1
|
Hu S, Guo M, Xiao Y, Li Y, Luo Q, Li Z, Zhu C. Mapping trends and hotspot regarding testicular torsion: A bibliometric analysis of global research (2000-2022). Front Pediatr 2023; 11:1121677. [PMID: 36925671 PMCID: PMC10011162 DOI: 10.3389/fped.2023.1121677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Background Testicular torsion is an acute scrotal disorder requiring immediate emergency treatment. Ischemic injury and reperfusion injury are important causes of oxidative stress and irreversible oxidative damage after testicular torsion. Although a large number of literatures have discussed the causes and treatment of testicular torsion, there is currently a lack of systematic exploration of the historical evolution of testicular torsion and the construction of a knowledge framework. Method The Web of Science Core Collection was searched for studies on testicular torsion published between 2000 and 2022. The basic data of the literature were analyzed by using Excel and CiteSpace software. Result A total of 1,007 publications on testicular torsion published were found in 64 countries between 2000 and 2022, with an increasing annual publication level. Early detection, early diagnosis and early treatment of testicular torsion had always been at the core of clinical practice, and the pathological cascade reaction of ischemic injury and ischemia-reperfusion injury after testicular torsion were also at the core of basic research. Emphasis had been placed on the development of protective drugs for ischemia and reperfusion after testicular torsion in various countries, regions and institutions. Conclusion Over the past 20 years, the research on testicular torsion had been widely concerned. Hot topics in testicular torsion in recent years were ischemia-reperfusion injury, oxidative stress, rat, doppler ultrasonography, diagnosis and orchiectomy. This article may provide a useful resource for clinicians and basic researchers regarding testicular torsion.
Collapse
Affiliation(s)
- Shaowen Hu
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Mingjie Guo
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yafei Xiao
- Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yang Li
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Qingyang Luo
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zun Li
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Chaoyang Zhu
- Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
2
|
Alexander CJ, Wagner W, Copeland NG, Jenkins NA, Hammer JA. Creation of a myosin Va-TAP-tagged mouse and identification of potential myosin Va-interacting proteins in the cerebellum. Cytoskeleton (Hoboken) 2019; 75:395-409. [PMID: 29979496 DOI: 10.1002/cm.21474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Abstract
The actin-based motor myosin Va transports numerous cargos, including the smooth endoplasmic reticulum (SER) in cerebellar Purkinje neurons (PNs) and melanosomes in melanocytes. Identifying proteins that interact with this myosin is key to understanding its cellular functions. Toward that end, we used recombineering to insert via homologous recombination a tandem affinity purification (TAP) tag composed of the immunoglobulin G-binding domain of protein A, a tobacco etch virus cleavage site, and a FLAG tag into the mouse MYO5A locus immediately after the initiation codon. Importantly, we provide evidence that the TAP-tagged version of myosin Va (TAP-MyoVa) functions normally in terms of SER transport in PNs and melanosome positioning in melanocytes. Given this and other evidence that TAP-MyoVa is fully functional, we purified it together with associated proteins directly from juvenile mouse cerebella and subjected the samples to mass spectroscopic analyses. As expected, known myosin Va-binding partners like dynein light chain were identified. Importantly, numerous novel interacting proteins were also tentatively identified, including guanine nucleotide-binding protein G(o) subunit alpha (Gnao1), a biomarker for schizophrenia. Consistently, an antibody to Gnao1 immunoprecipitates myosin Va, and Gnao1's localization to PN dendritic spines depends on myosin Va. The mouse model created here should facilitate the identification of novel myosin Va-binding partners, which in turn should advance our understanding of the roles played by this important myosin in vivo.
Collapse
Affiliation(s)
- Christopher J Alexander
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wolfgang Wagner
- Center for Molecular Neurobiology (ZMNH), Department of Molecular Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Neal G Copeland
- The University of Texas MD Anderson, Department of Genetics, Cancer Center, Houston, Texas
| | - Nancy A Jenkins
- The University of Texas MD Anderson, Department of Genetics, Cancer Center, Houston, Texas
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Nakamura N. Why Genetic Effects of Radiation are Observed in Mice but not in Humans. Radiat Res 2017; 189:117-127. [PMID: 29261411 DOI: 10.1667/rr14947.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic effects from radiation have been observed in a number of species to date. However, observations in humans are nearly nonexistent. In this review, possible reasons for the paucity of positive observations in humans are discussed. Briefly, it appears likely that radiation sensitivity for the induction of mutations varies among different genes, and that the specific genes that were used in the past with the specific locus test utilizing millions of mice may have simply been very responsive to radiation. In support of this notion, recent studies targeting the whole genome to detect copy number variations (deletions and duplications) in offspring derived from irradiated spermatogonia indicated that the mutation induction rate per genome is surprisingly lower than what would have been expected from previous results with specific locus tests, even in the mouse. This finding leads us to speculate that the lack of evidence for the induction of germline mutations in humans is not due to any kind of species differences between humans and mice, but rather to the lack of highly responsive genes in humans, which could be used for effective mutation screening purposes. Examples of such responsive genes are the mouse coat color genes, but in human studies many more genes with higher response rates are required because the number of offspring examined and the radiation doses received are smaller than in mouse studies. Unfortunately, such genes have not yet been found in humans. These results suggest that radiation probably induces germline mutations in humans but that the mutation induction rate is likely to be much lower than has been estimated from past specific locus studies in mice. Whole genome sequencing studies will likely shed light on this point in the near future.
