu M, Mendoza A, Hernandez ER, Wei JS, Khan J, Yohe ME, Shern JF, Thiele CJ. CASZ1 induces skeletal muscle and rhabdomyosarcoma differentiation through a feed-forward loop with MYOD and MYOG. Nat Commun 2020; 11:911. [PMID: 32060262 PMCID: PMC7021771 DOI: 10.1038/s41467-020-14684-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/14/2020] [Indexed: 11/09/2022] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is a childhood cancer that expresses myogenic master regulatory factor MYOD but fails to differentiate. Here, we show that the zinc finger transcription factor CASZ1 up-regulates MYOD signature genes and induces skeletal muscle differentiation in normal myoblasts and ERMS. The oncogenic activation of the RAS-MEK pathway suppresses CASZ1 expression in ERMS. ChIP-seq, ATAC-seq and RNA-seq experiments reveal that CASZ1 directly up-regulates skeletal muscle genes and represses non-muscle genes through affecting regional epigenetic modifications, chromatin accessibility and super-enhancer establishment. Next generation sequencing of primary RMS tumors identified a single nucleotide variant in the CASZ1 coding region that potentially contributes to ERMS tumorigenesis. Taken together, loss of CASZ1 activity, due to RAS-MEK signaling or genetic alteration, impairs ERMS differentiation, contributing to RMS tumorigenesis.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Norris Lam
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sakereh Carter
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Oliver Yockey
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Max Xu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Edjay R Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
11
|
The Prognostic Significance of Protein Expression of CASZ1 in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2019; 2019:1342161. [PMID: 31481981 PMCID: PMC6701416 DOI: 10.1155/2019/1342161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Backgrounds Clear cell renal cell carcinoma (ccRCC) is the most common histologic subtype of renal cell carcinoma (RCC) and shows a relatively poor prognosis among RCCs. Castor zinc finger 1 (CASZ1) is a transcription factor, prominently known for its tumor suppression role in neuroblastoma and other cancers. However, there has been no research about the prognostic significance of CASZ1 in ccRCC. In this study, we investigated CASZ1 expression in ccRCC and analyzed its prognostic implications. Methods A total of 896 ccRCC patients, who underwent surgical resection from 1995 to 2008, were included. We prepared tissue microarray blocks, evaluated CASZ1 nuclear expression by immunohistochemistry, and classified the cases into low or high expression categories. Results A low expression of CASZ1 was observed in 320 cases (35.7%) and was significantly associated with large tumor size, high World Health Organization/International Society of Urological Pathology (WHO/ISUP) grade, and high T category and M category. In survival analysis, a low expression of CASZ1 was significantly correlated with unfavorable progression-free survival (PFS) (p < 0.001), overall survival (OS) (p < 0.001), and cancer-specific survival (CSS) (p < 0.001) and was an independent prognostic factor for PFS and CSS in multivariate analysis adjusted for tumor size, WHO/ISUP grade, T category, N category, and M category. Conclusions Our study is the first to show the prognostic significance of CASZ1 expression in ccRCC. Our results revealed that low expression of CASZ1 is associated with poor prognosis and may serve as a new prognostic indicator.
