1
|
Bera A, Gupta ML. Microtubules in Microorganisms: How Tubulin Isotypes Contribute to Diverse Cytoskeletal Functions. Front Cell Dev Biol 2022; 10:913809. [PMID: 35865635 PMCID: PMC9294176 DOI: 10.3389/fcell.2022.913809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
The cellular functions of the microtubule (MT) cytoskeleton range from relatively simple to amazingly complex. Assembled from tubulin, a heterodimeric protein with α- and β-tubulin subunits, microtubules are long, hollow cylindrical filaments with inherent polarity. They are intrinsically dynamic polymers that utilize GTP binding by tubulin, and subsequent hydrolysis, to drive spontaneous assembly and disassembly. Early studies indicated that cellular MTs are composed of multiple variants, or isotypes, of α- and β-tubulins, and that these multi-isotype polymers are further diversified by a range of posttranslational modifications (PTMs) to tubulin. These findings support the multi-tubulin hypothesis whereby individual, or combinations of tubulin isotypes possess unique properties needed to support diverse MT structures and/or cellular processes. Beginning 40 years ago researchers have sought to address this hypothesis, and the role of tubulin isotypes, by exploiting experimentally accessible, genetically tractable and functionally conserved model systems. Among these systems, important insights have been gained from eukaryotic microbial models. In this review, we illustrate how using microorganisms yielded among the earliest evidence that tubulin isotypes harbor distinct properties, as well as recent insights as to how they facilitate specific cellular processes. Ongoing and future research in microorganisms will likely continue to reveal basic mechanisms for how tubulin isotypes facilitate MT functions, along with valuable perspectives on how they mediate the range of conserved and diverse processes observed across eukaryotic microbes.
Collapse
|
2
|
Nsamba ET, Bera A, Costanzo M, Boone C, Gupta ML. Tubulin isotypes optimize distinct spindle positioning mechanisms during yeast mitosis. J Cell Biol 2021; 220:212745. [PMID: 34739032 PMCID: PMC8576917 DOI: 10.1083/jcb.202010155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Microtubules are dynamic cytoskeleton filaments that are essential for a wide range of cellular processes. They are polymerized from tubulin, a heterodimer of α- and β-subunits. Most eukaryotic organisms express multiple isotypes of α- and β-tubulin, yet their functional relevance in any organism remains largely obscure. The two α-tubulin isotypes in budding yeast, Tub1 and Tub3, are proposed to be functionally interchangeable, yet their individual functions have not been rigorously interrogated. Here, we develop otherwise isogenic yeast strains expressing single tubulin isotypes at levels comparable to total tubulin in WT cells. Using genome-wide screening, we uncover unique interactions between the isotypes and the two major mitotic spindle positioning mechanisms. We further exploit these cells to demonstrate that Tub1 and Tub3 optimize spindle positioning by differentially recruiting key components of the Dyn1- and Kar9-dependent mechanisms, respectively. Our results provide novel mechanistic insights into how tubulin isotypes allow highly conserved microtubules to function in diverse cellular processes.
Collapse
Affiliation(s)
- Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA
| | - Abesh Bera
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA
| | - Michael Costanzo
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences, Saitama, Japan
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA
| |
Collapse
|
3
|
Ishikawa K. Multilayered regulation of proteome stoichiometry. Curr Genet 2021; 67:883-890. [PMID: 34382105 PMCID: PMC8592966 DOI: 10.1007/s00294-021-01205-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023]
Abstract
Cellular systems depend on multiprotein complexes whose functionalities require defined stoichiometries of subunit proteins. Proper stoichiometry is achieved by controlling the amount of protein synthesis and degradation even in the presence of genetic perturbations caused by changes in gene dosage. As a consequence of increased gene copy number, excess subunits unassembled into the complex are synthesized and rapidly degraded by the ubiquitin–proteasome system. This mechanism, called protein-level dosage compensation, is widely observed not only under such perturbed conditions but also in unperturbed physiological cells. Recent studies have shown that recognition of unassembled subunits and their selective degradation are intricately regulated. This review summarizes the nature, strategies, and increasing complexity of protein-level dosage compensation and discusses possible mechanisms for controlling proteome stoichiometry in multiple layers of biological processes.
Collapse
Affiliation(s)
- Koji Ishikawa
- Center for Molecular Biology, ZMBH-DKFZ Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Ascencio D, Diss G, Gagnon-Arsenault I, Dubé AK, DeLuna A, Landry CR. Expression attenuation as a mechanism of robustness against gene duplication. Proc Natl Acad Sci U S A 2021; 118:e2014345118. [PMID: 33526669 PMCID: PMC7970654 DOI: 10.1073/pnas.2014345118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene duplication is ubiquitous and a major driver of phenotypic diversity across the tree of life, but its immediate consequences are not fully understood. Deleterious effects would decrease the probability of retention of duplicates and prevent their contribution to long-term evolution. One possible detrimental effect of duplication is the perturbation of the stoichiometry of protein complexes. Here, we measured the fitness effects of the duplication of 899 essential genes in the budding yeast using high-resolution competition assays. At least 10% of genes caused a fitness disadvantage when duplicated. Intriguingly, the duplication of most protein complex subunits had small to nondetectable effects on fitness, with few exceptions. We selected four complexes with subunits that had an impact on fitness when duplicated and measured the impact of individual gene duplications on their protein-protein interactions. We found that very few duplications affect both fitness and interactions. Furthermore, large complexes such as the 26S proteasome are protected from gene duplication by attenuation of protein abundance. Regulatory mechanisms that maintain the stoichiometric balance of protein complexes may protect from the immediate effects of gene duplication. Our results show that a better understanding of protein regulation and assembly in complexes is required for the refinement of current models of gene duplication.
Collapse
Affiliation(s)
- Diana Ascencio
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Guillaume Diss
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre K Dubé
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Christian R Landry
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada;
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Environmental Conditions May Shape the Patterns of Genomic Variations in Leishmania panamensis. Genes (Basel) 2019; 10:genes10110838. [PMID: 31652919 PMCID: PMC6896075 DOI: 10.3390/genes10110838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of transcriptional regulation of gene expression in Leishmania parasites, it is now well accepted that several forms of genomic variations modulate the levels of critical proteins through changes in gene dosage. We previously observed many of these variations in our reference laboratory strain of L. panamensis (PSC-1 strain), including chromosomes with an increased somy and the presence of a putative linear minichromosome derived from chromosome 34. Here, we compared the previously described genomic variations with those occurring after exposure of this strain to increasing concentrations of trivalent antimony (SbIII), as well as those present in two geographically unrelated clinical isolates of L. panamensis. We observed changes in the somy of several chromosomes, amplifications of several chromosomal regions, and copy number variations in gene arrays after exposure to SbIII. Occurrence of amplifications potentially beneficial for the Sb-resistant phenotype appears to be associated with the loss of other forms of amplification, such as the linear minichromosome. In contrast, we found no evidence of changes in somy or amplification of relatively large chromosomal regions in the clinical isolates. In these isolates, the predominant amplifications appear to be those that generate genes arrays; however, in many cases, the amplified arrays have a notably higher number of copies than those from the untreated and Sb-treated laboratory samples.
Collapse
|
6
|
Bergendahl LT, Gerasimavicius L, Miles J, Macdonald L, Wells JN, Welburn JPI, Marsh JA. The role of protein complexes in human genetic disease. Protein Sci 2019; 28:1400-1411. [PMID: 31219644 DOI: 10.1002/pro.3667] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Many human genetic disorders are caused by mutations in protein-coding regions of DNA. Taking protein structure into account has therefore provided key insight into the molecular mechanisms underlying human genetic disease. Although most studies have focused on the intramolecular effects of mutations, the critical role of the assembly of proteins into complexes is being increasingly recognized. Here, we review multiple ways in which consideration of protein complexes can help us to understand and explain the effects of pathogenic mutations. First, we discuss disorders caused by mutations that perturb intersubunit interactions in homomeric and heteromeric complexes. Second, we address how protein complex assembly can facilitate a dominant-negative mechanism, whereby mutated subunits can disrupt the activity of wild-type protein. Third, we show how mutations that change protein expression levels can lead to damaging stoichiometric imbalances. Finally, we review how mutations affecting different subunits of the same heteromeric complex often cause similar diseases, whereas mutations in different interfaces of the same subunit can cause distinct phenotypes.
Collapse
Affiliation(s)
- L Therese Bergendahl
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jamilla Miles
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lewis Macdonald
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, 14850
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
7
|
Abstract
Haploinsufficiency describes the decrease in organismal fitness observed when a single copy of a gene is deleted in diploids. We investigated the origin of haploinsufficiency by creating a comprehensive dosage sensitivity data set for genes under their native promoters. We demonstrate that the expression of haploinsufficient genes is limited by the toxicity of their overexpression. We further show that the fitness penalty associated with excess gene copy number is not the only determinant of haploinsufficiency. Haploinsufficient genes represent a unique subset of genes sensitive to copy number increases, as they are also limiting for important cellular processes when present in one copy instead of two. The selective pressure to decrease gene expression due to the toxicity of overexpression, combined with the pressure to increase expression due to their fitness-limiting nature, has made haploinsufficient genes extremely sensitive to changes in gene expression. As a consequence, haploinsufficient genes are dosage stabilized, showing much more narrow ranges in cell-to-cell variability of expression compared with other genes in the genome. We propose a dosage-stabilizing hypothesis of haploinsufficiency to explain its persistence over evolutionary time.