Collapse
Affiliation(s)
- Nori Nakamura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815 Japan
| |
Collapse
|
4
|
Landrock KK, Sullivan P, Martini-Stoica H, Goldstein DS, Graham BH, Yamamoto S, Bellen HJ, Gibbs RA, Chen R, D'Amelio M, Stoica G. Pleiotropic neuropathological and biochemical alterations associated with Myo5a mutation in a rat Model. Brain Res 2017; 1679:155-170. [PMID: 29217155 DOI: 10.1016/j.brainres.2017.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
In this study, we analyze the neuropathological and biochemical alterations involved in the pathogenesis of a neurodegenerative/movement disorder during different developmental stages in juvenile rats with a mutant Myosin5a (Myo5a). In mutant rats, a spontaneous autosomal recessive mutation characterized by the absence of Myo5a protein expression in the brain is associated with a syndrome of locomotor dysfunction, altered coat color, and neuroendocrine abnormalities. Myo5a encodes a myosin motor protein required for transport and proper distribution of subcellular organelles in somatodendritic processes in neurons. Here we report marked hyperphosphorylation of alpha-synuclein and tau, as well as region-specific buildup of the autotoxic dopamine metabolite, 3,4-dihydroxyphenyl-acetaldehyde (DOPAL), related to decreased aldehyde dehydrogenases activity and neurodegeneration in mutant rats. Alpha-synuclein accumulation in mitochondria of dopaminergic neurons is associated with impaired enzymatic respiratory complex I and IV activity. The behavioral and biochemical lesions progress after 15 days postnatal, and by 30-40 days the animals must be euthanized because of neurological impairment. Based on the obtained results, we propose a pleiotropic pathogenesis that links the Myo5a gene mutation to deficient neuronal development and progressive neurodegeneration. This potential model of a neurodevelopmental disorder with neurodegeneration and motor deficits may provide further insight into molecular motors and their associated proteins responsible for altered neurogenesis and neuronal disease pathogenesis.
Collapse
Affiliation(s)
- Kerstin K Landrock
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA.
| | - Patti Sullivan
- Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Heidi Martini-Stoica
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - David S Goldstein
- Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Marcello D'Amelio
- University Campus Bio-Medico, Department of Medicine, Unit of Molecular Neurosciences, Rome, Italy.
| | - George Stoica
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Abstract
In experimental organisms such as fruit flies and mice, increased frequencies in germ cell mutations have been detected following exposure to ionizing radiation. In contrast, there has been no clear evidence for radiation-induced germ cell mutations in humans that lead to birth defects, chromosome aberrations, Mendelian disorders, etc. This situation exists partly because no sensitive and practical genetic marker is available for human studies and also because the number of people exposed to large doses of radiation and subsequently having offspring was small until childhood cancer survivors became an important study population. In addition, the genome of apparently normal individuals seems to contain large numbers of alterations, including dozens to hundreds of nonfunctional alleles. With the number of mutational events in protein-coding genes estimated as less than one per genome after 1 gray (Gy) exposure, it is unsurprising that genetic effects from radiation have not yet been detected conclusively in humans.
Collapse
Affiliation(s)
- Nori Nakamura
- Department of Genetics, Radiation Effects Research Foundation, Hiroshima, Japan; , ,
| | | | | | | |
Collapse
|
6
|
Asakawa JI, Kodaira M, Cullings HM, Katayama H, Nakamura N. The genetic risk in mice from radiation: an estimate of the mutation induction rate per genome. Radiat Res 2013; 179:293-303. [PMID: 23368417 DOI: 10.1667/rr3095.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Restriction Landmark Genome Scanning (RLGS) is a method that uses end-labeled (32)P NotI sites that are mostly associated with coding genes to visualizes thousands of DNA fragments as spots in two-dimensional autoradiograms. This approach allows direct detection of autosomal deletions as spots with half normal intensity. The method was applied to mouse offspring derived from spermatogonia exposed to 4 Gy of X rays. A genome-wide assessment of the mutation induction rate was estimated from the detected deletions. Examinations were made of 1,007 progeny (502 derived from control males and 505 from irradiated males) and 1,190 paternal and 1,240 maternal spots for each mouse. The results showed one deletion mutation in the unirradiated paternal genomes of 502 offspring (0.2%) and 5 deletions in the irradiated paternal genomes of 505 offspring (1%). The difference was marginally significant, with the deletion sizes ranged from 2-13 Mb. If the frequencies are taken at face value, the net increase was 0.8% after an exposure of 4 Gy, or 0.2% per Gy per individual if a linear dose response is assumed. Since the present RLGS analysis examined 1,190 NotI sites, while the mouse genome contains ∼25,000 genes, the genomic probability of any gene undergoing a deletion mutation would be 25× 0.2%, or 5% per Gy. Furthermore, since the present RLGS screened about 0.2% of the total genome, the probability of detecting a deletion anywhere in the total genome would be estimated to be 500 times 0.2% or 100% (i.e., 1 deletion per Gy). These results are discussed with reference to copy number variation in the human genome.
