1
|
Choudhury SR, Singh AK, McLeod T, Blanchette M, Jang B, Badenhorst P, Kanhere A, Brogna S. Exon junction complex proteins bind nascent transcripts independently of pre-mRNA splicing in Drosophila melanogaster. eLife 2016; 5:e19881. [PMID: 27879206 PMCID: PMC5158136 DOI: 10.7554/elife.19881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Although it is currently understood that the exon junction complex (EJC) is recruited on spliced mRNA by a specific interaction between its central protein, eIF4AIII, and splicing factor CWC22, we found that eIF4AIII and the other EJC core proteins Y14 and MAGO bind the nascent transcripts of not only intron-containing but also intronless genes on Drosophila polytene chromosomes. Additionally, Y14 ChIP-seq demonstrates that association with transcribed genes is also splicing-independent in Drosophila S2 cells. The association of the EJC proteins with nascent transcripts does not require CWC22 and that of Y14 and MAGO is independent of eIF4AIII. We also show that eIF4AIII associates with both polysomal and monosomal RNA in S2 cell extracts, whereas Y14 and MAGO fractionate separately. Cumulatively, our data indicate a global role of eIF4AIII in gene expression, which would be independent of Y14 and MAGO, splicing, and of the EJC, as currently understood.
Collapse
Affiliation(s)
| | - Anand K Singh
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Tina McLeod
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas city, United States
| | - Boyun Jang
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul Badenhorst
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Batsché E, Ameyar-Zazoua M. The influence of Argonaute proteins on alternative RNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:141-56. [DOI: 10.1002/wrna.1264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Eric Batsché
- Institut Pasteur, Dpt Biologie du Développement et Cellules Souches; Unité de Régulation Epigénétique; 75015 Paris France
- URA2578; CNRS
| | - Maya Ameyar-Zazoua
- Institut Pasteur, Dpt Biologie du Développement et Cellules Souches; Unité de Régulation Epigénétique; 75015 Paris France
- URA2578; CNRS
- Laboratoire Epigénétique et Destin Cellulaire, CNRS UMR7216; Université Paris Diderot, Cité Sorbonne Paris; Paris France
| |
Collapse
|
3
|
Pandya-Jones A, Bhatt DM, Lin CH, Tong AJ, Smale ST, Black DL. Splicing kinetics and transcript release from the chromatin compartment limit the rate of Lipid A-induced gene expression. RNA (NEW YORK, N.Y.) 2013; 19:811-27. [PMID: 23616639 PMCID: PMC3683915 DOI: 10.1261/rna.039081.113] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/13/2013] [Indexed: 05/26/2023]
Abstract
The expression of eukaryotic mRNAs is achieved though an intricate series of molecular processes that provide many steps for regulating the production of a final gene product. However, the relationships between individual steps in mRNA biosynthesis and the rates at which they occur are poorly understood. By applying RNA-seq to chromatin-associated and soluble nucleoplasmic fractions of RNA from Lipid A-stimulated macrophages, we examined the timing of exon ligation and transcript release from chromatin relative to the induction of transcription. We find that for a subset of genes in the Lipid A response, the ligation of certain exon pairs is delayed relative to the synthesis of the complete transcript. In contrast, 3' end cleavage and polyadenylation occur rapidly once transcription extends through the cleavage site. Our data indicate that these transcripts with delayed splicing are not released from the chromatin fraction until all the introns have been excised. These unusual kinetics result in a chromatin-associated pool of completely transcribed and 3'-processed transcripts that are not yet fully spliced. We also find that long introns containing repressed exons that will be excluded from the final mRNA are excised particularly slowly relative to other introns in a transcript. These results indicate that the kinetics of splicing and transcript release contribute to the timing of expression for multiple genes of the inflammatory response.
Collapse
Affiliation(s)
- Amy Pandya-Jones
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
| | - Dev M. Bhatt
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
| | - Ann-Jay Tong
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
| | - Stephen T. Smale
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90025, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90025, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90025, USA
| |
Collapse
|
4
|
Darnell JE. Reflections on the history of pre-mRNA processing and highlights of current knowledge: a unified picture. RNA (NEW YORK, N.Y.) 2013; 19:443-60. [PMID: 23440351 PMCID: PMC3677254 DOI: 10.1261/rna.038596.113] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Several strong conclusions emerge concerning pre-mRNA processing from both old and newer experiments. The RNAPII complex is involved with pre-mRNA processing through binding of processing proteins to the CTD (carboxyl terminal domain) of the largest RNAPII subunit. These interactions are necessary for efficient processing, but whether factor binding to the CTD and delivery to splicing sites is obligatory or facilitatory is unsettled. Capping, addition of an m(7)Gppp residue (cap) to the initial transcribed residue of a pre-mRNA, occurs within seconds. Splicing of pre-mRNA by spliceosomes at particular sites is most likely committed during transcription by the binding of initiating processing factors and ∼50% of the time is completed in mammalian cells before completion of the primary transcript. This fact has led to an outpouring in the literature about "cotranscriptional splicing." However splicing requires several minutes for completion and can take longer. The RNAPII complex moves through very long introns and also through regions dense with alternating exons and introns at an average rate of ∼3 kb per min and is, therefore, not likely detained at each splice site for more than a few seconds, if at all. Cleavage of the primary transcript at the 3' end and polyadenylation occurs within 30 sec or less at recognized polyA sites, and the majority of newly polyadenylated pre-mRNA molecules are much larger than the average mRNA. Finally, it seems quite likely that the nascent RNA most often remains associated with the chromosomal locus being transcribed until processing is complete, possibly acquiring factors related to the transport of the new mRNA to the cytoplasm.