Collapse
|
8
|
Tam AS, Sihota TS, Milbury KL, Zhang A, Mathew V, Stirling PC. Selective defects in gene expression control genome instability in yeast splicing mutants. Mol Biol Cell 2018; 30:191-200. [PMID: 30462576 PMCID: PMC6589566 DOI: 10.1091/mbc.e18-07-0439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA processing mutants have been broadly implicated in genome stability, but mechanistic links are often unclear. Two predominant models have emerged: one involving changes in gene expression that perturb other genome maintenance factors and another in which genotoxic DNA:RNA hybrids, called R-loops, impair DNA replication. Here we characterize genome instability phenotypes in yeast splicing factor mutants and find that mitotic defects, and in some cases R-loop accumulation, are causes of genome instability. In both cases, alterations in gene expression, rather than direct cis effects, are likely to contribute to instability. Genome instability in splicing mutants is exacerbated by loss of the spindle-assembly checkpoint protein Mad1. Moreover, removal of the intron from the α-tubulin gene TUB1 restores genome integrity. Thus, differing penetrance and selective effects on the transcriptome can lead to a range of phenotypes in conditional mutants of the spliceosome, including multiple routes to genome instability.
Collapse
Affiliation(s)
- Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tianna S Sihota
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Karissa L Milbury
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Anni Zhang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Veena Mathew
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Greenlee M, Alonso A, Rahman M, Meednu N, Davis K, Tabb V, Cook R, Miller RK. The TOG protein Stu2/XMAP215 interacts covalently and noncovalently with SUMO. Cytoskeleton (Hoboken) 2018; 75:290-306. [PMID: 29729126 PMCID: PMC6712953 DOI: 10.1002/cm.21449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/21/2023]
Abstract
Stu2p is the yeast member of the XMAP215/Dis1/ch‐TOG family of microtubule‐associated proteins that promote microtubule polymerization. However, the factors that regulate its activity are not clearly understood. Here we report that Stu2p in the budding yeast Saccharomyces cerevisiae interacts with SUMO by covalent and noncovalent mechanisms. Stu2p interacted by two‐hybrid analysis with the yeast SUMO Smt3p, its E2 Ubc9p, and the E3 Nfi1p. A region of Stu2p containing the dimerization domain was both necessary and sufficient for interaction with SUMO and Ubc9p. Stu2p was found to be sumoylated both in vitro and in vivo. Stu2p copurified with SUMO in a pull‐down assay and vice versa. Stu2p also bound to a nonconjugatable form of SUMO, suggesting that Stu2p can interact noncovalently with SUMO. In addition, Stu2p interacted with the STUbL enzyme Ris1p. Stu2p also copurified with ubiquitin in a pull‐down assay, suggesting that it can be modified by both SUMO and ubiquitin. Tubulin, a major binding partner of Stu2p, also interacted noncovalently with SUMO. By two‐hybrid analysis, the beta‐tubulin Tub2p interacted with SUMO independently of the microtubule stressor, benomyl. Together, these findings raise the possibility that the microtubule polymerization activities mediated by Stu2p are regulated through sumoylation pathways.
Collapse
Affiliation(s)
- Matt Greenlee
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Annabel Alonso
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Maliha Rahman
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Nida Meednu
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | - Kayla Davis
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Victoria Tabb
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - River Cook
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Rita K Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| |
Collapse
|
10
|
Aiken J, Buscaglia G, Bates EA, Moore JK. The α-Tubulin gene TUBA1A in Brain Development: A Key Ingredient in the Neuronal Isotype Blend. J Dev Biol 2017; 5. [PMID: 29057214 PMCID: PMC5648057 DOI: 10.3390/jdb5030008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubules are dynamic cytoskeletal polymers that mediate numerous, essential functions such as axon and dendrite growth and neuron migration throughout brain development. In recent years, sequencing has revealed dominant mutations that disrupt the tubulin protein building blocks of microtubules. These tubulin mutations lead to a spectrum of devastating brain malformations, complex neurological and physical phenotypes, and even fatality. The most common tubulin gene mutated is the α-tubulin gene TUBA1A, which is the most prevalent α-tubulin gene expressed in post-mitotic neurons. The normal role of TUBA1A during neuronal maturation, and how mutations alter its function to produce the phenotypes observed in patients, remains unclear. This review synthesizes current knowledge of TUBA1A function and expression during brain development, and the brain malformations caused by mutations in TUBA1A.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, MS8108, 12801 E 17th Ave, Aurora, CO 80045, USA;
| | - Georgia Buscaglia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (G.B.); (E.A.B.)
| | - Emily A. Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (G.B.); (E.A.B.)
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, MS8108, 12801 E 17th Ave, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-6198; Fax: +1-303-724-3420
| |
Collapse
|
11
|
Beach RR, Ricci-Tam C, Brennan CM, Moomau CA, Hsu PH, Hua B, Silberman RE, Springer M, Amon A. Aneuploidy Causes Non-genetic Individuality. Cell 2017; 169:229-242.e21. [PMID: 28388408 DOI: 10.1016/j.cell.2017.03.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 12/23/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Phenotypic variability is a hallmark of diseases involving chromosome gains and losses, such as Down syndrome and cancer. Allelic variances have been thought to be the sole cause of this heterogeneity. Here, we systematically examine the consequences of gaining and losing single or multiple chromosomes to show that the aneuploid state causes non-genetic phenotypic variability. Yeast cell populations harboring the same defined aneuploidy exhibit heterogeneity in cell-cycle progression and response to environmental perturbations. Variability increases with degree of aneuploidy and is partly due to gene copy number imbalances, suggesting that subtle changes in gene expression impact the robustness of biological networks and cause alternate behaviors when they occur across many genes. As inbred trisomic mice also exhibit variable phenotypes, we further propose that non-genetic individuality is a universal characteristic of the aneuploid state that may contribute to variability in presentation and treatment responses of diseases caused by aneuploidy.
Collapse
Affiliation(s)
- Rebecca R Beach
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chiara Ricci-Tam
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Brennan
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christine A Moomau
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pei-Hsin Hsu
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bo Hua
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca E Silberman
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Mooney P, Sulerud T, Pelletier J, Dilsaver M, Tomschik M, Geisler C, Gatlin JC. Tau-based fluorescent protein fusions to visualize microtubules. Cytoskeleton (Hoboken) 2017; 74:221-232. [PMID: 28407416 PMCID: PMC5592782 DOI: 10.1002/cm.21368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
The ability to visualize cytoskeletal proteins and their dynamics in living cells has been critically important in advancing our understanding of numerous cellular processes, including actin- and microtubule (MT)-dependent phenomena such as cell motility, cell division, and mitosis. Here, we describe a novel set of fluorescent protein (FP) fusions designed specifically to visualize MTs in living systems using fluorescence microscopy. Each fusion contains a FP module linked in frame to a modified phospho-deficient version of the MT-binding domain of Tau (mTMBD). We found that expressed and purified constructs containing a single mTMBD decorated Xenopus egg extract spindles more homogenously than similar constructs containing the MT-binding domain of Ensconsin, suggesting that the binding affinity of mTMBD is minimally affected by localized signaling gradients generated during mitosis. Furthermore, MT dynamics were not grossly perturbed by the presence of Tau-based FP fusions. Interestingly, the addition of a second mTMBD to the opposite terminus of our construct caused dramatic changes to the spatial localization of probes within spindles. These results support the use of Tau-based FP fusions as minimally perturbing tools to accurately visualize MTs in living systems.