Collapse
Affiliation(s)
- Jun-ichi Asakawa
- Departments of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan.
| | | | | | | | | |
Collapse
|
7
|
Myosin-Va transports the endoplasmic reticulum into the dendritic spines of Purkinje neurons. Nat Cell Biol 2010; 13:40-8. [PMID: 21151132 PMCID: PMC3403743 DOI: 10.1038/ncb2132] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 11/17/2010] [Indexed: 02/06/2023]
Abstract
Extension of the endoplasmic reticulum (ER) into dendritic spines of Purkinje neurons (PNs) is required for cerebellar synaptic plasticity and is disrupted in animals with null mutations in Myo5a, the gene encoding myosin-Va1–3. Notably, the mechanism ensuring the ER's localization to spines has not been unraveled. While it has been proposed that animal class V myosins localize organelles by tethering them to the actin cytoskeleton4–7, we demonstrate here that myosin-Va acts as a point-to-point organelle transporter to pull ER as cargo into PN spines. Specifically, the myosin accumulates at the ER tip as the organelle moves into spines, and the myosin's ability to hydrolyze ATP is required for spine ER targeting. Moreover, myosin-Va is responsible for the vast majority of spine ER insertional events. Finally, attenuation of the myosin's ability to move along actin filaments reduces the maximum velocity of ER movement into spines, providing direct evidence that myosin-Va drives ER motility. Thus, we establish that an actin-based motor moves ER within animal cells, and we uncover the mechanism that mediates ER localization to PN spines, a prerequisite for synaptic plasticity.
Collapse
|
8
|
Bierman A, Guthrie AJ, Harper CK. Lavender foal syndrome in Arabian horses is caused by a single-base deletion in the MYO5A gene. Anim Genet 2010. [DOI: 10.1111/j.1365-2052.2010.02086.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Takagishi Y, Hashimoto K, Kayahara T, Watanabe M, Otsuka H, Mizoguchi A, Kano M, Murata Y. Diminished climbing fiber innervation of Purkinje cells in the cerebellum of myosin Va mutant mice and rats. Dev Neurobiol 2007; 67:909-23. [PMID: 17506494 DOI: 10.1002/dneu.20375] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myosin Va is an actin-based molecular motor that is involved in organelle transport and membrane trafficking. Here, we explored the role of myosin Va in the formation of synaptic circuitry by examining climbing fiber (CF) innervation of Purkinje cells (PCs) in the cerebella of dilute-neurological (d-n) mice and dilute-opisthotonus (dop) rats that have mutations in dilute-encoded myosin Va. Anterograde labeling of CFs with biotinylated dextran amine (BDA) revealed that they arborized poorly and that their tips extended only half way through the thickness of the molecular layer (ML) in adult d-n mice. Using immunohistochemistry specific for vesicular glutamate transporter 2 (VGluT2) to visualize CF synaptic terminals, we found that during development and in adulthood, these terminals did not ascend as far along the proximal shaft dendrites of PCs in d-n mice and dop rats as they did in normal animals. An irregular distribution of BDA-labeled bulbous varicosities and VGluT2 spots along CF branches were also noted in these animals. Finally, VGluT2-positive CF terminals were occasionally localized on the PC somata of adult d-n cerebella. These phenotypes are consistent with our electrophysiological findings that CF-mediated excitatory postsynaptic currents (EPSCs) were significantly smaller in amplitude and faster in decay in adult d-n mice, and that the regression of multiple CFs was slightly delayed in developing d-n mice. Taken together, our results suggest that myosin Va is essential for terminal CF extension and for the establishment of CF synapses within the proper dendritic territories of PCs.
Collapse
Affiliation(s)
- Yoshiko Takagishi
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Varadi A, Tsuboi T, Rutter GA. Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 2005; 16:2670-80. [PMID: 15788565 PMCID: PMC1142415 DOI: 10.1091/mbc.e04-11-1001] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/07/2005] [Accepted: 03/14/2005] [Indexed: 11/11/2022] Open
Abstract
The role of unconventional myosins in neuroendocrine cells is not fully understood, with involvement suggested in the movement of both secretory vesicles and mitochondria. Here, we demonstrate colocalization of myosin Va (MyoVa) with insulin in pancreatic beta-cells and show that MyoVa copurifies with insulin in density gradients and with the vesicle marker phogrin-enhanced green fluorescent protein upon fluorescence-activated sorting of vesicles. By contrast, MyoVa immunoreactivity was poorly colocalized with mitochondrial or other markers. Demonstrating an important role for MyoVa in the recruitment of secretory vesicles to the cell surface, a reduction of MyoVa protein levels achieved by RNA interference caused a significant decrease in glucose- or depolarization-stimulated insulin secretion. Similarly, expression of the dominant-negative-acting globular tail domain of MyoVa decreased by approximately 50% the number of vesicles docked at the plasma membrane and by 87% the number of depolarization-stimulated exocytotic events detected by total internal reflection fluorescence microscopy. We conclude that MyoVa-driven movements of vesicles along the cortical actin network are essential for the terminal stages of regulated exocytosis in beta-cells.
Collapse
Affiliation(s)
- Aniko Varadi
- Henry Wellcome Laboratories for Integrated Cell Signalling, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
11
|
Boldogh IR, Ramcharan SL, Yang HC, Pon LA. A type V myosin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol Biol Cell 2004; 15:3994-4002. [PMID: 15215313 PMCID: PMC515334 DOI: 10.1091/mbc.e04-01-0053] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two actin-dependent force generators contribute to mitochondrial inheritance: Arp2/3 complex and the myosin V Myo2p (together with its Rab-like binding partner Ypt11p). We found that deletion of YPT11, reduction of the length of the Myo2p lever arm (myo2-Delta6IQ), or deletion of MYO4 (the other yeast myosin V), had no effect on mitochondrial morphology, colocalization of mitochondria with actin cables, or the velocity of bud-directed mitochondrial movement. In contrast, retention of mitochondria in the bud was compromised in YPT11 and MYO2 mutants. Retention of mitochondria in the bud tip of wild-type cells results in a 60% decrease in mitochondrial movement in buds compared with mother cells. In ypt11Delta mutants, however, the level of mitochondrial motility in buds was similar to that observed in mother cells. Moreover, the myo2-66 mutant, which carries a temperature-sensitive mutation in the Myo2p motor domain, exhibited a 55% decrease in accumulation of mitochondria in the bud tip, and an increase in accumulation of mitochondria at the retention site in the mother cell after shift to restrictive temperatures. Finally, destabilization of actin cables and the resulting delocalization of Myo2p from the bud tip had no significant effect on the accumulation of mitochondria in the bud tip.