Collapse
Affiliation(s)
- James E Darnell
- Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Khodor YL, Menet JS, Tolan M, Rosbash M. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. RNA (NEW YORK, N.Y.) 2012; 18:2174-86. [PMID: 23097425 PMCID: PMC3504670 DOI: 10.1261/rna.034090.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. We recently showed that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, we analyze a recently generated, high-throughput sequencing data set of mouse liver nascent RNA, originally studied for circadian transcriptional regulation. Cotranscriptional splicing is approximately twofold less efficient in mouse liver than in Drosophila, i.e., nascent intron levels relative to exon levels are ∼0.55 in mouse versus 0.25 in the fly. An additional difference between species is that only mouse cotranscriptional splicing is optimal when 5'-exon length is between 50 and 500 bp, and intron length does not correlate with splicing efficiency, consistent with exon definition. A similar analysis of intron and exon length dependence in the fly is more consistent with intron definition. Contrasted with these differences are many similarities between the two systems: Alternatively annotated introns are less efficiently spliced cotranscriptionally than constitutive introns, and introns of single-intron genes are less efficiently spliced than introns from multi-intron genes. The most striking common feature is intron position: Cotranscriptional splicing is much more efficient when introns are far from the 3' ends of their genes. Additionally, absolute gene length correlates positively with cotranscriptional splicing efficiency independently of intron location and position, in flies as well as in mice. The gene length and distance effects indicate that more "nascent time" gives rise to greater cotranscriptional splicing efficiency in both systems.
Collapse
Affiliation(s)
- Yevgenia L. Khodor
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Jerome S. Menet
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael Tolan
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- Corresponding authorE-mail
| |
Collapse
|
6
|
de la Mata M, Muñoz MJ, Alló M, Fededa JP, Schor IE, Kornblihtt AR. RNA Polymerase II Elongation at the Crossroads of Transcription and Alternative Splicing. GENETICS RESEARCH INTERNATIONAL 2011; 2011:309865. [PMID: 22567350 PMCID: PMC3335476 DOI: 10.4061/2011/309865] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/23/2011] [Indexed: 11/20/2022]
Abstract
The elongation phase of transcription lies at the core of several simultaneous and coupled events leading to alternative splicing regulation. Although underestimated in the past, it is at this phase of the transcription cycle where complexes affecting the transcription machinery itself, chromatin structure, posttranscriptional gene regulation and pre-mRNA processing converge to regulate each other or simply to consolidate higher-order complexes and functions. This paper focuses on the multiple processes that take place during transcription elongation which ultimately regulate the outcome of alternative splicing decisions.
Collapse
Affiliation(s)
- Manuel de la Mata
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular, y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
7
|
Uncovering the transcriptional circuitry in skeletal muscle regeneration. Mamm Genome 2011; 22:272-81. [PMID: 21509518 DOI: 10.1007/s00335-011-9322-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/07/2011] [Indexed: 02/04/2023]
Abstract
Skeletal muscle has a remarkable ability to regenerate after repeated and complete destruction of the tissue. The healing phases for an injured muscle undergo an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network is confronted by significant challenges and requires the integration of multiple experimental data types. In this work we present a system approach to describe the transcriptional circuitry during skeletal muscle regeneration using time-course expression data and motif scanning information. Time-lagged correlation analysis was utilized to evaluate the transcription factor (TF) → target associations. Our analysis identified six TFs that potentially play a central role throughout the regeneration process. Four of them have previously been described to be important for muscle regeneration and differentiation. The remaining two TFs are identified as novel regulators that may have a role in the regeneration process. We hope that our work may provide useful clues to help accelerate the recovery process in injured skeletal muscle.
Collapse
|
8
|
Huranová M, Ivani I, Benda A, Poser I, Brody Y, Hof M, Shav-Tal Y, Neugebauer KM, Stanek D. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. ACTA ACUST UNITED AC 2010; 191:75-86. [PMID: 20921136 PMCID: PMC2953428 DOI: 10.1083/jcb.201004030] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GFP-tagged snRNP components reveal the dynamics and rate for spliceosome assembly in vivo. Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15–30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.
Collapse
Affiliation(s)
- Martina Huranová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J 2010; 29:1629-36. [PMID: 20407423 DOI: 10.1038/emboj.2010.71] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/26/2010] [Indexed: 12/11/2022] Open
Abstract
How are short exonic sequences recognized within the vast intronic oceans in which they reside? Despite decades of research, this remains one of the most fundamental, yet enigmatic, questions in the field of pre-mRNA splicing research. For many years, studies aiming to shed light on this process were focused at the RNA level, characterizing the manner by which splicing factors and auxiliary proteins interact with splicing signals, thereby enabling, facilitating and regulating splicing. However, we increasingly understand that splicing is not an isolated process; rather it occurs co-transcriptionally and is presumably also regulated by transcription-related processes. In fact, studies by our group and others over the past year suggest that DNA structure in terms of nucleosome positioning and specific histone modifications, which have a well established role in transcription, may also have a role in splicing. In this review we discuss evidence for the coupling between transcription and splicing, focusing on recent findings suggesting a link between chromatin structure and splicing, and highlighting challenges this emerging field is facing.
Collapse
|
10
|
Abstract
The development of cellular diversity within any organism depends on the timely and correct expression of differing subsets of genes within each tissue type. Many techniques exist which allow a global, average analysis of RNA expression; however, RNA-FISH permits the sensitive detection of specific transcripts within individual cells while preserving the cellular morphology. The technique can provide insight into the spatial and temporal organization of gene transcription as well the relationship of gene expression and mature RNA distribution to nuclear and cellular compartments. It can also reveal the intercellular variation of gene expression within a given tissue. Here, we describe RNA-FISH methodologies that allow the detection of nascent transcripts within the cell nucleus as well as protocols that allow the detection of RNA alongside DNA or proteins. Such techniques allow the placing of gene transcription within a functional context of the whole cell.