Collapse
|
12
|
Spirov AV, Myasnikova EM. Evolutionary Stability of Gene Regulatory Networks That Define the Temporal Identity of Neuroblasts. Mol Biol 2019. [DOI: 10.1134/s0026893319020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Gillison ML, Akagi K, Xiao W, Jiang B, Pickard RKL, Li J, Swanson BJ, Agrawal AD, Zucker M, Stache-Crain B, Emde AK, Geiger HM, Robine N, Coombes KR, Symer DE. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res 2018; 29:1-17. [PMID: 30563911 PMCID: PMC6314162 DOI: 10.1101/gr.241141.118] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Human papillomavirus (HPV) is a necessary but insufficient cause of a subset of oral squamous cell carcinomas (OSCCs) that is increasing markedly in frequency. To identify contributory, secondary genetic alterations in these cancers, we used comprehensive genomics methods to compare 149 HPV-positive and 335 HPV-negative OSCC tumor/normal pairs. Different behavioral risk factors underlying the two OSCC types were reflected in distinctive genomic mutational signatures. In HPV-positive OSCCs, the signatures of APOBEC cytosine deaminase editing, associated with anti-viral immunity, were strongly linked to overall mutational burden. In contrast, in HPV-negative OSCCs, T>C substitutions in the sequence context 5'-ATN-3' correlated with tobacco exposure. Universal expression of HPV E6*1 and E7 oncogenes was a sine qua non of HPV-positive OSCCs. Significant enrichment of somatic mutations was confirmed or newly identified in PIK3CA, KMT2D, FGFR3, FBXW7, DDX3X, PTEN, TRAF3, RB1, CYLD, RIPK4, ZNF750, EP300, CASZ1, TAF5, RBL1, IFNGR1, and NFKBIA Of these, many affect host pathways already targeted by HPV oncoproteins, including the p53 and pRB pathways, or disrupt host defenses against viral infections, including interferon (IFN) and nuclear factor kappa B signaling. Frequent copy number changes were associated with concordant changes in gene expression. Chr 11q (including CCND1) and 14q (including DICER1 and AKT1) were recurrently lost in HPV-positive OSCCs, in contrast to their gains in HPV-negative OSCCs. High-ranking variant allele fractions implicated ZNF750, PIK3CA, and EP300 mutations as candidate driver events in HPV-positive cancers. We conclude that virus-host interactions cooperatively shape the unique genetic features of these cancers, distinguishing them from their HPV-negative counterparts.
Collapse
Affiliation(s)
- Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Keiko Akagi
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Weihong Xiao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bo Jiang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Robert K L Pickard
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Jingfeng Li
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Amit D Agrawal
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Mark Zucker
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | - Kevin R Coombes
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - David E Symer
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
14
|
Wang HQ, Yang CY, Wang SY, Wang T, Han JL, Wei K, Liu FC, Xu JD, Peng XZ, Wang JM. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer. J Biomed Res 2018; 32:424-433. [PMID: 30355852 PMCID: PMC6283827 DOI: 10.7555/jbr.32.20170065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identifying sensitive and specific biomarkers for early detection of cancer is immensely imperative for early diagnosis and treatment and better clinical outcome of cancer patients. This study aimed to construct a specific DNA methylation pattern of cancer suppressor genes and explore the feasibility of applying cell-free DNA based methylation as a biomarker for early diagnosis of esophageal squamous cell carcinoma (ESCC). We recruited early stage ESCC patients from Yangzhong County, China. The Illumina Infinium 450K Methylation BeadChip was used to construct a genome-wide DNA methylation profile. Then, differentiated genes were selected for the validation study using the Sequenom MassARRAY platform. The frequency of methylation was compared between cancer tissues, matched cell-free DNAs and normal controls. The specific methylation profiles were constructed, and the sensitivity and specificity were calculated. Seven CG sites in three genes CASZ1, CDH13 and ING2 were significantly hypermethylated in ESCC as compared with normal controls. A significant correlation was found between the methylation of DNA extracted from cancer tissues and matched plasma cell-free DNA, either for individual CG site or for cumulative methylation analysis. The sensitivity and specificity reached 100% at an appropriate cut-point using these specific methylation biomarkers. This study revealed that aberrant DNA methylation is a promising biomarker for molecular diagnosis of esophageal cancer. Hypermethylation of CASZ1, CDH13 and ING2 detected in plasma cell-free DNA can be applied as a potential noninvasive biomarker for diagnosis of esophageal cancer.