Collapse
Affiliation(s)
- Istvan R Boldogh
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
12
|
Asakawa JI, Kuick R, Kodaira M, Nakamura N, Katayama H, Pierce D, Funamoto S, Preston D, Satoh C, Neel JV, Hanash S. A Genome Scanning Approach to Assess the Genetic Effects of Radiation in Mice and Humans. Radiat Res 2004; 161:380-90. [PMID: 15038760 DOI: 10.1667/rr3146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We used Restriction Landmark Genome Scanning (RLGS) to assess, on a genome-wide basis, the mutation induction rate in mouse germ cells after radiation exposure. Analyses of 1,115 autosomal NotI DNA fragments per mouse for reduced spot intensity, indicative of loss of one copy, in 506 progeny derived from X-irradiated spermatogonia (190, 237 and 79 mice in 0-, 3-, and 5-Gy groups, respectively), permitted us to identify 16 mutations affecting 23 fragments in 20 mice. The 16 mutations were composed of eight small changes (1-9 bp) at microsatellite sequences, five large deletions (more than 25 kb), and three insertions of SINE B2 or LINE1 transposable elements. The maximum induction rate of deletion mutations was estimated as (0.17 +/- 0.09) x 10(-5)/locus Gy(-1). The estimate is considerably lower than 1 x 10(-5)/locus Gy(-1), the mean induction rate of deletion mutations at Russell's 7 loci, which assumed that deletion mutations comprise 50% of all mutations. We interpret the results as indicating that the mean induction rate of mutations in the whole genome may be substantially lower than that at the 7 loci. We also demonstrate the applicability of RLGS for detection of human mutations, which allows direct comparisons between the two species.
Collapse
Affiliation(s)
- Jun-ichi Asakawa
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-ku, Hiroshima 732-0815, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Desnos C, Schonn JS, Huet S, Tran VS, El-Amraoui A, Raposo G, Fanget I, Chapuis C, Ménasché G, de Saint Basile G, Petit C, Cribier S, Henry JP, Darchen F. Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. ACTA ACUST UNITED AC 2004; 163:559-70. [PMID: 14610058 PMCID: PMC2173641 DOI: 10.1083/jcb.200302157] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The GTPase Rab27A interacts with myosin-VIIa and myosin-Va via MyRIP or melanophilin and mediates melanosome binding to actin. Here we show that Rab27A and MyRIP are associated with secretory granules (SGs) in adrenal chromaffin cells and PC12 cells. Overexpression of Rab27A, GTPase-deficient Rab27A-Q78L, or MyRIP reduced secretory responses of PC12 cells. Amperometric recordings of single adrenal chromaffin cells revealed that Rab27A-Q78L and MyRIP reduced the sustained component of release. Moreover, these effects on secretion were partly suppressed by the actin-depolymerizing drug latrunculin but strengthened by jasplakinolide, which stabilizes the actin cortex. Finally, MyRIP and Rab27A-Q78L restricted the motion of SGs in the subplasmalemmal region of PC12 cells, as measured by evanescent-wave fluorescence microscopy. In contrast, the Rab27A-binding domain of MyRIP and a MyRIP construct that interacts with myosin-Va but not with actin increased the mobility of SGs. We propose that Rab27A and MyRIP link SGs to F-actin and control their motion toward release sites through the actin cortex.
Collapse
Affiliation(s)
- Claire Desnos
- Centre National de la Recherche Scientifique (CNRS) UPR 1929, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Frudakis T, Thomas M, Gaskin Z, Venkateswarlu K, Chandra KS, Ginjupalli S, Gunturi S, Natrajan S, Ponnuswamy VK, Ponnuswamy KN. Sequences Associated With Human Iris Pigmentation. Genetics 2003; 165:2071-83. [PMID: 14704187 PMCID: PMC1462887 DOI: 10.1093/genetics/165.4.2071] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
To determine whether and how common polymorphisms are associated with natural distributions of iris colors, we surveyed 851 individuals of mainly European descent at 335 SNP loci in 13 pigmentation genes and 419 other SNPs distributed throughout the genome and known or thought to be informative for certain elements of population structure. We identified numerous SNPs, haplotypes, and diplotypes (diploid pairs of haplotypes) within the OCA2, MYO5A, TYRP1, AIM, DCT, and TYR genes and the CYP1A2-15q22-ter, CYP1B1-2p21, CYP2C8-10q23, CYP2C9-10q24, and MAOA-Xp11.4 regions as significantly associated with iris colors. Half of the associated SNPs were located on chromosome 15, which corresponds with results that others have previously obtained from linkage analysis. We identified 5 additional genes (ASIP, MC1R, POMC, and SILV) and one additional region (GSTT2-22q11.23) with haplotype and/or diplotypes, but not individual SNP alleles associated with iris colors. For most of the genes, multilocus gene-wise genotype sequences were more strongly associated with iris colors than were haplotypes or SNP alleles. Diplotypes for these genes explain 15% of iris color variation. Apart from representing the first comprehensive candidate gene study for variable iris pigmentation and constituting a first step toward developing a classification model for the inference of iris color from DNA, our results suggest that cryptic population structure might serve as a leverage tool for complex trait gene mapping if genomes are screened with the appropriate ancestry informative markers.