Collapse
Affiliation(s)
- Jill M Brown
- MRC Molecular Haematology Unit, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, Headington, Oxford, UK.
| | | |
Collapse
|
11
|
Ramsey SA, Klemm SL, Zak DE, Kennedy KA, Thorsson V, Li B, Gilchrist M, Gold ES, Johnson CD, Litvak V, Navarro G, Roach JC, Rosenberger CM, Rust AG, Yudkovsky N, Aderem A, Shmulevich I. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput Biol 2008; 4:e1000021. [PMID: 18369420 PMCID: PMC2265556 DOI: 10.1371/journal.pcbi.1000021] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 02/04/2008] [Indexed: 01/04/2023] Open
Abstract
Macrophages are versatile immune cells that can detect a variety of pathogen-associated molecular patterns through their Toll-like receptors (TLRs). In response to microbial challenge, the TLR-stimulated macrophage undergoes an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network poses significant challenges and requires the integration of multiple experimental data types. In this work, we inferred a transcriptional network underlying TLR-stimulated murine macrophage activation. Microarray-based expression profiling and transcription factor binding site motif scanning were used to infer a network of associations between transcription factor genes and clusters of co-expressed target genes. The time-lagged correlation was used to analyze temporal expression data in order to identify potential causal influences in the network. A novel statistical test was developed to assess the significance of the time-lagged correlation. Several associations in the resulting inferred network were validated using targeted ChIP-on-chip experiments. The network incorporates known regulators and gives insight into the transcriptional control of macrophage activation. Our analysis identified a novel regulator (TGIF1) that may have a role in macrophage activation. Macrophages play a vital role in host defense against infection by recognizing pathogens through pattern recognition receptors, such as the Toll-like receptors (TLRs), and mounting an immune response. Stimulation of TLRs initiates a complex transcriptional program in which induced transcription factor genes dynamically regulate downstream genes. Microarray-based transcriptional profiling has proved useful for mapping such transcriptional programs in simpler model organisms; however, mammalian systems present difficulties such as post-translational regulation of transcription factors, combinatorial gene regulation, and a paucity of available gene-knockout expression data. Additional evidence sources, such as DNA sequence-based identification of transcription factor binding sites, are needed. In this work, we computationally inferred a transcriptional network for TLR-stimulated murine macrophages. Our approach combined sequence scanning with time-course expression data in a probabilistic framework. Expression data were analyzed using the time-lagged correlation. A novel, unbiased method was developed to assess the significance of the time-lagged correlation. The inferred network of associations between transcription factor genes and co-expressed gene clusters was validated with targeted ChIP-on-chip experiments, and yielded insights into the macrophage activation program, including a potential novel regulator. Our general approach could be used to analyze other complex mammalian systems for which time-course expression data are available.
Collapse
Affiliation(s)
- Stephen A. Ramsey
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (SR); (AA); (IS)
| | - Sandy L. Klemm
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Daniel E. Zak
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Kathleen A. Kennedy
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Vesteinn Thorsson
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Bin Li
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Mark Gilchrist
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Elizabeth S. Gold
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Carrie D. Johnson
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Vladimir Litvak
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Garnet Navarro
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Jared C. Roach
- Institute for Systems Biology, Seattle, Washington, United States of America
| | | | - Alistair G. Rust
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Natalya Yudkovsky
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Alan Aderem
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (SR); (AA); (IS)
| | - Ilya Shmulevich
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (SR); (AA); (IS)
| |
Collapse
|
12
|
Nuclear organization and splicing control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:1-13. [PMID: 18380337 DOI: 10.1007/978-0-387-77374-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although major splicing regulatory mechanisms rely on the presence of cis-acting sequence elements in the precursor messenger RNA (pre-mRNA) to which specific protein and factors bind, splice choices are also influenced by transcription kinetics, promoter-dependent loading of RNA-binding proteins and nucleo-cytoplasmic distribution of splicing regulators. Within the highly crowded eukaryotic nucleus, molecular machines required for gene expression create specialized microenvironments that favor some interactions while repressing others. Genes located far apart in a chromosome or even in different chromosomes come together in the nucleus for coordinated transcription and splicing. Emerging tools to dissect gene expression pathways in living cells promise to provide more detailed insight as to how spatial confinement contributes to splicing control.
Collapse
|
13
|
Lacadie SA, Rosbash M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast. Mol Cell 2005; 19:65-75. [PMID: 15989965 DOI: 10.1016/j.molcel.2005.05.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/05/2005] [Accepted: 05/09/2005] [Indexed: 11/16/2022]
Abstract
To investigate the mechanism of spliceosome assembly in vivo, we performed chromatin immunoprecipitation (ChIP) analysis of U1, U2, and U5 small nuclear ribonucleoprotein particles (snRNPs) to intron-containing yeast (S. cerevisiae) genes. The snRNPs display patterns that indicate a cotranscriptional assembly model: U1 first, then U2, and the U4/U6*U5 tri-snRNP followed by U1 destabilization. cis-splicing mutations also support a role of U2 and/or the tri-snRNP in U1 destabilization. Moreover, they indicate that splicing efficiency has a major impact on cotranscriptional snRNP recruitment and suggest that cotranscriptional recruitment of U2 or the tri-snRNP is required to commit the pre-mRNA to splicing. Branchpoint (BP) mutations had a major effect on the U1 pattern, whereas 5' splice site (5'ss) mutations had a stronger effect on the U2 pattern. A 5'ss-U1 snRNA complementation experiment suggests that pairing between U1 and the 5'ss occurs after U1 recruitment and contributes to a specific U1:substrate conformation required for efficient U2 and tri-snRNP recruitment.
Collapse
Affiliation(s)
- Scott A Lacadie
- Howard Hughes Medical Institute, Biology Department MS008, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
14
|
Custódio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA (NEW YORK, N.Y.) 2004; 10:622-33. [PMID: 15037772 PMCID: PMC1370553 DOI: 10.1261/rna.5258504] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies over the past years indicate that there is extensive coupling between nuclear export of mRNA and pre-mRNA processing. Here, we visualized the distribution of exon junction complex (EJC) proteins and RNA export factors relative to sites of abundant pre-mRNA synthesis in the nucleus. We analyzed both HeLa cells infected with adenovirus and murine erythroleukemia (MEL) cells stably transfected with the human beta-globin gene. Using in situ hybridization and confocal microscopy, we observe accumulation of EJC proteins (REF/Aly, Y14, SRm160, UAP56, RNPS1, and Magoh) and core spliceosome components (U snRNPs) at sites of transcription. This suggests that EJC proteins bind stably to pre-mRNA cotranscriptionally. No concentration of the export factors NXF1/TAP, p15, and Dbp5 was detected on nascent transcripts, arguing that in mammalian cells these proteins bind the mRNA shortly before or after release from the sites of transcription. These results also suggest that binding of EJC proteins to the mRNA is not sufficient to recruit TAP-p15, consistent with recent findings showing that the EJC does not play a crucial role in mRNA export. Contrasting to the results obtained in MEL cells expressing normal human beta-globin transcripts, mutant pre-mRNAs defective in splicing and 3'end processing do not colocalize with SRm160, REF, UAP56, or Sm proteins. This shows that the accumulation of EJC proteins at transcription sites requires efficient processing of the nascent pre-mRNAs, arguing that transcription per se is not sufficient for the stable assembly of the EJC.