Collapse
Affiliation(s)
- Paul Mooney
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| | - Taylor Sulerud
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| | - James Pelletier
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA,
02115, USA
| | - Matthew Dilsaver
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
| | - Miroslav Tomschik
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
| | | | - Jesse C. Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| |
Collapse
|
13
|
Nötzold L, Frank L, Gandhi M, Polycarpou-Schwarz M, Groß M, Gunkel M, Beil N, Erfle H, Harder N, Rohr K, Trendel J, Krijgsveld J, Longerich T, Schirmacher P, Boutros M, Erhardt S, Diederichs S. The long non-coding RNA LINC00152 is essential for cell cycle progression through mitosis in HeLa cells. Sci Rep 2017; 7:2265. [PMID: 28536419 PMCID: PMC5442156 DOI: 10.1038/s41598-017-02357-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, long non-coding RNA (lncRNA) research has identified essential roles of these transcripts in virtually all physiological cellular processes including tumorigenesis, but their functions and molecular mechanisms are poorly understood. In this study, we performed a high-throughput siRNA screen targeting 638 lncRNAs deregulated in cancer entities to analyse their impact on cell division by using time-lapse microscopy. We identified 26 lncRNAs affecting cell morphology and cell cycle including LINC00152. This transcript was ubiquitously expressed in many human cell lines and its RNA levels were significantly upregulated in lung, liver and breast cancer tissues. A comprehensive sequence analysis of LINC00152 revealed a highly similar paralog annotated as MIR4435-2HG and several splice variants of both transcripts. The shortest and most abundant isoform preferentially localized to the cytoplasm. Cells depleted of LINC00152 arrested in prometaphase of mitosis and showed reduced cell viability. In RNA affinity purification (RAP) studies, LINC00152 interacted with a network of proteins that were associated with M phase of the cell cycle. In summary, we provide new insights into the properties and biological function of LINC00152 suggesting that this transcript is crucial for cell cycle progression through mitosis and thus, could act as a non-coding oncogene.
Collapse
Affiliation(s)
- Linda Nötzold
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Excellence Cluster, Heidelberg University, 69120, Heidelberg, Germany.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, 69129, Heidelberg, Germany
| | - Lukas Frank
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Minakshi Gandhi
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Maria Polycarpou-Schwarz
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Matthias Groß
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Manuel Gunkel
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant Center, Heidelberg University, 69120, Heidelberg, Germany
| | - Nina Beil
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant Center, Heidelberg University, 69120, Heidelberg, Germany
| | - Holger Erfle
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant Center, Heidelberg University, 69120, Heidelberg, Germany
| | - Nathalie Harder
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, Heidelberg University, BioQuant, IPMB, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Definiens AG, 80636, Munich, Germany
| | - Karl Rohr
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, Heidelberg University, BioQuant, IPMB, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jakob Trendel
- German Cancer Research Center (DKFZ), Excellence Cluster CellNetworks, Heidelberg University, 69120, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117, Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Excellence Cluster CellNetworks, Heidelberg University, 69120, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology University Hospital RWTH Aachen, 52074, Aachen, Germany.,Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, 69120, Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Excellence Cluster, Heidelberg University, 69120, Heidelberg, Germany.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, 69129, Heidelberg, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, 69129, Heidelberg, Germany. .,Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany. .,Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, 79106, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, 79085, Freiburg, Germany. .,German Cancer Consortium (DKTK), 79104, Freiburg, Germany.
| |
Collapse
|
14
|
Harper JW, Bennett EJ. Proteome complexity and the forces that drive proteome imbalance. Nature 2016; 537:328-38. [PMID: 27629639 DOI: 10.1038/nature19947] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is a complex microcosm of structural and regulatory networks that requires continuous surveillance and modification to meet the dynamic needs of the cell. It is therefore crucial that the protein flux of the cell remains in balance to ensure proper cell function. Genetic alterations that range from chromosome imbalance to oncogene activation can affect the speed, fidelity and capacity of protein biogenesis and degradation systems, which often results in proteome imbalance. An improved understanding of the causes and consequences of proteome imbalance is helping to reveal how these systems can be targeted to treat diseases such as cancer.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
15
|
Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality. Mol Cell Biol 2016; 36:1412-24. [PMID: 26951197 DOI: 10.1128/mcb.01064-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/26/2016] [Indexed: 12/15/2022] Open
Abstract
Hsp90 is a molecular chaperone that aids in the folding of its metastable client proteins. Past studies have shown that it can exert a strong impact on some cellular pathways by controlling key regulators. However, it is unknown whether several components of a single pathway are collectively regulated by Hsp90. Here, we observe that Hsp90 influences the protein abundance of multiple Gal proteins and the efficiency of galactose utilization even after the galactose utilization pathway (GAL pathway) is fully induced. The effect of Hsp90 on Gal proteins is not at the transcriptional level. Moreover, Gal1 is found to physically interact with Hsp90, and its stability is reduced in low-Hsp90 cells. When Hsp90 is compromised, several Gal proteins form protein aggregates that colocalize with the disaggregase Hsp104. These results suggest that Gal1 and other Gal proteins are probably the clients of Hsp90. An unbalanced GAL pathway has been known to cause fatal growth arrest due to accumulation of toxic galactose metabolic intermediates. It is likely that Hsp90 chaperones multiple Gal proteins to maintain proteostasis and prevent cell lethality especially in a fluctuating environment.
Collapse
|
16
|
Gartz Hanson M, Aiken J, Sietsema DV, Sept D, Bates EA, Niswander L, Moore JK. Novel α-tubulin mutation disrupts neural development and tubulin proteostasis. Dev Biol 2015; 409:406-19. [PMID: 26658218 DOI: 10.1016/j.ydbio.2015.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/10/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Mutations in the microtubule cytoskeleton are linked to cognitive and locomotor defects during development, and neurodegeneration in adults. How these mutations impact microtubules, and how this alters function at the level of neurons is an important area of investigation. Using a forward genetic screen in mice, we identified a missense mutation in Tuba1a α-tubulin that disrupts cortical and motor neuron development. Homozygous mutant mice exhibit cortical dysgenesis reminiscent of human tubulinopathies. Motor neurons fail to innervate target muscles in the limbs and show synapse defects at proximal targets. To directly examine effects on tubulin function, we created analogous mutations in the α-tubulin isotypes in budding yeast. These mutations sensitize yeast cells to microtubule stresses including depolymerizing drugs and low temperatures. Furthermore, we find that mutant α-tubulin is depleted from the cell lysate and from microtubules, thereby altering ratios of α-tubulin isotypes. Tubulin-binding cofactors suppress the effects of the mutation, indicating an important role for these cofactors in regulating the quality of the α-tubulin pool. Together, our results give new insights into the functions of Tuba1a, mechanisms for regulating tubulin proteostasis, and how compromising these may lead to neural defects.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel V Sietsema
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Emily A Bates
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Lee Niswander
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
17
|
Abstract
Dividing cells that experience chromosome mis-segregation generate aneuploid daughter cells, which contain an incorrect number of chromosomes. Although aneuploidy interferes with the proliferation of untransformed cells, it is also, paradoxically, a hallmark of cancer, a disease defined by increased proliferative potential. These contradictory effects are also observed in mouse models of chromosome instability (CIN). CIN can inhibit and promote tumorigenesis. Recent work has provided insights into the cellular consequences of CIN and aneuploidy. Chromosome mis-segregation per se can alter the genome in many more ways than just causing the gain or loss of chromosomes. The short- and long-term effects of aneuploidy are caused by gene-specific effects and a stereotypic aneuploidy stress response. Importantly, these recent findings provide insights into the role of aneuploidy in tumorigenesis.
Collapse
|
18
|
Natesuntorn W, Iwami K, Matsubara Y, Sasano Y, Sugiyama M, Kaneko Y, Harashima S. Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae. Sci Rep 2015. [PMID: 26224198 PMCID: PMC4519793 DOI: 10.1038/srep12510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Segmental aneuploidy can play an important role in environmental adaptation. However, study of segmental aneuploids is severely hampered by the difficulty of creating them in a designed fashion. Here, we describe a PCR-mediated chromosome duplication (PCDup) technology that enables the generation of segmental aneuploidy at any desired chromosomal region in Saccharomyces cerevisiae. We constructed multiple strains harboring 100 kb to 200 kb segmental duplications covering the whole of the S. cerevisiae genome. Interestingly, some segmental aneuploidies confer stress tolerance, such as to high temperature, ethanol and strong acids, while others induce cell lethality and stress sensitivity, presumably as result of the simultaneous increases in dosages of multiple genes. We suggest that our PCDup technology will accelerate studies into the phenotypic changes resulting from alteration of gene dosage balance of multiple genes and will provide new insights into the adaptive molecular mechanisms in the genome in segmental aneuploidy-derived human diseases.
Collapse
Affiliation(s)
- Waranya Natesuntorn
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kotaro Iwami
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Matsubara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu Sasano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minetaka Sugiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Kaneko
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Harashima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Bonney ME, Moriya H, Amon A. Aneuploid proliferation defects in yeast are not driven by copy number changes of a few dosage-sensitive genes. Genes Dev 2015; 29:898-903. [PMID: 25934502 PMCID: PMC4421978 DOI: 10.1101/gad.261743.115] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A central question is whether aneuploid phenotypes are the consequence of copy number changes of a few especially harmful genes that may be present on the extra chromosome or are caused by copy number alterations of many genes that confer no observable phenotype when varied individually. Bonney et al. used the proliferation defect exhibited by budding yeast strains carrying single additional chromosomes (disomes) to show that subtle changes in gene dosage across a chromosome can have significant phenotypic consequences. Aneuploidy—the gain or loss of one or more whole chromosome—typically has an adverse impact on organismal fitness, manifest in conditions such as Down syndrome. A central question is whether aneuploid phenotypes are the consequence of copy number changes of a few especially harmful genes that may be present on the extra chromosome or are caused by copy number alterations of many genes that confer no observable phenotype when varied individually. We used the proliferation defect exhibited by budding yeast strains carrying single additional chromosomes (disomes) to distinguish between the “few critical genes” hypothesis and the “mass action of genes” hypothesis. Our results indicate that subtle changes in gene dosage across a chromosome can have significant phenotypic consequences. We conclude that phenotypic thresholds can be crossed by mass action of copy number changes that, on their own, are benign.