Collapse
|
15
|
Wu X, Wang F, Rao K, Sellers JR, Hammer JA. Rab27a is an essential component of melanosome receptor for myosin Va. Mol Biol Cell 2002; 13:1735-49. [PMID: 12006666 PMCID: PMC111140 DOI: 10.1091/mbc.01-12-0595] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Melanocytes that lack the GTPase Rab27a (ashen) are disabled in myosin Va-dependent melanosome capture because the association of the myosin with the melanosome surface depends on the presence of this resident melanosomal membrane protein. One interpretation of these observations is that Rab27a functions wholly or in part as the melanosome receptor for myosin Va (Myo5a). Herein, we show that the ability of the myosin Va tail domain to localize to the melanosome and generate a myosin Va null (dilute) phenotype in wild-type melanocytes is absolutely dependent on the presence of exon F, one of two alternatively spliced exons present in the tail of the melanocyte-spliced isoform of myosin Va but not the brain-spliced isoform. Exon D, the other melanocyte-specific tail exon, is not required. Similarly, the ability of full-length myosin Va to colocalize with melanosomes and to rescue their distribution in dilute melanocytes requires exon F but not exon D. These results predict that an interaction between myosin Va and Rab27a should be exon F dependent. Consistent with this, Rab27a present in detergent lysates of melanocytes binds to beads coated with purified, full-length melanocyte myosin Va and melanocyte myosin Va lacking exon D, but not to beads coated with melanocyte myosin Va lacking exon F or brain myosin Va. Moreover, the preparation of melanocyte lysates in the presence of GDP rather than guanosine-5'-O-(3-thio)triphosphate reduces the amount of Rab27a bound to melanocyte myosin Va-coated beads by approximately fourfold. Finally, pure Rab27a does not bind to myosin Va-coated beads, suggesting that these two proteins interact indirectly. Together, these results argue that Rab27a is an essential component of a protein complex that serves as the melanosome receptor for myosin Va, suggest that this complex contains at least one additional protein capable of bridging the indirect interaction between Rab27a and myosin Va, and imply that the recruitment of myosin Va to the melanosome surface in vivo should be regulated by factors controlling the nucleotide state of Rab27a.
Collapse
Affiliation(s)
- Xufeng Wu
- Laboratories of Cell Biology and Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer JA. Identification of an organelle receptor for myosin-Va. Nat Cell Biol 2002; 4:271-8. [PMID: 11887186 DOI: 10.1038/ncb760] [Citation(s) in RCA: 411] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Little is known about how molecular motors bind to their vesicular cargo. Here we show that myosin-Va, an actin-based vesicle motor, binds to one of its cargoes, the melanosome, by interacting with a receptor-protein complex containing Rab27a and melanophilin, a postulated Rab27a effector. Rab27a binds to the melanosome first and then recruits melanophilin, which in turn recruits myosin-Va. Melanophilin creates this link by binding to Rab27a in a GTP-dependent fashion through its amino terminus, and to myosin-Va through its carboxy terminus. Moreover, this latter interaction, similar to the ability of myosin-Va to colocalize with melanosomes and influence their distribution in vivo, is absolutely dependent on the presence of exon-F, an alternatively spliced exon in the myosin-Va tail. These results provide the first molecular description of an organelle receptor for an actin-based motor, illustrate how alternate exon usage can be used to specify cargo, and further expand the functional repertoire of Rab GTPases and their effectors.
Collapse
Affiliation(s)
- Xufeng S Wu
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu X, Kocher B, Wei Q, Hammer JA. Myosin Va associates with microtubule-rich domains in both interphase and dividing cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:286-303. [PMID: 9678671 DOI: 10.1002/(sici)1097-0169(1998)40:3<286::aid-cm7>3.0.co;2-b] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Class V unconventional myosins are two-headed, nonfilamentous, actin-based mechanoenzymes that appear to be expressed ubiquitously. Mice possess at least two myosin V heavy chain genes (dilute and myr6) whose approximately 190 kDa protein products are referred to as myosin Va and Vb, respectively. Using antibodies that are specific for the Va isoform and immunofluorescence microscopy, we show here that myosin Va localizes to the microtubule organizing center (MTOC) in interphase cells, and to the mitotic asters, spindle, and midbody of dividing cells. These associations, which in the case of mitotic cells are characterized by the concentration of myosin Va in the immediate vicinity of the microtubules, were observed in a variety of cell types, including primary and immortal mouse melanocytes and fibroblasts, Hela cells, and Cos cells. Importantly, these associations were not observed in melanocytes and fibroblasts cultured from dilute null mice, indicating that the staining of these microtubule-rich domains was due to the presence of myosin Va, as opposed to another protein(s) containing a shared epitope(s) with myosin Va. When cells were extracted with detergent prior to fixation, myosin Va remained associated with each of these microtubule-rich domains, suggesting that these associations are not due to the possible presence of membranes at these sites. This fact, and our observation that these microtubule-rich domains contain little if any F-actin (based on phalloidin staining), suggest that myosin Va may bind to microtubules either directly or through a microtubule-associated protein. Finally, we found that dilute null fibroblasts in primary culture are twice as likely to be binucleate as wild type fibroblasts of the same genetic background (35% vs. 17%). Together, these results indicate that myosin Va associates with microtubule-rich domains in both interphase and dividing cells, and plays a role in the efficiency of cell division in culture.