Collapse
Affiliation(s)
- Noélia Custódio
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Intense research in recent years has shown that many pre-mRNA processing events are co-transcriptional or at least begin during RNA synthesis by RNA polymerase II (Pol II). But is it important that pre-mRNA processing occurs co-transcriptionally? Whereas Pol II directs 5' capping of mRNA by binding to and recruiting all three capping activities to transcription units, co-transcriptional splicing is not obligatory. In some cases, such as alternative splicing, splicing may occur post-transcriptionally owing to the slower kinetics of splicing unfavorable introns. Despite recent models in which splicing factors are bound directly to the C-terminal domain (CTD) of Pol II, little evidence supports that view. Instead, interactions between snRNPs and transcription elongation factors provide the strongest molecular evidence for a physical link between transcription and splicing. Transcription termination depends on polyadenylation signals, but, like splicing, polyadenylation per se probably begins co-transcriptionally and continues post-transcriptionally. Nascent RNA plays an important role in determining which transcripts are polyadenylated and which alternative terminal exon is used. A recent addition to co-transcriptional RNA processing is a possible RNA surveillance step prior to release of the mRNP from the transcription unit, which appears to coordinate nuclear transport with mRNA processing and may be mediated by components of the nuclear exosome.
Collapse
Affiliation(s)
- Karla M Neugebauer
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
16
|
Howe KJ. RNA polymerase II conducts a symphony of pre-mRNA processing activities. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:308-24. [PMID: 12213660 DOI: 10.1016/s0167-4781(02)00460-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA polymerase II (RNAP II) and its associated factors interact with a diverse collection of nuclear proteins during the course of precursor messenger RNA synthesis. This growing list of known contacts provides compelling evidence for the existence of large multifunctional complexes, a.k.a. transcriptosomes, within which the biosynthesis of mature mRNAs is coordinated. Recent studies have demonstrated that the unique carboxy-terminal domain (CTD) of the largest subunit of RNAP II plays an important role in recruiting many of these activities to the transcriptional machinery. Throughout the transcription cycle the CTD undergoes a variety of covalent and structural modifications which can, in turn, modulate the interactions and functions of processing factors during transcription initiation, elongation and termination. New evidence suggests that the possibility that interaction of some of these processing factors with the polymerase can affect its elongation rate. Besides the CTD, proteins involved in pre-mRNA processing can interact with general transcription factors (GTFs) and transcriptional activators, which associate with polymerase at promoters. This suggests a mechanism for the recruitment of specific processing activities to different transcription units. This harmonic integration of transcriptional and post-transcriptional activities, many of which once were considered to be functionally isolated within the cell, supports a general model for the coordination of gene expression by RNAP II within the nucleus.
Collapse
Affiliation(s)
- Kenneth James Howe
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
|
18
|
Wilkie GS, Zimyanin V, Kirby R, Korey C, Francis-Lang H, Van Vactor D, Davis I. Small bristles, the Drosophila ortholog of NXF-1, is essential for mRNA export throughout development. RNA (NEW YORK, N.Y.) 2001; 7:1781-1792. [PMID: 11780634 PMCID: PMC1370217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We identified a temperature-sensitive allele of small bristles (sbr), the Drosophila ortholog of human TAP/NXF-1 and yeast Mex67, in a screen for mutants defective in mRNA export. We show that sbr is essential for the nuclear export of all mRNAs tested in a wide range of tissues and times in development. High resolution and sensitive in situ hybridization detect the rapid accumulation of individual mRNA species in sbr mutant nuclei in particles that are distinct from nascent transcript foci and resemble wild-type export intermediates. The particles become more numerous and intense with increasing time at the restrictive temperature and are exported very rapidly after shifting back to the permissive temperature. The mRNA export block is not due indirectly to a defect in splicing, nuclear protein import, or aberrant nuclear ultrastructure, suggesting that in sbr mutants, mRNA is competent for export but fails to dock or translocate through NPCs. We conclude that NXF-1 is an essential ubiquitous export factor for all mRNAs throughout development in higher eukaryotes.
Collapse
Affiliation(s)
- G S Wilkie
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Pre-mRNA splicing has to be coordinated with other processes occurring in the nucleus including transcription, mRNA 3' end formation and mRNA export. To analyze the relationship between transcription and splicing, we constructed a network of nested introns. Introns were inserted in the 5' splice site and/or branchpoint of a synthetic yeast intron interrupting a reporter gene. The inserted introns mask the recipient intron from the cellular machinery until they are removed by splicing. Production of functional mRNA from these constructs therefore requires recognition of a spliced RNA as a splicing substrate. We show that recurrent splicing occurs in a sequential and ordered fashion in vivo. Thus, in Saccharomyces cerevisiae, intron recognition and pre-spliceosome assembly is not tightly coupled to transcription.