Collapse
Affiliation(s)
- Huan-Qiang Wang
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Cong-Ying Yang
- Department of Social Medicine and Health Education,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Si-Yuan Wang
- Department of Clinical Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Tian Wang
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Jing-Ling Han
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Kai Wei
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Fu-Cun Liu
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Ji-da Xu
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Xian-Zhen Peng
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China.,Department of Epidemiology,, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian-Ming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
15
|
Kennedy L, Kaltenbrun E, Greco TM, Temple B, Herring LE, Cristea IM, Conlon FL. Formation of a TBX20-CASZ1 protein complex is protective against dilated cardiomyopathy and critical for cardiac homeostasis. PLoS Genet 2017; 13:e1007011. [PMID: 28945738 PMCID: PMC5629033 DOI: 10.1371/journal.pgen.1007011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/05/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023] Open
Abstract
By the age of 40, one in five adults without symptoms of cardiovascular disease are at risk for developing congestive heart failure. Within this population, dilated cardiomyopathy (DCM) remains one of the leading causes of disease and death, with nearly half of cases genetically determined. Though genetic and high throughput sequencing-based approaches have identified sporadic and inherited mutations in a multitude of genes implicated in cardiomyopathy, how combinations of asymptomatic mutations lead to cardiac failure remains a mystery. Since a number of studies have implicated mutations of the transcription factor TBX20 in congenital heart diseases, we investigated the underlying mechanisms, using an unbiased systems-based screen to identify novel, cardiac-specific binding partners. We demonstrated that TBX20 physically and genetically interacts with the essential transcription factor CASZ1. This interaction is required for survival, as mice heterozygous for both Tbx20 and Casz1 die post-natally as a result of DCM. A Tbx20 mutation associated with human familial DCM sterically interferes with the TBX20-CASZ1 interaction and provides a physical basis for how this human mutation disrupts normal cardiac function. Finally, we employed quantitative proteomic analyses to define the molecular pathways mis-regulated upon disruption of this novel complex. Collectively, our proteomic, biochemical, genetic, and structural studies suggest that the physical interaction between TBX20 and CASZ1 is required for cardiac homeostasis, and further, that reduction or loss of this critical interaction leads to DCM. This work provides strong evidence that DCM can be inherited through a digenic mechanism. A molecular understanding of cardiomyocyte development is an essential goal for improving clinical approaches to CHD. While TBX20 is an essential transcription factor for heart development and its disease relevance is well established, many fundamental questions remain about the mechanism of TBX20 function. Principle among these is how TBX20 mutations associated with adult dilated cardiomyopathy circumvent (DCM) the essential embryonic requirement for TBX20 in heart development. Here we report using an integrated approach that TBX20 complexes with the cardiac transcription factor CASZ1 in vivo. We confirmed TBX20 and CASZ1 interact biochemically and genetically, and show mice heterozygous for both Tbx20 and Casz1 die, beginning at 4 to 8 weeks post birth, exhibiting hallmarks of DCM. Interestingly, the human mutant TBX20F256I bypasses the early essential requirement for TBX20 but leads to DCM. We report here that TBX20F256I disrupts the TBX20-CASZ1 interaction, ascribing clinical relevance to this protein complex. Further, by using quantitative proteomics we have identified the molecular pathways altered in TBX20-CASZ1-mediated DCM. Together, these results identify a novel interaction between TBX20 and CASZ1 that is essential for maintaining cardiac homeostasis and imply that DCM can be inherited through a digenic mechanism.