Collapse
Affiliation(s)
- X Wu
- Laboratory of Cell Biology, Section on Molecular Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-0301, USA
| | | | | | | |
Collapse
|
18
|
Bridgman PC. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J Cell Biol 1999; 146:1045-60. [PMID: 10477758 PMCID: PMC2169472 DOI: 10.1083/jcb.146.5.1045] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the role that myosin Va plays in axonal transport of organelles, myosin Va-associated organelle movements were monitored in living neurons using microinjected fluorescently labeled antibodies to myosin Va or expression of a green fluorescent protein-myosin Va tail construct. Myosin Va-associated organelles made rapid bi-directional movements in both normal and dilute-lethal (myosin Va null) neurites. In normal neurons, depolymerization of microtubules by nocodazole slowed, but did not stop movement. In contrast, depolymerization of microtubules in dilute-lethal neurons stopped movement. Myosin Va or synaptic vesicle protein 2 (SV2), which partially colocalizes with myosin Va on organelles, did not accumulate in dilute-lethal neuronal cell bodies because of an anterograde bias associated with organelle transport. However, SV2 showed peripheral accumulations in axon regions of dilute-lethal neurons rich in tyrosinated tubulin. This suggests that myosin Va-associated organelles become stranded in regions rich in dynamic microtubule endings. Consistent with these observations, presynaptic terminals of cerebellar granule cells in dilute-lethal mice showed increased cross-sectional area, and had greater numbers of both synaptic and larger SV2 positive vesicles. Together, these results indicate that myosin Va binds to organelles that are transported in axons along microtubules. This is consistent with both actin- and microtubule-based motors being present on these organelles. Although myosin V activity is not necessary for long-range transport in axons, myosin Va activity is necessary for local movement or processing of organelles in regions, such as presynaptic terminals that lack microtubules.
Collapse
Affiliation(s)
- P C Bridgman
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
19
|
Wu X, Bowers B, Rao K, Wei Q. Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function In vivo. J Cell Biol 1998; 143:1899-918. [PMID: 9864363 PMCID: PMC2175227 DOI: 10.1083/jcb.143.7.1899] [Citation(s) in RCA: 328] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Unlike wild-type mouse melanocytes, where melanosomes are concentrated in dendrites and dendritic tips, melanosomes in dilute (myosin Va-) melanocytes are concentrated in the cell center. Here we sought to define the role that myosin Va plays in melanosome transport and distribution. Actin filaments that comprise a cortical shell running the length of the dendrite were found to exhibit a random orientation, suggesting that myosin Va could drive the outward spreading of melanosomes by catalyzing random walks. In contrast to this mechanism, time lapse video microscopy revealed that melanosomes undergo rapid ( approximately 1.5 microm/s) microtubule-dependent movements to the periphery and back again. This bidirectional traffic occurs in both wild-type and dilute melanocytes, but it is more obvious in dilute melanocytes because the only melanosomes in their periphery are those undergoing this movement. While providing an efficient means to transport melanosomes to the periphery, this component does not by itself result in their net accumulation there. These observations, together with previous studies showing extensive colocalization of myosin Va and melanosomes in the actin-rich periphery, suggest a mechanism in which a myosin Va-dependent interaction of melanosomes with F-actin in the periphery prevents these organelles from returning on microtubules to the cell center, causing their distal accumulation. This "capture" model is supported by the demonstration that (a) expression of the myosin Va tail domain within wild-type cells creates a dilute-like phenotype via a process involving initial colocalization of tail domains with melanosomes in the periphery, followed by an approximately 120-min, microtubule-based redistribution of melanosomes to the cell center; (b) microtubule-dependent melanosome movement appears to be damped by myosin Va; (c) intermittent, microtubule-independent, approximately 0.14 microm/s melanosome movements are seen only in wild-type melanocytes; and (d) these movements do not drive obvious spreading of melanosomes over 90 min. We conclude that long-range, bidirectional, microtubule-dependent melanosome movements, coupled with actomyosin Va-dependent capture of melanosomes in the periphery, is the predominant mechanism responsible for the centrifugal transport and peripheral accumulation of melanosomes in mouse melanocytes. This mechanism represents an alternative to straightforward transport models when interpreting other myosin V mutant phenotypes.
Collapse
Affiliation(s)
- X Wu
- Laboratory of Cell Biology, Section on Molecular Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
20
|
Wines ME, Tiffany AM, Holdener BC. Physical localization of the mouse aryl hydrocarbon receptor nuclear translocator-2 (Arnt2) gene within the c112K deletion. Genomics 1998; 51:223-32. [PMID: 9722945 DOI: 10.1006/geno.1998.5347] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The albino deletions identify at least seven functional intervals essential for pre- and postnatal development in the 6- to 10-cM region surrounding the albino coat color (c = tyrosinase) locus on mouse chromosome 7. The c112K deletion identifies a putative thymus functional region not removed by the overlapping c3H deletion. Cloning the c3H proximal breakpoint provided a starting point for construction of an 840-kb BAC contig spanning the c112K and c3H (D7Ssb3Hp) proximal breakpoints. These breakpoints are separated by 320-350 kb. The aryl hydrocarbon receptor nuclear translocator-2 (Arnt2) is completely removed by the c112K deletion and spans 130-170 kb of the interval. Although Arnt2 is a candidate for the thymus defects in c112K homozygotes, the possibility that other as yet unidentified genes in the c112K deletion are responsible for the abnormalities has not been ruled out. Arnt2 is a member of the bHLH-PAS (Per, Ahr, Arnt, Sim) family of transcription factors and shares the highest similarity with Arnt. The survival of c112K homozygotes markedly contrasts the embryonic lethality observed in Arnt-deficient embryos and suggests distinct roles for these related transcription factors during embryogenesis.