Collapse
|
20
|
Melcák I, Cermanová S, Jirsová K, Koberna K, Malínský J, Raska I. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol Biol Cell 2000; 11:497-510. [PMID: 10679009 PMCID: PMC14788 DOI: 10.1091/mbc.11.2.497] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the present study, the spatial organization of intron-containing pre-mRNAs of Epstein-Barr virus (EBV) genes relative to location of splicing factors is investigated. The intranuclear position of transcriptionally active EBV genes, as well as of nascent transcripts, is found to be random with respect to the speckled accumulations of splicing factors (SC35 domains) in Namalwa cells, arguing against the concept of the locus-specific organization of mRNA genes with respect to the speckles. Microclusters of splicing factors are, however, frequently superimposed on nascent transcript sites. The transcript environment is a dynamic structure consisting of both nascent and released transcripts, i.e., the track-like transcript environment. Both EBV sequences of the chromosome 1 homologue are usually associated with the track, are transcriptionally active, and exhibit in most cases a polar orientation. In contrast to nascent transcripts (in the form of spots), the association of a post-transcriptional pool of viral pre-mRNA (in the form of tracks) with speckles is not random and is further enhanced in transcriptionally silent cells when splicing factors are sequestered in enlarged accumulations. The transcript environment reflects the intranuclear transport of RNA from the sites of transcription to SC35 domains, as shown by concomitant mapping of DNA, RNA, and splicing factors. No clear vectorial intranuclear trafficking of transcripts from the site of synthesis toward the nuclear envelope for export into the cytoplasm is observed. Using Namalwa and Raji cell lines, a correlation between the level of viral gene transcription and splicing factor accumulation within the viral transcript environment has been observed. This supports a concept that the level of transcription can alter the spatial relationship among intron-containing genes, their transcripts, and speckles attributable to various levels of splicing factors recruited from splicing factor reservoirs. Electron microscopic in situ hybridization studies reveal that the released transcripts are directed toward reservoirs of splicing factors organized in clusters of interchromatin granules. Our results point to the bidirectional intranuclear movement of macromolecular complexes between intron-containing genes and splicing factor reservoirs: the recruitment of splicing factors to transcription sites and movement of released transcripts from DNA loci to reservoirs of splicing factors.
Collapse
MESH Headings
- Biological Transport
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/ultrastructure
- Cell Nucleus/virology
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Directed RNA Polymerases/antagonists & inhibitors
- DNA-Directed RNA Polymerases/metabolism
- Genes, Viral/genetics
- Genome, Viral
- Herpesvirus 4, Human/genetics
- Heterogeneous-Nuclear Ribonucleoproteins
- Humans
- Introns/genetics
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Fluorescence
- Nuclear Proteins/metabolism
- Plasmids/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonucleoproteins/metabolism
- Serine-Arginine Splicing Factors
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Spliceosomes/ultrastructure
- Transcription, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- I Melcák
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Czech Republic
| | | | | | | | | | | |
Collapse
|
21
|
Reugels AM, Kurek R, Lammermann U, Bünemann H. Mega-introns in the dynein gene DhDhc7(Y) on the heterochromatic Y chromosome give rise to the giant threads loops in primary spermatocytes of Drosophila hydei. Genetics 2000; 154:759-69. [PMID: 10655227 PMCID: PMC1460963 DOI: 10.1093/genetics/154.2.759] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The heterochromatic Y chromosomes of several Drosophila species harbor a small number of male fertility genes (fertility factors) with several unusual features. Expression of their megabase-sized loci is restricted to primary spermatocytes and correlates with the unfolding of species-specific lampbrush loop-like structures resulting from huge transcripts mainly derived from clusters of loop-specific Y chromosomal satellites. Otherwise, there is evidence from genetic mapping and biochemical experiments that at least two of these loops, Threads in Drosophila hydei and kl-5 in D. melanogaster, colocalize with the genes for the axonemal dynein beta heavy chain proteins DhDhc7(Y) and Dhc-Yh3, respectively. Here, we make use of particular Threads mutants with megabase-sized deletions for direct mapping of DhDhc7(Y)-specific exons among the large clusters of satellite DNA within the 5.1-Mb Threads transcription unit. PCR experiments with exon-specific primer pairs, in combination with hybridization experiments with exon- and satellite-specific probes on filters with large PFGE-generated DNA fragments, offer a simple solution for the long-lasting paradox between megabase-sized loops and protein-encoding transcription units; the lampbrush loops Threads and the DhDhc7(Y) gene are one and the same transcription unit, and the giant size of the DhDhc7(Y) gene as well as its appearance as a giant lampbrush loop are merely the result of transcription of huge clusters of satellite DNA within some of its 20 introns.
Collapse
Affiliation(s)
- A M Reugels
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
22
|
Sleeman JE, Lamond AI. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 1999; 9:1065-74. [PMID: 10531003 DOI: 10.1016/s0960-9822(99)80475-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Small nuclear ribonucleoproteins (snRNPs), which are essential components of the mRNA splicing machinery, comprise small nuclear RNAs, each complexed with a set of proteins. An early event in the maturation of snRNPs is the binding of the core proteins - the Sm proteins - to snRNAs in the cytoplasm followed by nuclear import. Immunolabelling with antibodies against Sm proteins shows that splicing snRNPs have a complex steady-state localisation within the nucleus, the result of the association of snRNPs with several distinct subnuclear structures. These include speckles, coiled bodies and nucleoli, in addition to a diffuse nucleoplasmic compartment. The reasons for snRNP accumulation in these different structures are unclear. RESULTS When mammalian cells were microinjected with plasmids encoding the Sm proteins B, D1 and E, each tagged with either the green fluorescent protein (GFP) or yellow-shifted GFP (YFP), a pulse of expression of the tagged proteins was observed. In each case, the newly synthesised GFP/YFP-labelled snRNPs accumulated first in coiled bodies and nucleoli, and later in nuclear speckles. Mature snRNPs localised immediately to speckles upon entering the nucleus after cell division. CONCLUSIONS The complex nuclear localisation of splicing snRNPs results, at least in part, from a specific pathway for newly assembled snRNPs. The data demonstrate that the distribution of snRNPs between coiled bodies and speckles is directed and not random.