Collapse
Affiliation(s)
- Megan E Bonney
- Koch Institute for Integrative Cancer Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Hisao Moriya
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan
| | - Angelika Amon
- Koch Institute for Integrative Cancer Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA;
| |
Collapse
|
20
|
Abstract
In many animals, males have one X and females have two X chromosomes. The difference in X chromosome dosage between the two sexes is compensated by mechanisms that regulate X chromosome transcription. Recent advances in genomic techniques have provided new insights into the molecular mechanisms of X chromosome dosage compensation. In this review, I summarize our current understanding of dosage imbalance in general, and then review the molecular mechanisms of X chromosome dosage compensation with an emphasis on the parallels and differences between the three well-studied model systems, M. musculus, D. melanogaster and C. elegans.
Collapse
Affiliation(s)
- Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
21
|
Nannas NJ, O'Toole ET, Winey M, Murray AW. Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle. Mol Biol Cell 2014; 25:4034-48. [PMID: 25318669 PMCID: PMC4263447 DOI: 10.1091/mbc.e14-01-0016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Altering the number of kinetochores revealed that chromosomal attachments set the length of the metaphase spindle and the number of microtubules within it. Reducing the number of kinetochores increases length, whereas adding extra kinetochores shortens it, suggesting that kinetochore-generated inward forces help set spindle length in budding yeast. The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to microtubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore–microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.
Collapse
Affiliation(s)
- Natalie J Nannas
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138 FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Mark Winey
- Molecular, Cellular, and Developmental Biology Department, University of Colorado, Boulder, CO 80309
| | - Andrew W Murray
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138 FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
22
|
Nicholson JM, Cimini D. Cancer karyotypes: survival of the fittest. Front Oncol 2013; 3:148. [PMID: 23760367 PMCID: PMC3675379 DOI: 10.3389/fonc.2013.00148] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are typically characterized by complex karyotypes including both structural and numerical changes, with aneuploidy being a ubiquitous feature. It is becoming increasingly evident that aneuploidy per se can cause chromosome mis-segregation, which explains the higher rates of chromosome gain/loss observed in aneuploid cancer cells compared to normal diploid cells, a phenotype termed chromosomal instability (CIN). CIN can be caused by various mechanisms and results in extensive karyotypic heterogeneity within a cancer cell population. However, despite such karyotypic heterogeneity, cancer cells also display predominant karyotypic patterns. In this review we discuss the mechanisms of CIN, with particular emphasis on the role of aneuploidy on CIN. Further, we discuss the potential functional role of karyotypic patterns in cancer.
Collapse
|
23
|
Tang YC, Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell 2013; 152:394-405. [PMID: 23374337 PMCID: PMC3641674 DOI: 10.1016/j.cell.2012.11.043] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/22/2012] [Accepted: 11/01/2012] [Indexed: 11/25/2022]
Abstract
Changes in DNA copy number, whether confined to specific genes or affecting whole chromosomes, have been identified as causes of diseases and developmental abnormalities and as sources of adaptive potential. Here, we discuss the costs and benefits of DNA copy-number alterations. Changes in DNA copy number are largely detrimental. Amplifications or deletions of specific genes can elicit discrete defects. Large-scale changes in DNA copy number can also cause detrimental phenotypes that are due to the cumulative effects of copy-number alterations of many genes simultaneously. On the other hand, studies in microorganisms show that DNA copy-number alterations can be beneficial, increasing survival under selective pressure. As DNA copy-number alterations underlie many human diseases, we will end with a discussion of gene copy-number changes as therapeutic targets.
Collapse
Affiliation(s)
- Yun-Chi Tang
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-561, 500 Main Street, Cambridge, MA 02139, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-561, 500 Main Street, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Abstract
Aneuploidy, or an aberrant karyotype, results in developmental disabilities and has been implicated in tumorigenesis. However, the causes of aneuploidy-induced phenotypes and the consequences of aneuploidy on cell physiology remain poorly understood. We have performed a metaanalysis on gene expression data from aneuploid cells in diverse organisms, including yeast, plants, mice, and humans. We found highly related gene expression patterns that are conserved between species: genes that were involved in the response to stress were consistently upregulated, and genes associated with the cell cycle and cell proliferation were downregulated in aneuploid cells. Within species, different aneuploidies induced similar changes in gene expression, independent of the specific chromosomal aberrations. Taken together, our results demonstrate that aneuploidies of different chromosomes and in different organisms impact similar cellular pathways and cause a stereotypical antiproliferative response that must be overcome before transformation.
Collapse
|
25
|
Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 2012; 13:501-14. [PMID: 22565320 DOI: 10.1038/embor.2012.55] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/03/2012] [Indexed: 02/06/2023] Open
Abstract
Most solid human tumours are aneuploid, that is, they contain an abnormal number of chromosomes. Paradoxically, however, aneuploidy has been reported to induce a stress response that suppresses cellular proliferation in vitro. Here, we review the progress in our understanding of the causes and effects of aneuploidy in cancer and discuss how, in specific contexts, aneuploidy can provide a growth advantage and facilitate cellular transformation. We also explore the emerging possibilities for targeting the cause or consequences of aneuploidy therapeutically.
Collapse
|
26
|
Pir P, Gutteridge A, Wu J, Rash B, Kell DB, Zhang N, Oliver SG. The genetic control of growth rate: a systems biology study in yeast. BMC SYSTEMS BIOLOGY 2012; 6:4. [PMID: 22244311 PMCID: PMC3398284 DOI: 10.1186/1752-0509-6-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/13/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Control of growth rate is mediated by tight regulation mechanisms in all free-living organisms since long-term survival depends on adaptation to diverse environmental conditions. The yeast, Saccharomyces cerevisiae, when growing under nutrient-limited conditions, controls its growth rate via both nutrient-specific and nutrient-independent gene sets. At slow growth rates, at least, it has been found that the expression of the genes that exert significant control over growth rate (high flux control or HFC genes) is not necessarily regulated by growth rate itself. It has not been determined whether the set of HFC genes is the same at all growth rates or whether it is the same in conditions of nutrient limitation or excess. RESULTS HFC genes were identified in competition experiments in which a population of hemizygous diploid yeast deletants were grown at, or close to, the maximum specific growth rate in either nutrient-limiting or nutrient-sufficient conditions. A hemizygous mutant is one in which one of any pair of homologous genes is deleted in a diploid, These HFC genes divided into two classes: a haploinsufficient (HI) set, where the hemizygous mutants grow slower than the wild type, and a haploproficient (HP) set, which comprises hemizygotes that grow faster than the wild type. The HI set was found to be enriched for genes involved in the processes of gene expression, while the HP set was enriched for genes concerned with the cell cycle and genome integrity. CONCLUSION A subset of growth-regulated genes have HFC characteristics when grown in conditions where there are few, or no, external constraints on the rate of growth that cells may attain. This subset is enriched for genes that participate in the processes of gene expression, itself (i.e. transcription and translation). The fact that haploproficiency is exhibited by mutants grown at the previously determined maximum rate implies that the control of growth rate in this simple eukaryote represents a trade-off between the selective advantages of rapid growth and the need to maintain the integrity of the genome.
Collapse
Affiliation(s)
- Pınar Pir
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Sheltzer JM, Amon A. The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet 2011; 27:446-53. [PMID: 21872963 DOI: 10.1016/j.tig.2011.07.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 01/09/2023]
Abstract
Aneuploidy has a paradoxical effect on cell proliferation. In all normal cells analyzed to date, aneuploidy has been found to decrease the rate of cell proliferation. Yet, aneuploidy is also a hallmark of cancer, a disease of enhanced proliferative capacity, and aneuploid cells are frequently recovered following the experimental evolution of microorganisms. Thus, in certain contexts, aneuploidy might also have growth-advantageous properties. New models of aneuploidy and chromosomal instability have shed light on the diverse effects that karyotypic imbalances have on cellular phenotypes, and suggest novel ways of understanding the role of aneuploidy in development and disease.