Collapse
Affiliation(s)
- Leslie Kennedy
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Erin Kaltenbrun
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Brenda Temple
- R.L. Juliano Structural Bioinformatics Core, Department of Biochemistry and Biophysics, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Laura E. Herring
- UNC Proteomics Core Facility, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Frank L. Conlon
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biology, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
16
|
Qiu XB, Qu XK, Li RG, Liu H, Xu YJ, Zhang M, Shi HY, Hou XM, Liu X, Yuan F, Sun YM, Wang J, Huang RT, Xue S, Yang YQ. CASZ1 loss-of-function mutation contributes to familial dilated cardiomyopathy. ACTA ACUST UNITED AC 2017; 55:1417-1425. [DOI: 10.1515/cclm-2016-0612] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
AbstractBackground:The zinc finger transcription factor CASZ1 plays a key role in cardiac development and postnatal adaptation, and in mice, deletion of theMethods:The coding exons and splicing junction sites of theResults:A novel heterozygous CASZ1 mutation, p.K351X, was identified in an index patient with DCM. Genetic analysis of the mutation carrier’s family showed that the mutation co-segregated with DCM, which was transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation, which was absent in 400 referential chromosomes, altered the amino acid that was highly conserved evolutionarily. Biological investigations revealed that the mutant CASZ1 had no transcriptional activity.Conclusions:The current study reveals
Collapse
|
17
|
Nyer DB, Daer RM, Vargas D, Hom C, Haynes KA. Regulation of cancer epigenomes with a histone-binding synthetic transcription factor. NPJ Genom Med 2017; 2. [PMID: 28919981 PMCID: PMC5600530 DOI: 10.1038/s41525-016-0002-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromatin proteins have expanded the mammalian synthetic biology toolbox by enabling control of active and silenced states at endogenous genes. Others have reported synthetic proteins that bind DNA and regulate genes by altering chromatin marks, such as histone modifications. Previously, we reported the first synthetic transcriptional activator, the "Polycomb-based transcription factor" (PcTF) that reads histone modifications through a protein-protein interaction between the polycomb chromodomain motif and trimethylated lysine 27 of histone H3 (H3K27me3). Here, we describe the genome-wide behavior of the polycomb-based transcription factor fusion protein. Transcriptome and chromatin profiling revealed several polycomb-based transcription factor-sensitive promoter regions marked by distal H3K27me3 and proximal fusion protein binding. These results illuminate a mechanism in which polycomb-based transcription factor interactions bridge epigenomic marks with the transcription initiation complex at target genes. In three cancer-derived human cell lines tested here, some target genes encode developmental regulators and tumor suppressors. Thus, the polycomb-based transcription factor represents a powerful new fusion protein-based method for cancer research and treatment where silencing marks are translated into direct gene activation.
Collapse
Affiliation(s)
- David B Nyer
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| | - Rene M Daer
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| | - Daniel Vargas
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| | - Caroline Hom
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| | - Karmella A Haynes
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Box 9709, Tempe, AZ 85287, USA
| |
Collapse
|
18
|
CASZ1 loss-of-function mutation associated with congenital heart disease. Gene 2016; 595:62-68. [PMID: 27693370 DOI: 10.1016/j.gene.2016.09.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 11/23/2022]
Abstract
As the most common form of birth defect in humans, congenital heart disease (CHD) is associated with substantial morbidity and mortality in both children and adults. Increasing evidence demonstrates that genetic defects play a pivotal role in the pathogenesis of CHD. However, CHD is of great heterogeneity, and in an overwhelming majority of cases, the genetic determinants underpinning CHD remain elusive. In the present investigation, the coding exons and flanking introns of the CASZ1 gene, which codes for a zinc finger transcription factor essential for the cardiovascular morphogenesis, were sequenced in 172 unrelated patients with CHD. As a result, a novel heterozygous CASZ1 mutation, p.L38P, was identified in an index patient with congenital ventricular septal defect (VSD). Genetic scanning of the mutation carrier's available family members revealed that the mutation was present in all affected patients but absent in unaffected individuals. Analysis of the proband's pedigree showed that the mutation co-segregated with VSD, which was transmitted as an autosomal dominant trait with complete penetrance. The missense mutation, which altered the amino acid that was highly conserved evolutionarily, was absent in 200 unrelated, ethnically-matched healthy subjects used as controls. Functional deciphers by using a dual-luciferase reporter assay system unveiled that the mutant CASZ1 had significantly reduced transcriptional activity as compared with its wild-type counterpart. To the best of our knowledge, the current study firstly identifies CASZ1 as a new gene predisposing to CHD in humans, which provides novel insight into the molecular mechanisms underlying CHD and a potential therapeutic target for CASZ1-associated CHD, suggesting potential implications for personalized prophylaxis and therapy of CHD.