Collapse
Affiliation(s)
- J E Sleeman
- Department of Biochemistry University of Dundee Wellcome Trust Building, Dow Street, Dundee, DD1 5EH, UK
| | | |
Collapse
|
23
|
Wei X, Somanathan S, Samarabandu J, Berezney R. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 1999; 146:543-58. [PMID: 10444064 PMCID: PMC2150559 DOI: 10.1083/jcb.146.3.543] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 06/25/1999] [Indexed: 11/22/2022] Open
Abstract
Transcription sites are detected by labeling nascent transcripts with BrUTP in permeabilized 3T3 mouse fibroblasts followed by laser scanning confocal microscopy. Inhibition and enzyme digestion studies confirm that the labeled sites are from RNA transcripts and that RNA polymerase I (RP I) and II (RP II) are responsible for nucleolar and extranucleolar transcription, respectively. An average of 2,000 sites are detected per nucleus with over 90% in the extranucleolar compartment where they are arranged in clusters and three-dimensional networklike arrays. The number of transcription sites, their three-dimensional organization and arrangement into functional zones (Wei et al. 1998) is strikingly maintained after extraction for nuclear matrix. Significant levels of total RP II mediated transcription sites (45%) were associated with splicing factor-rich nuclear speckles even though the speckles occupied <10% of the total extranucleolar space. Moreover, the vast majority of nuclear speckles (>90%) had moderate to high levels of associated transcription activity. Transcription sites were found along the periphery as well as inside the speckles themselves. These spatial relations were confirmed in optical sections through individual speckles and after in vivo labeling of nascent transcripts. Our results demonstrate that nuclear speckles and their surrounding regions are major sites of RP II-mediated transcription in the cell nucleus, and support the view that both speckle- and nonspeckle-associated regions of the nucleus contain sites for the coordination of transcription and splicing processes.
Collapse
Affiliation(s)
- Xiangyun Wei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Suryanarayan Somanathan
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Jagath Samarabandu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
24
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999. [PMID: 10357856 DOI: 10.1007/s13146-011-0050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
26
|
Sun X, Alzhanova-Ericsson AT, Visa N, Aissouni Y, Zhao J, Daneholt B. The hrp23 protein in the balbiani ring pre-mRNP particles is released just before or at the binding of the particles to the nuclear pore complex. J Cell Biol 1998; 142:1181-93. [PMID: 9732280 PMCID: PMC2149341 DOI: 10.1083/jcb.142.5.1181] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1998] [Revised: 07/07/1998] [Indexed: 11/27/2022] Open
Abstract
Balbiani ring (BR) pre-mRNP particles reside in the nuclei of salivary glands of the dipteran Chironomus tentans and carry the message for giant-sized salivary proteins. In the present study, we identify and characterize a new protein component in the BR ribonucleoprotein (RNP) particles, designated hrp23. The protein with a molecular mass of 20 kD has a single RNA-binding domain and a glycine-arginine-serine-rich auxiliary domain. As shown by immunoelectron microscopy, the hrp23 protein is added to the BR transcript concomitant with transcription, is still present in the BR particles in the nucleoplasm, but is absent from the BR particles that are bound to the nuclear pore complex or are translocating through the central channel of the complex. Thus, hrp23 is released just before or at the binding of the particles to the nuclear pore complex. It is noted that hrp23 behaves differently from two other BR RNP proteins earlier studied: hrp36 and hrp45. These proteins both reach the nuclear pore complex, and hrp36 even accompanies the RNA into the cytoplasm. It is concluded that each BR RNA-binding protein seems to have a specific flow pattern, probably related to the particular role of the protein in gene expression.
Collapse
Affiliation(s)
- X Sun
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Gama-Carvalho M, Krauss RD, Chiang L, Valcárcel J, Green MR, Carmo-Fonseca M. Targeting of U2AF65 to sites of active splicing in the nucleus. J Biophys Biochem Cytol 1997; 137:975-87. [PMID: 9166400 PMCID: PMC2136214 DOI: 10.1083/jcb.137.5.975] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
U2AF65 is an essential splicing factor that promotes binding of U2 small nuclear (sn)RNP at the pre-mRNA branchpoint. Here we describe a novel monoclonal antibody that reacts specifically with U2AF65. Using this antibody, we show that U2AF65 is diffusely distributed in the nucleoplasm with additional concentration in nuclear speckles, which represent subnuclear compartments enriched in splicing snRNPs and other splicing factors. Furthermore, transient expression assays using epitope-tagged deletion mutants of U2AF65 indicate that targeting of the protein to nuclear speckles is not affected by removing either the RNA binding domain, the RS domain, or the region required for interaction with U2AF35. The association of U2AF65 with speckles persists during mitosis, when transcription and splicing are downregulated. Moreover, U2AF65 is localized to nuclear speckles in early G1 cells that were treated with transcription inhibitors during mitosis, suggesting that the localization of U2AF65 in speckles is independent of the presence of pre-mRNA in the nucleus, which is consistent with the idea that speckles represent storage sites for inactive splicing factors. After adenovirus infection, U2AF65 redistributes from the speckles and is prefferentially detected at sites of viral transcription. By combining adenoviral infection with transient expression of deletion mutants, we show a specific requirement of the RS domain for recruitment of U2AF65 to sites of active splicing in the nucleus. This suggests that interactions involving the RS region of U2AF65 may play an important role in targeting this protein to spliceosomes in vivo.
Collapse
Affiliation(s)
- M Gama-Carvalho
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1699 Lisboa Codex, Portugal
| | | | | | | | | | | |
Collapse
|
28
|
Dirks RW, de Pauw ES, Raap AK. Splicing factors associate with nuclear HCMV-IE transcripts after transcriptional activation of the gene, but dissociate upon transcription inhibition: evidence for a dynamic organization of splicing factors. J Cell Sci 1997; 110 ( Pt 4):515-22. [PMID: 9067603 DOI: 10.1242/jcs.110.4.515] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Before being transported to the cytoplasm, intron-containing pre-mRNAs have to be spliced somewhere in the cell nucleus. Efficient splicing requires an ordered assembly of splicing factors onto the pre-mRNAs. To accomplish this, intron containing genes may be preferentially localized at nuclear sites enriched for splicing factors or alternatively, splicing factors may circulate throughout the nucleus and have the ability to associate with randomly positioned nascent transcripts. Combined detection of HCMV-IE mRNA/DNA and splicing factors in rat 9G cells that can be induced for IE gene expression shows that IE genes are not associated with speckled regions enriched for splicing factors when transcriptionally inactive, but ‘attract’ splicing factors when transcriptionally activated. This process proved reversible after transcription inhibition. IE transcripts appeared to be retained near the transcription site in track-like domains by splicing factors associated with them until splicing has been completed. Double-hybridization experiments revealed that a substantial part of the accumulated transcripts contain a poly(A) tail suggesting that most, if not all, IE transcripts are polyadenylated at the site of transcription. These results indicate that RNA processing may occur independent of the position of the gene in the cell nucleus relative to speckle domains.