Collapse
Affiliation(s)
- Jason M Sheltzer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
28
|
PPARgamma Inhibitors as Novel Tubulin-Targeting Agents. PPAR Res 2011; 2008:785405. [PMID: 18509498 PMCID: PMC2396401 DOI: 10.1155/2008/785405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 05/01/2008] [Indexed: 12/11/2022] Open
Abstract
The microtubule-targeting agents (MTAs) are a very successful class of cancer drugs with therapeutic benefits in both hematopoietic and solid tumors. However, resistance to these drugs is a significant problem. Current MTAs bind to microtubules, and/or to their constituent tubulin heterodimers, and affect microtubule polymerization and dynamics. The PPARγ inhibitor T0070907 can reduce tubulin levels in colorectal cancer cell lines and suppress tumor growth in a murine xenograft model. T0070907 does not alter microtubule polymerization in vitro, and does not appear to work by triggering modulation of tubulin RNA levels subsequent to decreased polymerization. This observation suggests the possible development of antimicrotubule drugs that work by a novel mechanism, and implies the presence of cancer therapeutic targets that have not yet been exploited. This review summarizes what is known about PPARγ inhibitors and cancer cell death, with emphasis on the tubulin phenotype and PPAR-dependence, and identifies potential mechanisms of action.
Collapse
|
29
|
Torres EM, Williams BR, Tang YC, Amon A. Thoughts on aneuploidy. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:445-51. [PMID: 21289044 PMCID: PMC3293208 DOI: 10.1101/sqb.2010.75.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aneuploidy refers to karyotypic abnormalities characterized by gain or loss of individual chromosomes. This condition is associated with disease and death in all organisms in which it has been studied. We have characterized the effects of aneuploidy on yeast and primary mouse cells and found it to be detrimental at the cellular level. Furthermore, we find that aneuploid cells exhibit phenotypes consistent with increased energy need and proteotoxic stress. These observations, together with the finding that the additional chromosomes found in aneuploid cells are active, lead us to propose that aneuploidy causes an increased burden on protein synthesis and protein quality-control pathways and so induces an aneuploidy stress response.
Collapse
Affiliation(s)
- E M Torres
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
30
|
Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, Gygi SP, Dunham MJ, Amon A. Identification of aneuploidy-tolerating mutations. Cell 2010; 143:71-83. [PMID: 20850176 DOI: 10.1016/j.cell.2010.08.038] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/14/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Aneuploidy causes a proliferative disadvantage in all normal cells analyzed to date, yet this condition is associated with a disease characterized by unabated proliferative potential, cancer. The mechanisms that allow cancer cells to tolerate the adverse effects of aneuploidy are not known. To probe this question, we identified aneuploid yeast strains with improved proliferative abilities. Their molecular characterization revealed strain-specific genetic alterations as well as mutations shared between different aneuploid strains. Among the latter, a loss-of-function mutation in the gene encoding the deubiquitinating enzyme Ubp6 improves growth rates in four different aneuploid yeast strains by attenuating the changes in intracellular protein composition caused by aneuploidy. Our results demonstrate the existence of aneuploidy-tolerating mutations that improve the fitness of multiple different aneuploidies and highlight the importance of ubiquitin-proteasomal degradation in suppressing the adverse effects of aneuploidy.
Collapse
Affiliation(s)
- Eduardo M Torres
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kao KC, Schwartz K, Sherlock G. A genome-wide analysis reveals no nuclear dobzhansky-muller pairs of determinants of speciation between S. cerevisiae and S. paradoxus, but suggests more complex incompatibilities. PLoS Genet 2010; 6:e1001038. [PMID: 20686707 PMCID: PMC2912382 DOI: 10.1371/journal.pgen.1001038] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 06/23/2010] [Indexed: 12/14/2022] Open
Abstract
The Dobzhansky-Muller (D-M) model of speciation by genic incompatibility is widely accepted as the primary cause of interspecific postzygotic isolation. Since the introduction of this model, there have been theoretical and experimental data supporting the existence of such incompatibilities. However, speciation genes have been largely elusive, with only a handful of candidate genes identified in a few organisms. The Saccharomyces sensu stricto yeasts, which have small genomes and can mate interspecifically to produce sterile hybrids, are thus an ideal model for studying postzygotic isolation. Among them, only a single D-M pair, comprising a mitochondrially targeted product of a nuclear gene and a mitochondrially encoded locus, has been found. Thus far, no D-M pair of nuclear genes has been identified between any sensu stricto yeasts. We report here the first detailed genome-wide analysis of rare meiotic products from an otherwise sterile hybrid and show that no classic D-M pairs of speciation genes exist between the nuclear genomes of the closely related yeasts S. cerevisiae and S. paradoxus. Instead, our analyses suggest that more complex interactions, likely involving multiple loci having weak effects, may be responsible for their post-zygotic separation. The lack of a nuclear encoded classic D-M pair between these two yeasts, yet the existence of multiple loci that may each exert a small effect through complex interactions suggests that initial speciation events might not always be mediated by D-M pairs. An alternative explanation may be that the accumulation of polymorphisms leads to gamete inviability due to the activities of anti-recombination mechanisms and/or incompatibilities between the species' transcriptional and metabolic networks, with no single pair at least initially being responsible for the incompatibility. After such a speciation event, it is possible that one or more D-M pairs might subsequently arise following isolation. Species are defined such that organisms of the same species can produce fertile offspring, whereas organisms of different species are either unable to mate, or when they do, they produce inviable or sterile progeny. A well-known pair of species that can mate yet produce sterile offspring is the horse and donkey, which produce an infertile hybrid, the mule. A long-standing idea for the species barrier is that when certain pairs of genes from the two different species are combined, the genes can no longer function properly, thus causing death or sterility. Identification of these incompatible genes may allow us to determine how organisms form distinct species, and understand the process of speciation itself. We used two closely related yeasts to look for these incompatible genes by isolating rare viable hybrid offspring, and looking for excluded gene combinations. We did not find any pairs of incompatible genes, but instead found that there appear to be more than two genes involved in such incompatibilities. We speculate that the accumulation of large numbers of sequence differences in their DNA may cause defects in how genes are controlled in hybrids, causing these two yeasts to be independent species.
Collapse
Affiliation(s)
- Katy C. Kao
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
Nonhomologous end-joining (NHEJ) inhibition at telomeres ensures that native chromosome ends do not fuse together. But the occurrence and consequences of rare telomere fusions are not well understood. It is notably unclear whether a telomere fusion could be processed to restore telomere ends. Here we address the behavior of individual dicentrics formed by telomere fusion in the yeast Saccharomyces cerevisiae. Our approach was to first stabilize and amplify fusions between two chromosomes by temporarily inactivating one centromere. Next we analyzed dicentric breakage following centromere reactivation. Unexpectedly, dicentrics often break at the telomere fusions during progression through mitosis, a process that restores the parental chromosomes. This unforeseen result suggests a rescue pathway able to process telomere fusions and to back up NHEJ inhibition at telomeres.
Collapse
Affiliation(s)
- Sabrina Pobiega
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télmère et Réparation du Chromosome, Fontenay-aux-roses 92260, France
| | | |
Collapse
|
33
|
Anders KR, Kudrna JR, Keller KE, Kinghorn B, Miller EM, Pauw D, Peck AT, Shellooe CE, Strong IJT. A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome. BMC Genet 2009; 10:36. [PMID: 19594932 PMCID: PMC2725114 DOI: 10.1186/1471-2156-10-36] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 07/13/2009] [Indexed: 11/24/2022] Open
Abstract
Background Most methods for constructing aneuploid yeast strains that have gained a specific chromosome rely on spontaneous failures of cell division fidelity. In Saccharomyces cerevisiae, extra chromosomes can be obtained when errors in meiosis or mitosis lead to nondisjunction, or when nuclear breakdown occurs in heterokaryons. We describe a strategy for constructing N+1 disomes that does not require such spontaneous failures. The method combines two well-characterized genetic tools: a conditional centromere that transiently blocks disjunction of one specific chromosome, and a duplication marker assay that identifies disomes among daughter cells. To test the strategy, we targeted chromosomes III, IV, and VI for duplication. Results The centromere of each chromosome was replaced by a centromere that can be blocked by growth in galactose, and ura3::HIS3, a duplication marker. Transient exposure to galactose induced the appearance of colonies carrying duplicated markers for chromosomes III or IV, but not VI. Microarray-based comparative genomic hybridization (CGH) confirmed that disomic strains carrying extra chromosome III or IV were generated. Chromosome VI contains several genes that are known to be deleterious when overexpressed, including the beta-tubulin gene TUB2. To test whether a tubulin stoichiometry imbalance is necessary for the apparent lethality caused by an extra chromosome VI, we supplied the parent strain with extra copies of the alpha-tubulin gene TUB1, then induced nondisjunction. Galactose-dependent chromosome VI disomes were produced, as revealed by CGH. Some chromosome VI disomes also carried extra, unselected copies of additional chromosomes. Conclusion This method causes efficient nondisjunction of a targeted chromosome and allows resulting disomic cells to be identified and maintained. We used the method to test the role of tubulin imbalance in the apparent lethality of disomic chromosome VI. Our results indicate that a tubulin imbalance is necessary for disomic VI lethality, but it may not be the only dosage-dependent effect.