Collapse
|
19
|
Liu Z, Lam N, Thiele CJ. Zinc finger transcription factor CASZ1 interacts with histones, DNA repair proteins and recruits NuRD complex to regulate gene transcription. Oncotarget 2016; 6:27628-40. [PMID: 26296975 PMCID: PMC4695013 DOI: 10.18632/oncotarget.4733] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022] Open
Abstract
The zinc finger transcription factor CASZ1 has been found to control neural fate-determination in flies, regulate murine and frog cardiac development, control murine retinal cell progenitor expansion and function as a tumor suppressor gene in humans. However, the molecular mechanism by which CASZ1 regulates gene transcription to exert these diverse biological functions has not been described. Here we identify co-factors that are recruited by CASZ1b to regulate gene transcription using co-immunoprecipitation (co-IP) and mass spectrometry assays. We find that CASZ1b binds to the nucleosome remodeling and histone deacetylase (NuRD) complex, histones and DNA repair proteins. Mutagenesis of the CASZ1b protein assay demonstrates that the N-terminus of CASZ1b is required for NuRD binding, and a poly(ADP-ribose) binding motif in the CASZ1b protein is required for histone H3 and DNA repair proteins binding. The N-terminus of CASZ1b fused to an artificial DNA-binding domain (GAL4DBD) causes a significant repression of transcription (5xUAS-luciferase assay), which could be blocked by treatment with an HDAC inhibitor. Realtime PCR results show that the transcriptional activity of CASZ1b mutants that abrogate NuRD or histone H3/DNA binding is significantly decreased. This indicates a model in which CASZ1b binds to chromatin and recruits NuRD complexes to orchestrate epigenetic-mediated transcriptional programs.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Norris Lam
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Liu Z, Lam N, Wang E, Virden RA, Pawel B, Attiyeh EF, Maris JM, Thiele CJ. Identification of CASZ1 NES reveals potential mechanisms for loss of CASZ1 tumor suppressor activity in neuroblastoma. Oncogene 2016; 36:97-109. [PMID: 27270431 PMCID: PMC5140774 DOI: 10.1038/onc.2016.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/06/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022]
Abstract
As a transcription factor, localization to the nucleus and the recruitment of cofactors to regulate gene transcription is essential. Nuclear localization and nucleosome remodeling and histone deacetylase (NuRD) complex binding are required for the zinc-finger transcription factor CASZ1 to function as a neuroblastoma (NB) tumor suppressor. However, the critical amino acids (AAs) that are required for CASZ1 interaction with NuRD complex and the regulation of CASZ1 subcellular localization have not been characterized. Through alanine scanning, immunofluorescence cell staining and co-immunoprecipitation, we define a critical region at the CASZ1 N terminus (AAs 23-40) that mediates the CASZ1b nuclear localization and NuRD interaction. Furthermore, we identified a nuclear export signal (NES) at the N terminus (AAs 176-192) that contributes to CASZ1 nuclear-cytoplasmic shuttling in a chromosomal maintenance 1-dependent manner. An analysis of CASZ1 protein expression in a primary NB tissue microarray shows that high nuclear CASZ1 staining is detected in tumor samples from NB patients with good prognosis. In contrast, cytoplasmic-restricted CASZ1 staining or low nuclear CASZ1 staining is found in tumor samples from patients with poor prognosis. These findings provide insight into mechanisms by which CASZ1 regulates transcription, and suggests that regulation of CASZ1 subcellular localization may impact its function in normal development and pathologic conditions such as NB tumorigenesis.