Collapse
Affiliation(s)
- R W Dirks
- Department of Cytochemistry and Cytometry, Leiden University, The Netherlands.
| | | | | |
Collapse
|
29
|
Abstract
Recent applications of cell biology and molecular genetics have built an image of nuclear organization in which the molecular machines involved in transcription, RNA processing and replication assemble morphologically distinct nuclear organelles with defined functional properties. These observations indicate a very high level of structural organization for the various metabolic activities occurring within the nucleus. We discuss the possible existence of novel regulatory functions inherent to nuclear architecture itself.
Collapse
Affiliation(s)
- J Strouboulis
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-2710, USA
| | | |
Collapse
|
30
|
|
31
|
Dirks RW, Daniël KC, Raap AK. RNAs radiate from gene to cytoplasm as revealed by fluorescence in situ hybridization. J Cell Sci 1995; 108 ( Pt 7):2565-72. [PMID: 7593297 DOI: 10.1242/jcs.108.7.2565] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes for Epstein-Barr virus, human cytomegalovirus immediate early antigen and luciferase are abundantly transcribed in Namalwa, rat 9G and X1 cells, respectively. The EBV transcripts and HCMV-IE transcripts are extensively spliced, while in the luciferase transcript only a small intron sequence has to be spliced out. EBV transcripts are hardly localized in the cytoplasm while the luciferase and HCMV-IE transcripts are present in the cytoplasm and translated into proteins. We have correlated these characteristics with nuclear RNA distribution patterns as seen by fluorescence in situ hybridization. Transcripts of the HCMV-IE transcription unit were shown to be present in a main nuclear signal in the form of a track or elongated dot and as small nuclear RNA signals that radiate from this site towards the cytoplasm. A similar distribution pattern of small RNA signals was observed for transcripts of the luciferase gene, whereas the main nuclear signal was always observed as a dot and never as a track or elongated dot. In Namalwa cells, EBV transcripts were only present as track-like signals. The results suggest that when the extent for splicing is high, unspliced or partially spliced mRNAs begin to occupy elongated dot or track-like domains in the vicinity of the gene. When the extent of splicing is low, splicing is completed co-transcriptionally, leading to a bright dot-like signal. The presence of small nuclear spots in addition to the main signal correlates with cytoplasmic mRNA expression. The small spots most likely represent, therefore, mRNAs in transport to the cytoplasm.
Collapse
Affiliation(s)
- R W Dirks
- Department of Cytochemistry and Cytometry, Sylvius Laboratories, University of Leiden, The Netherlands
| | | | | |
Collapse
|
32
|
Lakhotia SC, Sharma A. RNA metabolism in situ at the 93D heat shock locus in polytene nuclei of Drosophila melanogaster after various treatments. Chromosome Res 1995; 3:151-61. [PMID: 7540096 DOI: 10.1007/bf00710708] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quantitative in situ hybridization to RNA on polytene chromosome spreads, using the 93D exon-, intron- and repeat-specific 35S-labeled antisense RNA probes, revealed treatment- (heat shock, benzamide, colchicine, heat shock followed by benzamide and heat shock in the presence of colchicine) specific differences in the metabolism (synthesis and/or accumulation at the puff site) of the various hsr-omega transcripts, namely hsr-omega-nuclear (omega-n), omega-pre-cytoplasmic (omega-pre-c) and omega-cytoplasmic (omega-c). While heat shock increased the levels of all the three transcripts at the 93D puff site in a coordinated manner, benzamide led to a significant increase in the levels of hsr-omega-n and pre-c; on the other hand, colchicine caused increased levels of the omega-n and omega-c RNA species at 93D. The results also suggested splicing of hsr-omega-pre-c RNA at the site of synthesis with the spliced-out 'free' intron (hsr-omega-fi) accumulating at the puff site. The rate of splicing and/or turnover of the hsr-omega-fi varied in a treatment-specific manner. Although a combined treatment to salivary glands with heat shock and benzamide or colchicine is known to inhibit puffing and [3H]uridine incorporation at 93D, the two treatments resulted in a treatment-specific increase in the in situ levels of different hsr-omega transcripts at the 93D site, suggesting a reduced turnover of specific transcripts from the site under these conditions. We suggest that the different 93D transcripts have roles in turnover and/or transport of RNA in nucleus as well as some role in cytoplasmic translation.
Collapse
Affiliation(s)
- S C Lakhotia
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
33
|
Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 1995; 9:184-90. [PMID: 7719347 DOI: 10.1038/ng0295-184] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The largest known gene is the human dystrophin gene, which has 79 exons spanning at least 2,300 kilobases (kb). Transcript accumulation was monitored from four regions of the gene following induction of expression in muscle cell cultures. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) results indicate that approximately 12 h are required for transcription of 1,770 kb (at an average elongation rate of 2.4 kb min-1), extrapolating to a transcription time of 16 h for the complete gene. Accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5' end before transcription is complete providing strong evidence for cotranscriptional splicing. The rate of transcript accumulation was reduced at the 3' end of the gene relative to the 5' end, perhaps due to premature termination of transcription complexes.