Collapse
Affiliation(s)
- Kirk R Anders
- Biology Department, Gonzaga University, Spokane, WA 99258, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fedyanina OS, Book AJ, Grishchuk EL. Tubulin heterodimers remain functional for one cell cycle after the inactivation of tubulin-folding cofactor D in fission yeast cells. Yeast 2009; 26:235-47. [PMID: 19330768 PMCID: PMC5705012 DOI: 10.1002/yea.1663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tubulin-folding cofactor D plays a major role in the formation of functional tubulin heterodimers, the subunits of microtubules (MTs) that are essential for cell division. Previous work has suggested that, in Schizosaccharomyces pombe, cofactor D function is required during G(1) or S phases of the cell cycle, and when it fails to function due to the temperature-sensitive mutation alp1-t1, cells are unable to segregate their chromosomes in the subsequent mitosis. Here we report that another mutation in the cofactor D gene, alp1-1315, causes failures in either the first or second mitosis in cells synchronized in G(1) or G(2) phases, respectively. Other results, however, suggest that the kinetics of viability loss in these mutants does not depend on progression through the cell cycle. When cofactor D function is perturbed in cells blocked in G(2), cytoplasmic MTs appear normal for 2-3 h but thereafter they disintegrate quickly, so that only a few short MTs remain. These residual MTs are, however, stably maintained, suggesting that they do not require active cofactor D function. The abrupt disassembly of MT cytoskeleton at restrictive temperature in non-cycling cofactor D mutant cells strongly suggests that the life-span of folded tubulin dimers might be downregulated. Indeed, this period is significantly shorter than the previously determined dissociation time of bovine tubulins in vitro. The death of mutant cells occurs inevitably after 2-3 h at restrictive temperature in the following mitosis, and is explained by the idea that MT structures formed in the absence of cofactor D cannot support normal cell division.
Collapse
|
35
|
Mechulam A, Chernov KG, Mucher E, Hamon L, Curmi PA, Pastré D. Polyamine sharing between tubulin dimers favours microtubule nucleation and elongation via facilitated diffusion. PLoS Comput Biol 2009; 5:e1000255. [PMID: 19119409 PMCID: PMC2599886 DOI: 10.1371/journal.pcbi.1000255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 11/17/2008] [Indexed: 12/18/2022] Open
Abstract
We suggest for the first time that the action of multivalent cations on microtubule dynamics can result from facilitated diffusion of GTP-tubulin to the microtubule ends. Facilitated diffusion can promote microtubule assembly, because, upon encountering a growing nucleus or the microtubule wall, random GTP-tubulin sliding on their surfaces will increase the probability of association to the target sites (nucleation sites or MT ends). This is an original explanation for understanding the apparent discrepancy between the high rate of microtubule elongation and the low rate of tubulin association at the microtubule ends in the viscous cytoplasm. The mechanism of facilitated diffusion requires an attraction force between two tubulins, which can result from the sharing of multivalent counterions. Natural polyamines (putrescine, spermidine, and spermine) are present in all living cells and are potent agents to trigger tubulin self-attraction. By using an analytical model, we analyze the implication of facilitated diffusion mediated by polyamines on nucleation and elongation of microtubules. In vitro experiments using pure tubulin indicate that the promotion of microtubule assembly by polyamines is typical of facilitated diffusion. The results presented here show that polyamines can be of particular importance for the regulation of the microtubule network in vivo and provide the basis for further investigations into the effects of facilitated diffusion on cytoskeleton dynamics.
Collapse
Affiliation(s)
- Alain Mechulam
- Laboratoire Structure-Activité des Biomolécules
Normales et Pathologiques, Université Evry-Val d'Essonne,
Evry, France
- INSERM, U829, Evry, France
| | - Konstantin G. Chernov
- Laboratoire Structure-Activité des Biomolécules
Normales et Pathologiques, Université Evry-Val d'Essonne,
Evry, France
- INSERM, U829, Evry, France
- Institute of Protein Research, Russian Academy of Sciences, Pushchino,
Moscow Region, Russia
| | - Elodie Mucher
- Laboratoire Structure-Activité des Biomolécules
Normales et Pathologiques, Université Evry-Val d'Essonne,
Evry, France
- INSERM, U829, Evry, France
| | - Loic Hamon
- Laboratoire Structure-Activité des Biomolécules
Normales et Pathologiques, Université Evry-Val d'Essonne,
Evry, France
- INSERM, U829, Evry, France
| | - Patrick A. Curmi
- Laboratoire Structure-Activité des Biomolécules
Normales et Pathologiques, Université Evry-Val d'Essonne,
Evry, France
- INSERM, U829, Evry, France
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules
Normales et Pathologiques, Université Evry-Val d'Essonne,
Evry, France
- INSERM, U829, Evry, France
| |
Collapse
|
36
|
Abstract
A change in chromosome number that is not the exact multiple of the haploid karyotype is known as aneuploidy. This condition interferes with growth and development of an organism and is a common characteristic of solid tumors. Here, we review the history of studies on aneuploidy and summarize some of its major characteristics. We will then discuss the molecular basis for the defects caused by aneuploidy and end with speculations as to whether and how aneuploidy, despite its deleterious effects on organismal and cellular fitness, contributes to tumorigenesis.
Collapse
|
37
|
Jackson AP, Vaughan S, Gull K. Evolution of tubulin gene arrays in Trypanosomatid parasites: genomic restructuring in Leishmania. BMC Genomics 2006; 7:261. [PMID: 17044946 PMCID: PMC1621084 DOI: 10.1186/1471-2164-7-261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/18/2006] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND alpha- and beta-tubulin are fundamental components of the eukaryotic cytoskeleton and cell division machinery. While overall tubulin expression is carefully controlled, most eukaryotes express multiple tubulin genes in specific regulatory or developmental contexts. The genomes of the human parasites Trypanosoma brucei and Leishmania major reveal that these unicellular kinetoplastids possess arrays of tandem-duplicated tubulin genes, but with differences in organisation. While L. major possesses monotypic alpha and beta arrays in trans, an array of alternating alpha- and beta tubulin genes occurs in T. brucei. Polycistronic transcription in these organisms makes the chromosomal arrangement of tubulin genes important with respect to gene expression. RESULTS We investigated the genomic architecture of tubulin tandem arrays among these parasites, establishing which character state is derived, and the timing of character transition. Tubulin loci in T. brucei and L. major were compared to examine the relationship between the two character states. Intergenic regions between tubulin genes were sequenced from several trypanosomatids and related, non-parasitic bodonids to identify the ancestral state. Evidence of alternating arrays was found among non-parasitic kinetoplastids and all Trypanosoma spp.; monotypic arrays were confirmed in all Leishmania spp. and close relatives. CONCLUSION Alternating and monotypic tubulin arrays were found to be mutually exclusive through comparison of genome sequences. The presence of alternating gene arrays in non-parasitic kinetoplastids confirmed that separate, monotypic arrays are the derived state and evolved through genomic restructuring in the lineage leading to Leishmania. This fundamental reorganisation accounted for the dissimilar genomic architectures of T. brucei and L. major tubulin repertoires.
Collapse
Affiliation(s)
- Andrew P Jackson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Sue Vaughan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
38
|
Lacefield S, Magendantz M, Solomon F. Consequences of defective tubulin folding on heterodimer levels, mitosis and spindle morphology in Saccharomyces cerevisiae. Genetics 2006; 173:635-46. [PMID: 16582437 PMCID: PMC1526528 DOI: 10.1534/genetics.105.055160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In budding yeast, the essential roles of microtubules include segregating chromosomes and positioning the nucleus during mitosis. Defects in these functions can lead to aneuploidy and cell death. To ensure proper mitotic spindle and cytoplasmic microtubule formation, the cell must maintain appropriate stoichiometries of alpha- and beta-tubulin, the basic subunits of microtubules. The experiments described here investigate the minimal levels of tubulin heterodimers needed for mitotic function. We have found a triple-mutant strain, pac10Delta plp1Delta yap4Delta, which has only 20% of wild-type tubulin heterodimer levels due to synthesis and folding defects. The anaphase spindles in these cells are approximately 64% the length of wild-type spindles. The mutant cells are viable and accurately segregate chromosomes in mitosis, but they do have specific defects in mitosis such as abnormal nuclear positioning. The results establish that cells with 20% of wild-type levels of tubulin heterodimers can perform essential cellular functions with a short spindle, but require higher tubulin heterodimer concentrations to attain normal spindle length and prevent mitotic defects.