Collapse
Affiliation(s)
- M E Wines
- Program in Genetics, State University of New York at Stony Brook 11794-5215, USA
| | | | | |
Collapse
|
21
|
Huang JD, Cope MJ, Mermall V, Strobel MC, Kendrick-Jones J, Russell LB, Mooseker MS, Copeland NG, Jenkins NA. Molecular genetic dissection of mouse unconventional myosin-VA: head region mutations. Genetics 1998; 148:1951-61. [PMID: 9560408 PMCID: PMC1460099 DOI: 10.1093/genetics/148.4.1951] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mouse dilute (d) locus encodes unconventional myosin-VA (MyoVA). Mice carrying null alleles of dilute have a lightened coat color and die from a neurological disorder resembling ataxia and opisthotonus within three weeks of birth. Immunological and ultrastructural studies suggest that MyoVA is involved in the transport of melanosomes in melanocytes and smooth endoplasmic reticulum in cerebellar Purkinje cells. In studies described here, we have used an RT-PCR-based sequencing approach to identify the mutations responsible for 17 viable dilute alleles that vary in their effects on coat color and the nervous system. Seven of these mutations mapped to the MyoVA motor domain and are reported here. Crystallographic modeling and mutant expression studies were used to predict how these mutations might affect motor domain function and to attempt to correlate these effects with the mutant phenotype.
Collapse
Affiliation(s)
- J D Huang
- ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pretsch W, Chatterjee B, Favor J, Merkle S, Sandulache R. Molecular, genetic and biochemical characterization of lactate dehydrogenase-A enzyme activity mutations in Mus musculus. Mamm Genome 1998; 9:144-9. [PMID: 9457676 DOI: 10.1007/s003359900705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Four independent heterozygous lactate dehydrogenase (LDH) mutations with approximately 60% of wild-type enzyme activity in whole blood have been recovered. The mutant line Ldh1a2Neu proved to be homozygous lethal, whereas for the three lines Ldh1a7Neu, Ldh1a11Neu, and Ldh1a12Neu homozygous mutants with about 20% residual activity occurred in the progeny of heterozygous inter se matings. However, the number of homozygous mutants was less than expected, suggesting an increased lethality of these animals. Various physicochemical and kinetic properties of LDH are altered. Exons of the Ldh1 gene were PCR amplified and sequenced to determine the molecular lesion in the mutant alleles. Ldh1a2Neu carried an A/T-->G/C transition in codon 112 (in exon 3), resulting in an Asn-->Asp substitution; Asn112 is part of the helix alpha D, which is involved in the coenzyme-binding domain. Ldh1a7Neu contained an A/T-->C/G transversion within the codon for residue 194 in exon 4, causing an Asp-->Ala substitution, which may affect the arrangement of the substrate-binding site. Three base substituions were discovered for the mutation Ldh1a11Neu in exon 7: the transition C/G-->T/A, a silent mutation, and two transversions C/G-->A/T and C/G-->G/C, both missense mutations, which led to the amino acid replacements A1a319-->Glu and Thr321-->Ser, respectively, located in the alpha H helix structure of the COOH tail of LDHA. We suggest that the mutation in the result of a gene conversion event between Ldh1a wild-type gene and the pseudogene Ldhl-ps. The alteration Ile-->Thr of codon 241 in exon 6 caused by the base pair change T/A-->C/G was identified in the mutation Ldh1a12Neu; Ile241 is included in the helix alpha 2G, a structure that is indirectly involved in coenzyme binding. Each of the sequence alterations has a potential impact on the structure of the LDHA protein, which is consistent with the decreased LDH activity and biochemical and physiological alterations.
Collapse
Affiliation(s)
- W Pretsch
- GSF-National Research Center for Environment and Health, Institute for Mammalian Genetics, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
23
|
Pastural E, Barrat FJ, Dufourcq-Lagelouse R, Certain S, Sanal O, Jabado N, Seger R, Griscelli C, Fischer A, de Saint Basile G. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat Genet 1997; 16:289-92. [PMID: 9207796 DOI: 10.1038/ng0797-289] [Citation(s) in RCA: 315] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Griscelli disease (OMIM 214450) is a rare autosomal recessive disorder characterized by pigmentary dilution, variable cellular immunodeficiency and onset of acute phases of uncontrolled lymphocyte and macrophage activation, leading to death in the absence of bone-marrow transplantation. The pigmentary dilution is characterized by a diffuse skin pigmentation, silvery hair, large clumps of pigments in the hair shafts (Fig. 1) and an accumulation of melanosomes in melanocytes, with abnormal transfer of the melanin granules to the keratinocytes. Immunological abnormalities are characterized by absent delayed-type cutaneous hypersensitivity and an impaired natural-killer cell function. A similar disorder has been described in the dilute lethal mouse--which, however, differs by the occurrence of a severe neurological disorder. The dilute locus encodes myosin-Va, a member of the unconventional myosin family. Myosins bind actin and produce mechanical force through ATP hydrolysis. Some members of this family are thought to participate in organelle-transport machinery. Because of the phenotype resulting in the dilute mouse and because of their potential role in intracellular transport, unconventional myosin-encoding genes were regarded as candidate genes for Griscelli disease. Here we report that the Griscelli disease locus co-localizes on chromosome 15q21 with the myosin-Va gene, MYO5a, and that mutations of this gene occur in two patients with the disease. Griscelli disease is therefore a human equivalent of dilute expression in the mouse.