Collapse
Affiliation(s)
- C N Tennyson
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
34
|
Bridge E, Pettersson U. Nuclear organization of replication and gene expression in adenovirus-infected cells. Curr Top Microbiol Immunol 1995; 199 ( Pt 1):99-117. [PMID: 7555063 DOI: 10.1007/978-3-642-79496-4_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- E Bridge
- Department of Medical Genetics, Uppsala University, Sweden
| | | |
Collapse
|
35
|
|
36
|
Tessier L, Paulus F, Keller M, Vial C, Imbault P. Structure and expression of Euglena gracilis nuclear rbcS genes encoding the small subunits of the ribulose 1,5-bisphoshate carboxylase/oxygenase: A novel splicing process for unusual intervening sequences? J Mol Biol 1995. [DOI: 10.1016/s0022-2836(95)80035-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Zhang G, Taneja KL, Singer RH, Green MR. Localization of pre-mRNA splicing in mammalian nuclei. Nature 1994; 372:809-12. [PMID: 7997273 DOI: 10.1038/372809a0] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In mammalian nuclei, precursor messenger RNA splicing factors are distributed non-uniformly. Antibodies directed against structural polypeptides of small nuclear ribonucleoprotein particles (snRNPs) and some non-snRNP splicing factors have shown that these components are concentrated in about 20-50 nuclear 'speckles'. These and other non-homogeneous distributions have been proposed to indicate nuclear 'compartments' that are distinct from the sites of transcription and in which RNA processing occurs. We have tested this idea using a new approach. Previous structural and biochemical data have shown that splicing can occur in association with transcription. Nascent RNA of specific genes can be detected by in situ hybridization as intense spots of nuclear stain which map to the sites of transcription. Here we identify active pre-mRNA splicing sites by localizing the nascent spliced mRNA of specific genes. We find that splicing occurs at the sites of transcription, which are not coincident with intranuclear speckles. We conclude that the nucleus is not compartmentalized with respect to transcription and pre-mRNA splicing.
Collapse
Affiliation(s)
- G Zhang
- Howard Hughes Medical Institute, University of Massachusetts Medical Center, Worcester 01605
| | | | | | | |
Collapse
|
38
|
Wansink DG, van Driel R, de Jong L. Organization of (pre-)mRNA metabolism in the cell nucleus. Mol Biol Rep 1994; 20:45-55. [PMID: 7715609 DOI: 10.1007/bf00996353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D G Wansink
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
39
|
Abstract
The 40 kb Balbiani ring 1 (BR1) gene is at a given moment transcribed by, on average, 120 RNA polymerases. Here we directly assay the excision of introns both in the nascent and in the released nucleoplasmic BR1 pre-mRNAs, isolated by microdissection. We show that intron 3, located 3 kb from the 5' end of the pre-mRNA, is excised simultaneous with transcription. Within 2.5 min of transcription time, 50% of the pre-mRNA molecules have lost the intron. Intron 4, located 600 bases from the polyadenylation site, is excised cotranscriptionally in 5%-10% of the molecules and after or during release to the nucleoplasm in the remaining molecules. Our results demonstrate that spliceosome assembly is a cotranscriptional process in vivo and that splicing may occur during transcription but also after completed transcription, depending on the position of the intron.
Collapse
Affiliation(s)
- G Baurén
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
40
|
Beyer A, Sikes M, Osheim Y. EM methods for visualization of genetic activity from disrupted nuclei. Methods Cell Biol 1994; 44:613-30. [PMID: 7707972 DOI: 10.1016/s0091-679x(08)60935-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A Beyer
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | |
Collapse
|
41
|
Affiliation(s)
- M Rosbash
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, Massachusetts 02254
| | | |
Collapse
|
42
|
Huet F, Ruiz C, Richards G. Puffs and PCR: the in vivo dynamics of early gene expression during ecdysone responses in Drosophila. Development 1993; 118:613-27. [PMID: 8223281 DOI: 10.1242/dev.118.2.613] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The steroid hormone ecdysone orchestrates insect development by regulating gene networks. In Drosophila the most detailed description of ecdysone action is the sequential activation of early and late puffs in the polytene chromosomes of the late larval salivary gland. A number of these early puffs (2B5, 74EF and 75B) contain complex transcription units (Broad-Complex, E74 and E75 respectively) encoding families of regulatory proteins which are expressed in most if not all tissues. In vitro, transcripts of the different isoforms of these early genes as well as the ecdysone receptor (EcR) present varying dose response characteristics (Karim and Thummel, 1992, EMBO J. 11, 4083–4093). We have developed an in vivo approach using a reverse transcription-polymerase chain reaction assay (RT-PCR) so as to visualise these transcripts in the RNA extracted from a single salivary gland. Using one salivary gland lobe for developmental puff staging and the sister lobe for RT-PCR, we have obtained precise developmental profiles for these transcripts and have extended our study to other tissues and stages where puffing studies were not possible. In the salivary gland we have characterised three distinct ecdysone responses. For the mid and late third larval instar responses our results confirm and extend the conclusions of the in vitro studies concerning the temporal expression of the early gene isoforms. The relatively brief prepupal response contains elements in common with each of the larval responses and all three can be explained by the profiles of the respective ecdysone peaks. Interestingly EcR transcripts respond differently during each response. The analysis of different tissues of the same animal reveals subtle differences in the timing of the ecdysone response and isoform expression and suggests that this may reflect tissue differences in the ecdysone profiles. As these molecules have homologues in vertebrates, our analysis may have general implications for the organisation of hormonal responses in vivo.
Collapse
Affiliation(s)
- F Huet
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire et de Génie Génétique de l'INSERM, Faculté de Médecine, Strasbourg, France
| | | | | |
Collapse
|
43
|
Abstract
A speculative model is presented that proposes specific mechanisms for effecting co-transcriptional splice site selection in pre-mRNAs. The model envisions that certain splicing factors containing arginine-rich, positively charged regions bind via these positive patches to the hyperphosphorylated, negatively charged tail of elongating RNA polymerase II. Thus tethered to the transcription machinery, these splicing factors gain access to signals in nascent transcripts as they emerge from the polymerase.
Collapse
Affiliation(s)
- A L Greenleaf
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
44
|
Abstract
Nuclear mRNA export through the nuclear pore complex has been proposed to be a unidirectional, signal-mediated and energy-dependent process. Evidence exists that this process can be influenced by many factors including other steps in the pathway of cytoplasmic mRNA formation, sequences of the RNA substrate that are either transcribed or added co- or post-transcriptionally, and extracellular effectors.
Collapse
Affiliation(s)
- L E Maquat
- Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|