1
|
Chen Z, Nohata J, Guo H, Li S, Liu J, Guo Y, Yamamoto K, Kadono-Okuda K, Liu C, Arunkumar KP, Nagaraju J, Zhang Y, Liu S, Labropoulou V, Swevers L, Tsitoura P, Iatrou K, Gopinathan KP, Goldsmith MR, Xia Q, Mita K. A comprehensive analysis of the chorion locus in silkmoth. Sci Rep 2015; 5:16424. [PMID: 26553298 PMCID: PMC4639761 DOI: 10.1038/srep16424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022] Open
Abstract
Despite more than 40 years of intense study, essential features of the silkmoth chorion (eggshell) are still not fully understood. To determine the precise structure of the chorion locus, we performed extensive EST analysis, constructed a bacterial artificial chromosome (BAC) contig, and obtained a continuous genomic sequence of 871,711 base pairs. We annotated 127 chorion genes in two segments interrupted by a 164 kb region with 5 non-chorion genes, orthologs of which were on chorion bearing scaffolds in 4 ditrysian families. Detailed transcriptome analysis revealed expression throughout choriogenesis of most chorion genes originally categorized as “middle”, and evidence for diverse regulatory mechanisms including cis-elements, alternative splicing and promoter utilization, and antisense RNA. Phylogenetic analysis revealed multigene family associations and faster evolution of early chorion genes and transcriptionally active pseudogenes. Proteomics analysis identified 99 chorion proteins in the eggshell and micropyle localization of 1 early and 6 Hc chorion proteins.
Collapse
Affiliation(s)
- Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | | | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Jianqiu Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Youbing Guo
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Kimiko Yamamoto
- National Institute of Agrobiological Sciences, Tsukuba 305-8634, Japan
| | | | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | | | | | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Shiping Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences &Applications, National Centre for Scientific Research "Demokritos", Athens 15310, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences &Applications, National Centre for Scientific Research "Demokritos", Athens 15310, Greece
| | - Panagiota Tsitoura
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences &Applications, National Centre for Scientific Research "Demokritos", Athens 15310, Greece
| | - Kostas Iatrou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences &Applications, National Centre for Scientific Research "Demokritos", Athens 15310, Greece
| | | | | | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China
| |
Collapse
|
2
|
Abstract
The science of genomes: only within the past few decades have scientists progressed from the analysis of a single or a small number of genes at once to the investigation of thousands of genes, going from the study of the units of inheritance to the investigation of the whole genome of an organism. The science of the genomes, or "genomics," initially dedicated to the determination of DNA sequences (the nucleotide order on a given fragment of DNA), has promptly expanded toward a more functional level--studying the expression profiles and the roles of both genes and proteins. The aim of the chapter is to review some basic assumptions and definitions that are the fabric of genomics, and to elucidate key concepts and approaches on which genomics rely.
Collapse
Affiliation(s)
- Luca Del Giacco
- Division of Functional and Reproductive Biology, Department of Biology, University of Milan, Milan-MI, Italy.
| | | |
Collapse
|
3
|
Moschonas NK, Thireos G, Kafatos FC. Evolution of chorion structural genes and regulatory mechanisms in two wild silkmoths: a preliminary analysis. J Mol Evol 1988; 27:187-93. [PMID: 3138421 DOI: 10.1007/bf02100073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report a preliminary analysis of structural and regulatory evolution of the A and B chorion gene families in two wild silkmoths, Antheraea pernyi and Antheraea polyphemus. Homospecific and heterospecific dot hybridizations were performed between previously characterized A. polyphemus complementary DNA clones and total or stage-specific follicular mRNAs from the two species. The hybridization patterns indicated substantial interspecies changes in the abundance of corresponding mRNA sequences (heteroposic evolution) without substantial changes in their developmental specificities (heterochronic evolution). In addition, the proteins encoded in the two species by corresponding mRNAs were determined by hybrid-selected translation followed by electrophoretic analysis. The results suggested that the proteins evolve in size, presumably through internal deletions and duplications.
Collapse
Affiliation(s)
- N K Moschonas
- Institute of Molecular Biology and Biotechnology, University of Crete, Greece
| | | | | |
Collapse
|
4
|
Kafatos FC, Spoerel N, Mitsialis SA, Nguyen HT, Romano C, Lingappa JR, Mariani BD, Rodakis GC, Lecanidou R, Tsitilou SG. Developmental control and evolution in the chorion gene families of insects. ADVANCES IN GENETICS 1987; 24:223-42. [PMID: 3324698 DOI: 10.1016/s0065-2660(08)60009-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- F C Kafatos
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Alexandraki D, Ruderman JV. Evolution of alpha q- and beta-tubulin genes as inferred by the nucleotide sequences of sea urchin cDNA clones. J Mol Evol 1983; 19:397-410. [PMID: 6317873 DOI: 10.1007/bf02102315] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Evolutionary studies on the tubulin multigene families were initiated by nucleotide sequence analysis of cDNA clones complementary to sea urchin (Lytechinus pictus) testis alpha- and beta-tubulin cDNA clones (p beta 1, p beta 2, p beta e) demonstrated the existence of tubulin mRNA heterogeneity. p beta 2 and p beta 3 contain identical tubulin-coding regions and extremely similar 3' untranslated sequences, including a polyadenylation signal (AAUAAA). However, p beta 2 contains an additional region of 3' untranslated sequence which includes a second polyadenylation signal. These two sequences may be allelic, representing products of alternative transcription termination or processing pathways. p beta 1 and p beta 2 (or p beta 3) cDNAs almost certainly correspond to transcripts of distinct but evolutionarily related genes. Examination of the available coding portions showed that they differ only by a few silent nucleotide substitutions and the deletion/insertion of one codon; most of the differences are clustered within the last 15 3'-end codons. In contrast, their 3' untranslated sequences are considerably divergent. Nucleotide alignment in this region was feasible by considering specific point and segmental mutations, mainly T in equilibrium or formed from C transitions and small deletions/insertions associated with small direct repeats. The sea urchin alpha- and beta-tubulin cDNA and corresponding protein sequences were compared with previously described tubulin cDNA and protein sequences from other organisms. Both alpha and beta tubulins are very conserved proteins, evolving with a rate comparable to that of histones. Analysis of the nucleotide divergence of the coding cDNA regions showed that replacement sites have changed with a rate 20-175 times lower than that of the silent sites. Among the 177 codons compared between the sea urchin testis and chick brain beta-tubulin cDNAs, there are 7 conservative amino acid replacements and the deletion/insertion of two codons. Most of these changes are clustered near the C-terminus. The 161-amino acid portion of chick brain, rat and porcine alpha-tubulin sequences differs by 3 conservative amino acid replacements from the corresponding sea urchin testis alpha-tubulin sequence. The compared interspecies 3' untranslated sequences are very divergent.
Collapse
|
7
|
Abstract
We have recovered overlapping clones that represent in the aggregate a contiguous segment of chromosomal DNA 270 kb in length, or probably one third of the chorion locus of Bombyx mori. Approximately 70 genes have been identified, the majority of which are arranged in coordinately expressed pairs. The nonidentical genes expressed in the late period of choriogenesis are clustered within a single, 130 kb region, which is flanked by regions containing genes that are active during the middle developmental period. The late genes encode two families of high-cysteine proteins; the evolutionarily persistent clustering of these families contrasts sharply with the extensive sequence diversification of the structural genes and their flanking DNA elements. We discuss the possible regulatory significance of the clustered arrangement, as well as certain features of multigene family evolution.
Collapse
|