Collapse
Affiliation(s)
- Soni Lacefield
- Department of Biology and Center for Cancer Research, M.I.T., Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
39
|
Abstract
FtsZ is an essential cell division protein conserved throughout the bacteria and archaea. In response to an unknown cell cycle signal, FtsZ polymerizes into a ring that establishes the future division site. We conducted a series of experiments examining the link between growth rate, medial FtsZ ring formation, and the intracellular concentration of FtsZ in the gram-positive bacterium Bacillus subtilis. We found that, although the frequency of cells with FtsZ rings varies as much as threefold in a growth rate-dependent manner, the average intracellular concentration of FtsZ remains constant irrespective of doubling time. Additionally, expressing ftsZ solely from a constitutive promoter, thereby eliminating normal transcriptional control, did not alter the growth rate regulation of medial FtsZ ring formation. Finally, our data indicate that overexpressing FtsZ does not dramatically increase the frequency of cells with medial FtsZ rings, suggesting that the mechanisms governing ring formation are refractile to increases in FtsZ concentration. These results support a model in which the timing of FtsZ assembly is governed primarily through cell cycle-dependent changes in FtsZ polymerization kinetics and not simply via oscillations in the intracellular concentration of FtsZ. Importantly, this model can be extended to the gram-negative bacterium Escherichia coli. Our data show that, like those in B. subtilis, average FtsZ levels in E. coli are constant irrespective of doubling time.
Collapse
Affiliation(s)
- Richard B Weart
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
40
|
Burns CG, Ohi R, Mehta S, O'Toole ET, Winey M, Clark TA, Sugnet CW, Ares M, Gould KL. Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:801-15. [PMID: 11784857 PMCID: PMC133559 DOI: 10.1128/mcb.22.3.801-815.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2001] [Accepted: 11/01/2001] [Indexed: 11/20/2022] Open
Abstract
Genetic and biochemical studies of Schizosaccharomyces pombe and Saccharomyces cerevisiae have identified gene products that play essential functions in both pre-mRNA splicing and cell cycle control. Among these are the conserved, Myb-related CDC5 (also known as Cef1p in S. cerevisiae) proteins. The mechanism by which loss of CDC5/Cef1p function causes both splicing and cell cycle defects has been unclear. Here we provide evidence that cell cycle arrest in a new temperature-sensitive CEF1 mutant, cef1-13, is an indirect consequence of defects in pre-mRNA splicing. Although cef1-13 cells harbor global defects in pre-mRNA splicing discovered through intron microarray analysis, inefficient splicing of the alpha-tubulin-encoding TUB1 mRNA was considered as a potential cause of the cef1-13 cell cycle arrest because cef1-13 cells arrest uniformly at G(2)/M with many hallmarks of a defective microtubule cytoskeleton. Consistent with this possibility, cef1-13 cells possess reduced levels of total TUB1 mRNA and alpha-tubulin protein. Removing the intron from TUB1 in cef1-13 cells boosts TUB1 mRNA and alpha-tubulin expression to near wild-type levels and restores microtubule stability in the cef1-13 mutant. As a result, cef1-13 tub1Deltai cells progress through mitosis and their cell cycle arrest phenotype is alleviated. Removing the TUB1 intron from two other splicing mutants that arrest at G(2)/M, prp17Delta and prp22-1 strains, permits nuclear division, but suppression of the cell cycle block is less efficient. Our data raise the possibility that although cell cycle arrest phenotypes in prp mutants can be explained by defects in pre-mRNA splicing, the transcript(s) whose inefficient splicing contributes to cell cycle arrest is likely to be prp mutant dependent.
Collapse
Affiliation(s)
- C Geoffrey Burns
- Howard Hughes Medical Institute, Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Breviario D, Nick P. Plant tubulins: a melting pot for basic questions and promising applications. Transgenic Res 2000; 9:383-93. [PMID: 11206967 DOI: 10.1023/a:1026598710430] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- D Breviario
- Istituto Biosintesi Vegetali CNR, Milano, Italy.
| | | |
Collapse
|
42
|
Paluh JL, Nogales E, Oakley BR, McDonald K, Pidoux AL, Cande WZ. A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol Biol Cell 2000; 11:1225-39. [PMID: 10749926 PMCID: PMC14843 DOI: 10.1091/mbc.11.4.1225] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitotic segregation of chromosomes requires spindle pole functions for microtubule nucleation, minus end organization, and regulation of dynamics. gamma-Tubulin is essential for nucleation, and we now extend its role to these latter processes. We have characterized a mutation in gamma-tubulin that results in cold-sensitive mitotic arrest with an elongated bipolar spindle but impaired anaphase A. At 30 degrees C cytoplasmic microtubule arrays are abnormal and bundle into single larger arrays. Three-dimensional time-lapse video microscopy reveals that microtubule dynamics are altered. Localization of the mutant gamma-tubulin is like the wild-type protein. Prediction of gamma-tubulin structure indicates that non-alpha/beta-tubulin protein-protein interactions could be affected. The kinesin-like protein (klp) Pkl1p localizes to the spindle poles and spindle and is essential for viability of the gamma-tubulin mutant and in multicopy for normal cell morphology at 30 degrees C. Localization and function of Pkl1p in the mutant appear unaltered, consistent with a redundant function for this protein in wild type. Our data indicate a broader role for gamma-tubulin at spindle poles in regulating aspects of microtubule dynamics and organization. We propose that Pkl1p rescues an impaired function of gamma-tubulin that involves non-tubulin protein-protein interactions, presumably with a second motor, MAP, or MTOC component.
Collapse
Affiliation(s)
- J L Paluh
- Department of Molecular Biology, University of California, Berkeley, California 94720-3200, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Feierbach B, Nogales E, Downing KH, Stearns T. Alf1p, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin. J Cell Biol 1999; 144:113-24. [PMID: 9885248 PMCID: PMC2148126 DOI: 10.1083/jcb.144.1.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1998] [Revised: 12/07/1998] [Indexed: 11/25/2022] Open
Abstract
Tubulin is a heterodimer of alpha- and beta-tubulin polypeptides. Assembly of the tubulin heterodimer in vitro requires the CCT chaperonin complex, and a set of five proteins referred to as the tubulin cofactors (Tian, F., Y. Huang, H. Rommelaere, J. Vandekerckhove, C. Ampe, and N.J. Cowan. 1996. Cell. 86:287-296; Tian, G., S.A. Lewis, B. Feierbach, T. Stearns, H. Rommelaere, C. Ampe, and N.J. Cowan. 1997. J. Cell Biol. 138:821-832). We report the characterization of Alf1p, the yeast ortholog of mammalian cofactor B. Alf1p interacts with alpha-tubulin in both two-hybrid and immunoprecipitation assays. Alf1p and cofactor B contain a single CLIP-170 domain, which is found in several microtubule-associated proteins. Mutation of the CLIP-170 domain in Alf1p disrupts the interaction with alpha-tubulin. Mutations in alpha-tubulin that disrupt the interaction with Alf1p map to a domain on the cytoplasmic face of alpha-tubulin; this domain is distinct from the region of interaction between alpha-tubulin and beta-tubulin. Alf1p-green fluorescent protein (GFP) is able to associate with microtubules in vivo, and this localization is abolished either by mutation of the CLIP-170 domain in Alf1p, or by mutation of the Alf1p-binding domain in alpha-tubulin. Analysis of double mutants constructed between null alleles of ALF1 and PAC2, which encodes the other yeast alpha-tubulin cofactor, suggests that Alf1p and Pac2p act in the same pathway leading to functional alpha-tubulin. The phenotype of overexpression of ALF1 suggests that Alf1p can act to sequester alpha-tubulin from interaction with beta-tubulin, raising the possibility that it plays a regulatory role in the formation of the tubulin heterodimer.
Collapse
Affiliation(s)
- B Feierbach
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|
44
|
Vega LR, Fleming J, Solomon F. An alpha-tubulin mutant destabilizes the heterodimer: phenotypic consequences and interactions with tubulin-binding proteins. Mol Biol Cell 1998; 9:2349-60. [PMID: 9725898 PMCID: PMC25501 DOI: 10.1091/mbc.9.9.2349] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many effectors of microtubule assembly in vitro enhance the polymerization of subunits. However, several Saccharomyces cerevisiae genes that affect cellular microtubule-dependent processes appear to act at other steps in assembly and to affect polymerization only indirectly. Here we use a mutant alpha-tubulin to probe cellular regulation of microtubule assembly. tub1-724 mutant cells arrest at low temperature with no assembled microtubules. The results of several assays reported here demonstrate that the heterodimer formed between Tub1-724p and beta-tubulin is less stable than wild-type heterodimer. The unstable heterodimer explains several conditional phenotypes conferred by the mutation. These include the lethality of tub1-724 haploid cells when the beta-tubulin-binding protein Rbl2p is either overexpressed or absent. It also explains why the TUB1/tub1-724 heterozygotes are cold sensitive for growth and why overexpression of Rbl2p rescues that conditional lethality. Both haploid and heterozygous tub1-724 cells are inviable when another microtubule effector, PAC2, is overexpressed. These effects are explained by the ability of Pac2p to bind alpha-tubulin, a complex we demonstrate directly. The results suggest that tubulin-binding proteins can participate in equilibria between the heterodimer and its components.