Collapse
Affiliation(s)
- Z Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - N Lam
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - E Wang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - R A Virden
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - B Pawel
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - E F Attiyeh
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - J M Maris
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - C J Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
21
|
Monteiro CB, Midão L, Rebelo S, Reguenga C, Lima D, Monteiro FA. Zinc finger transcription factor Casz1 expression is regulated by homeodomain transcription factor Prrxl1 in embryonic spinal dorsal horn late-born excitatory interneurons. Eur J Neurosci 2016; 43:1449-59. [PMID: 26913565 DOI: 10.1111/ejn.13214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 11/30/2022]
Abstract
The transcription factor Casz1 is required for proper assembly of vertebrate vasculature and heart morphogenesis as well as for temporal control of Drosophila neuroblasts and mouse retina progenitors in the generation of different cell types. Although Casz1 function in the mammalian nervous system remains largely unexplored, Casz1 is expressed in several regions of this system. Here we provide a detailed spatiotemporal characterization of Casz1 expression along mouse dorsal root ganglion (DRG) and dorsal spinal cord development by immunochemistry. In the DRG, Casz1 is broadly expressed in sensory neurons since they are born until perinatal age. In the dorsal spinal cord, Casz1 displays a more dynamic pattern being first expressed in dorsal interneuron 1 (dI1) progenitors and their derived neurons and then in a large subset of embryonic dorsal late-born excitatory (dILB) neurons that narrows gradually to become restricted perinatally to the inner portion. Strikingly, expression analyses using Prrxl1-knockout mice revealed that Prrxl1, a key transcription factor in the differentiation of dILB neurons, is a positive regulator of Casz1 expression in the embryonic dorsal spinal cord but not in the DRG. By performing chromatin immunoprecipitation in the dorsal spinal cord, we identified two Prrxl1-bound regions within Casz1 introns, suggesting that Prrxl1 directly regulates Casz1 transcription. Our work reveals that Casz1 lies downstream of Prrxl1 in the differentiation pathway of a large subset of dILB neurons and provides a framework for further studies of Casz1 in assembly of the DRG-spinal circuit.
Collapse
Affiliation(s)
- César B Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Luís Midão
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Rebelo
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carlos Reguenga
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe A Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pain Research Group, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Liu Z, Li W, Ma X, Ding N, Spallotta F, Southon E, Tessarollo L, Gaetano C, Mukouyama YS, Thiele CJ. Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem 2014; 289:29801-16. [PMID: 25190801 DOI: 10.1074/jbc.m114.570416] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromosome 1p36 deletion syndrome is one of the most common terminal deletions observed in humans and is related to congenital heart disease (CHD). However, the 1p36 genes that contribute to heart disease have not been clearly delineated. Human CASZ1 gene localizes to 1p36 and encodes a zinc finger transcription factor. Casz1 is required for Xenopus heart ventral midline progenitor cell differentiation. Whether Casz1 plays a role during mammalian heart development is unknown. Our aim is to determine 1p36 gene CASZ1 function at regulating heart development in mammals. We generated a Casz1 knock-out mouse using Casz1-trapped embryonic stem cells. Casz1 deletion in mice resulted in abnormal heart development including hypoplasia of myocardium, ventricular septal defect, and disorganized morphology. Hypoplasia of myocardium was caused by decreased cardiomyocyte proliferation. Comparative genome-wide RNA transcriptome analysis of Casz1 depleted embryonic hearts identifies abnormal expression of genes that are critical for muscular system development and function, such as muscle contraction genes TNNI2, TNNT1, and CKM; contractile fiber gene ACTA1; and cardiac arrhythmia associated ion channel coding genes ABCC9 and CACNA1D. The transcriptional regulation of some of these genes by Casz1 was also found in cellular models. Our results showed that loss of Casz1 during mouse development led to heart defect including cardiac noncompaction and ventricular septal defect, which phenocopies 1p36 deletion syndrome related CHD. This suggests that CASZ1 is a novel 1p36 CHD gene and that the abnormal expression of cardiac morphogenesis and contraction genes induced by loss of Casz1 contributes to the heart defect.
Collapse
Affiliation(s)
| | - Wenling Li
- the Laboratories of Stem Cell and Neuro-vascular Biology and
| | - Xuefei Ma
- the Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, and
| | | | - Francesco Spallotta
- the Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany
| | - Eileen Southon
- the Mouse Cancer Genetics Program, Neural Development Section, National Cancer Institute, Bethesda, Maryland 20892
| | - Lino Tessarollo
- the Mouse Cancer Genetics Program, Neural Development Section, National Cancer Institute, Bethesda, Maryland 20892
| | - Carlo Gaetano
- the Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany
| | | | | |
Collapse
|
23
|
Amin NM, Gibbs D, Conlon FL. Differential regulation of CASZ1 protein expression during cardiac and skeletal muscle development. Dev Dyn 2014; 243:948-56. [PMID: 24633745 DOI: 10.1002/dvdy.24126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/19/2014] [Accepted: 02/27/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The zinc-finger transcription factor CASZ1 is required for differentiation of a distinct population of cardiomyocytes during development. However, expression of Casz1 mRNA is detected throughout the developing heart, suggesting the spatial regulation of CASZ1 occurs at the protein level. Relatively little is known about posttranscriptional regulation of Casz1 in the heart. RESULTS We generated antibodies that specifically recognize CASZ1 in developing Xenopus embryos, and performed immunofluorescence analysis of CASZ1 during cardiac development. CASZ1 was detected throughout the developing myocardium. CASZ1 was restricted to terminally differentiated cardiomyocytes, and was down-regulated in cells that re-enter the cell cycle. We determined that CASZ1 expression correlated with terminal differentiation in cardiac muscle cells, skeletal muscle cells, and lymph-heart musculature. CONCLUSIONS This study indicates that spatially distinct expression of CASZ1 protein may be due to posttranscriptional control of Casz1 mRNA during cardiac development. The results of this study provide insights into the role of Casz1 in cardiac function and in the differentiation of other cell types, including skeletal muscle and lymph heart.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina
| | | | | |
Collapse
|
24
|
Besold AN, Oluyadi AA, Michel SLJ. Switching metal ion coordination and DNA Recognition in a Tandem CCHHC-type zinc finger peptide. Inorg Chem 2013; 52:4721-8. [PMID: 23521535 PMCID: PMC3671583 DOI: 10.1021/ic4003516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neural Zinc Finger Factor-1 (NZF-1) and Myelin Transcription Factor 1 (MyT1) are two homologous nonclassical zinc finger (ZF) proteins that are involved in the development of the central nervous system (CNS). Both NZF-1 and MyT1 contain multiple ZF domains, each of which contains an absolutely conserved Cys2His2Cys motif. All three cysteines and the second histidine have been shown to coordinate Zn(II); however, the role of the first histidine remains unresolved. Using a functional form of NZF-1 that contains two ZF domains (NZF-1-F2F3), mutant proteins in which each histidine was sequentially mutated to a phenylalanine were prepared to determine the role(s) of the histidine residues in DNA recognition. When the first histidine is mutated, the protein binds Zn(II) in an analogous manner to the native protein. Surprisingly, this mutant does not bind to target DNA (β-RAR), suggesting that the noncoordinating histidine is critical for sequence selective DNA recognition. The first histidine will coordinate Zn(II) when the second histidine is mutated; however, the overall fold of the protein is perturbed leading to abrogation of DNA binding. NZF-1-F2F3 selectively binds to a specific DNA target sequence (from β-RAR) with high affinity (nM); while its homologue MyT1 (MyT1-F2F3), which is 92% identical to NZF-1-F2F3, binds to this same DNA sequence nonspecifically. A single, nonconserved amino acid residue in NZF-1-F2F3 is shown to be responsible for this high affinity DNA binding to β-RAR. When this residue (arginine) is engineered into the MyT1-F2F3 sequence, the affinity for β-RAR DNA increases.
Collapse
Affiliation(s)
- Angelique N. Besold
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Abdulafeez A. Oluyadi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|