Collapse
Affiliation(s)
- L R Vega
- Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
45
|
Geissler S, Siegers K, Schiebel E. A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 1998; 17:952-66. [PMID: 9463374 PMCID: PMC1170445 DOI: 10.1093/emboj/17.4.952] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We describe the identification of GIM1/YKE2, GIM2/PAC10, GIM3, GIM4 and GIM5 in a screen for mutants that are synthetically lethal with tub4-1, encoding a mutated yeast gamma-tubulin. The cytoplasmic Gim proteins encoded by these GIM genes are present in common complexes as judged by co-immunoprecipitation and gel filtration experiments. The disruption of any of these genes results in similar phenotypes: the gim null mutants are synthetically lethal with tub4-1 and super-sensitive towards the microtubule-depolymerizing drug benomyl. All except Deltagim4 are cold-sensitive and their microtubules disassemble at 14 degrees C. The Gim proteins have one function related to alpha-tubulin and another to Tub4p, supported by the finding that the benomyl super-sensitivity is caused by a reduced level of alpha-tubulin while the synthetic lethality with tub4-1 is not. In addition, GIM1/YKE2 genetically interacts with two distinct classes of genes, one of which is involved in tubulin folding and the other in microtubule nucleation. We show that the Gim proteins are important for Tub4p function and bind to overproduced Tub4p. The mammalian homologues of GIM1/YKE2 and GIM2/PAC10 rescue the synthetically lethal phenotype with tub4-1 as well as the cold-sensitivity and benomyl super-sensitivity of the yeast deletion mutants. We suggest that the Gim proteins form a protein complex that promotes formation of functional alpha- and gamma-tubulin.
Collapse
Affiliation(s)
- S Geissler
- Max-Planck Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
46
|
Carminati JL, Stearns T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Biophys Biochem Cytol 1997; 138:629-41. [PMID: 9245791 PMCID: PMC2141630 DOI: 10.1083/jcb.138.3.629] [Citation(s) in RCA: 379] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)-tubulin fusion protein to observe microtubules in living yeast cells. GFP-tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not interfere with normal microtubule function. Microtubules in yeast cells exhibit dynamic instability, although they grow and shrink more slowly than microtubules in animal cells. The dynamic properties of yeast microtubules are modulated during the cell cycle. The behavior of cytoplasmic microtubules revealed distinct interactions with the cell cortex that result in associated spindle movement and orientation. Dynein-mutant cells had defects in these cortical interactions, resulting in misoriented spindles. In addition, microtubule dynamics were altered in the absence of dynein. These results indicate that microtubules and dynein interact to produce dynamic cortical interactions, and that these interactions result in the force driving spindle orientation.
Collapse
Affiliation(s)
- J L Carminati
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | |
Collapse
|
47
|
Knop M, Pereira G, Geissler S, Grein K, Schiebel E. The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. EMBO J 1997; 16:1550-64. [PMID: 9130700 PMCID: PMC1169759 DOI: 10.1093/emboj/16.7.1550] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previously, we have shown that the gamma-tubulin Tub4p and the spindle pole body component Spc98p are involved in microtubule organization by the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC97 encoding an essential SPB component that is in association with the SPB substructures that organize the cytoplasmic and nuclear microtubules. Evidence is provided for a physical and functional interaction between Tub4p, Spc98p and Spc97p: first, temperature-sensitive spc97(ts) mutants are suppressed by high gene dosage of SPC98 or TUB4. Second, Spc97p interacts with Spc98p and Tub4p in the two-hybrid system. Finally, immunoprecipitation and fractionation studies revealed complexes containing Tub4p, Spc98p and Spc97p. Further support for a direct interaction of Tub4p, Spc98p and Spc97p comes from the toxicity of strong SPC97 overexpression which is suppressed by co-overexpression of TUB4 or SPC98. Analysis of temperature-sensitive spc97(ts) alleles revealed multiple spindle defects. While spc97-14 cells are either impaired in SPB separation or mitotic spindle formation, spc97-20 cells show an additional defect in SPB duplication. We discuss a model in which the Tub4p-Spc98p-Spc97p complex is part of the microtubule attachment site at the SPB.
Collapse
Affiliation(s)
- M Knop
- Max-Planck Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
48
|
Gonzalez-Garay ML, Cabral F. alpha-Tubulin limits its own synthesis: evidence for a mechanism involving translational repression. J Cell Biol 1996; 135:1525-34. [PMID: 8978820 PMCID: PMC2133965 DOI: 10.1083/jcb.135.6.1525] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A Chinese hamster alpha-tubulin cDNA was modified to encode an 11-amino acid carboxyl-terminal extension containing the immunodominant epitope from influenza hemagglutinin antigen (to create HA alpha 1-tubulin) and was cloned into a vector for expression in mammalian cells. 12 stable CHO cell lines expressing this HA alpha 1-tubulin were isolated and characterized. HA alpha 1-tubulin incorporated into all classes of microtubules, assembled to the same extent as the endogenous tubulin, and did not perturb the growth of the cells in which it was expressed. However, overexpression of HA alpha 1-tubulin strongly repressed the synthesis of endogenous alpha-tubulin while having little or no effect on the synthesis of beta-tubulin. Treatment of transfected cells with sodium butyrate to induce even greater expression of HA alpha 1-tubulin led to a further decrease in synthesis of endogenous alpha-tubulin that was fully reversible upon removal of the inducer. Decreased synthesis of alpha-tubulin in transfected cells did not result from decreased levels of alpha-tubulin mRNA, as demonstrated by ribonuclease protection assays. On the other hand, colchicine, a drug previously shown to destabilize the tubulin message, caused a clear reduction in both protein synthesis and mRNA levels for transfected HA alpha 1-tubulin and endogenous alpha-tubulin, thus indicating that the decreased alpha-tubulin synthesis observed as a result of HA alpha 1-tubulin overexpression is distinct from the previously described autoregulation of tubulin. The results are consistent with a mechanism in which free alpha-tubulin inhibits the translation of its own message as a way of ensuring stoichiometric synthesis of alpha- and beta-tubulin.
Collapse
Affiliation(s)
- M L Gonzalez-Garay
- Department of Pharmacology, University of Texas Medical School, Houston 77225, USA
| | | |
Collapse
|
49
|
Machin NA, Lee JM, Barnes G. Microtubule stability in budding yeast: characterization and dosage suppression of a benomyl-dependent tubulin mutant. Mol Biol Cell 1995; 6:1241-59. [PMID: 8534919 PMCID: PMC301280 DOI: 10.1091/mbc.6.9.1241] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To better understand the dynamic regulation of microtubule structures in yeast, we studied a conditional-lethal beta-tubulin mutation tub2-150. This mutation is unique among the hundreds of tubulin mutations isolated in Saccharomyces cerevisiae in that it appears to cause an increase in the stability of microtubules. We report here that this allele is a mutation of threonine 238 to alanine, and that tub2-150 prevents the spindle from elongating during anaphase, suggesting a nuclear microtubule defect. To identify regulators of microtubule stability and/or anaphase, yeast genes were selected that, when overexpressed, could suppress the tub2-150 temperature-sensitive phenotype. One of these genes, JSN1, encodes a protein of 125 kDa that has limited similarity to a number of proteins of unknown function. Overexpression of the JSN1 gene in a TUB2 strain causes that strain to become more sensitive to benomyl, a microtubule-destabilizing drug. Of a representative group of microtubule mutants, only one other mutation, tub2-404, could be suppressed by JSN1 overexpression, showing that JSN1 is an allele-specific suppressor. As tub2-404 mutants are also defective for spindle elongation, this provides additional support for a role for JSN1 during anaphase.
Collapse
Affiliation(s)
- N A Machin
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
50
|
Abstract
gamma-Tubulin is a phylogenetically conserved component of microtubule-organizing centers that is essential for viability and microtubule function. To examine the functional conservation of gamma-tubulin, we have tested the ability of human gamma-tubulin to function in the fission yeast Schizosaccharomyces pombe. We have found that expression of a human gamma-tubulin cDNA restores viability and a near-normal growth rate to cells of S. pombe lacking endogenous gamma-tubulin. Immunofluorescence microscopy showed that these cells contained normal mitotic spindles and interphase microtubule arrays, and that human gamma-tubulin, like S. pombe gamma-tubulin, localized to spindle pole bodies, the fungal microtubule-organizing centers. These results demonstrate that human gamma-tubulin functions in fission yeast, and they suggest that in spite of the great morphological differences between the microtubule-organizing centers of humans and fission yeasts, gamma-tubulin is likely to perform the same tasks in both. They suggest, moreover, that the proteins that interact with gamma-tubulin, including, most obviously, microtubule-organizing center proteins, must also be conserved. We have also found that a fivefold overexpression of S. pombe gamma-tubulin causes no reduction in growth rates or alteration of microtubule organization. We hypothesize that the excess gamma-tubulin is maintained in the cytoplasm in a form incapable of nucleating microtubule assembly. Finally, we have found that expression of human gamma-tubulin or overexpression of S. pombe gamma-tubulin causes no significant alteration of resistance to the antimicrotubule agents benomyl, thiabendazole and nocodazole.
Collapse
Affiliation(s)
- T Horio
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | |
Collapse
|