Collapse
Affiliation(s)
- E Pastural
- Unité de Recherches sur le Dévelopement Normal et Pathologique de Systéme Immunitaire INSERM U429 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu X, Bowers B, Wei Q, Kocher B, Hammer JA. Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. J Cell Sci 1997; 110 ( Pt 7):847-59. [PMID: 9133672 DOI: 10.1242/jcs.110.7.847] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mice with mutations at the dilute locus exhibit a ‘washed out’ or ‘diluted’ coat color. The pigments that are responsible for the coloration of mammalian hair are produced by melanocytes within a specialized organelle, the melanosome. Each melanocyte is responsible for delivering melanosomes via its extensive dendritic arbor to numerous keratinocytes, which go on to form the pigmented hair shaft. In this study, we show by light immunofluorescence microscopy and immunoelectron microscopy that the myosin V isoform encoded by the dilute locus associates with melanosomes. This association, which was seen in all mouse melanocyte cell lines examined and with two independent myosin V antibodies, was evident not only within completely melanized cells, but also within cells undergoing the process of melanosome biogenesis, where coordinate changes in the distributions of a melanosome marker and myosin V were seen. To determine where myosin V, a known actin-based motor, might play a role in melanosome transport, we also examined the cellular distribution of F-actin. The only region where myosin V and F-actin were both concentrated was in dendrites and dendritic tips, which represent the sole destination for melanosomes and where they accumulate in cultured melanocytes. These results support the idea that myosin V serves as the motor for the outward movement of melanosomes within dendritic extensions, and, together with the available information regarding the phenotype of mutant melanocytes in vitro, argue that coat color dilution is caused by the absense of this myosin V-dependent melanosome transport system.
Collapse
Affiliation(s)
- X Wu
- Laboratory of Cell Biology, Section on Molecular Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-0301, USA
| | | | | | | | | |
Collapse
|
25
|
Evans LL, Hammer J, Bridgman PC. Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons. J Cell Sci 1997; 110 ( Pt 4):439-49. [PMID: 9067596 DOI: 10.1242/jcs.110.4.439] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myosin V-null mice (dilute-lethal mutants) exhibit apparent neurological defects that worsen from birth until death in the third postnatal week. Although myosin V is enriched in brain, the neuronal function of myosin V is unclear and the underlying cause of the neurological defects in these mice is unknown. To aide in understanding myosin V function, we examined the distribution of myosin V in the rodent superior cervical ganglion (SCG) growth cone, a well characterized neuronal structure in which myosin V is concentrated. Using affinity purified, myosin V-specific antibodies in immunofluorescence and immunoelectron microscopy, we observed that myosin V is concentrated in organelle-rich regions of the growth cone. Myosin V is present on a distinct population of small (50–100 nm) organelles, and on actin filaments and the plasma membrane. Myosin V-associated organelles are present on both microtubules and actin filaments. These results indicate that myosin V may be carried as a passenger on organelles that are transported along microtubules, and that these organelles may also be capable of movement along actin filaments. In addition, we found no abnormalities in outgrowth, morphology, or cytoskeletal organization of SCG growth cones from dilute-lethal mice. These results indicate that myosin V is not necessary for the traction force needed for growth cone locomotion, for organization of the actin cytoskeleton, or for filopodial dynamics.
Collapse
Affiliation(s)
- L L Evans
- Department of Anatomy and Neurobiology, Washington University, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
26
|
Ohno K, Kanou Y, Oda S, Wakasugi N, Inouye M, Yamamura H. Mapping of the dilute-opisthotonus (dop) gene on chromosome 8 of the rat. Exp Anim 1996; 45:71-5. [PMID: 8689583 DOI: 10.1538/expanim.45.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The rat dilute-opisthotonus (dop) autosomal recessive gene, causing ataxia and coat color dilution, was mapped on chromosome 8 by PCR-amplified microsatellite markers. To facilitate the linkage analysis, an intersubspecific cross with a Japanese wild rat strain was used. The recombination frequencies were 12.8% between Apoc3 and dop, and 32.1% between dop and Mylc1v. The following order of three genes is proposed; Apoc3-dop-Mylc1v. This mutation appears to be homologous to dilute-lethal (d1) of the mouse in terms of clinical symptoms, coat color effect and chromosomal location of the gene loci. Key words: ataxic mutant rat, dilute-opisthotonus (dop), gene mapping.
Collapse
Affiliation(s)
- K Ohno
- School of Agricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Rochlin MW, Itoh K, Adelstein RS, Bridgman PC. Localization of myosin II A and B isoforms in cultured neurons. J Cell Sci 1995; 108 ( Pt 12):3661-70. [PMID: 8719872 DOI: 10.1242/jcs.108.12.3661] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tension generated by growth cones regulates both the rate and the direction of neurite growth. The most likely effectors of tension generation are actin and myosins. We are investigating the role of conventional myosin in growth cone advance. In this paper we report the localization of the two most prominent isoforms of brain myosin II in growth cones, neurites and cell bodies of rat superior cervical ganglion neurons. Affinity purified polyclonal antibodies were prepared against unique peptide sequences from human and rat A and B isoforms of myosin heavy chain. Although each of these antibodies brightly stained nonneuronal cells, antibodies to myosin heavy chain B stained neurons with greater intensity than antibodies to myosin heavy chain A. In growth cones, myosin heavy chain B was most concentrated in the margin bordering the thickened, organelle-rich central region and the thin, actin-rich peripheral region. The staining colocalized with actin bundles proximal and distal to the marginal zone, though the staining was more prominent proximally. The trailing edge of growth cones and the distal portion of the neurite often had a rimmed appearance, but more proximal regions of neurites had cytoplasmic labelling. Localizing MHC-B in growth cones previously monitored during advance (using differential interference contrast microscopy) revealed a positive correlation with edges at which retraction had just occurred and a negative correlation with lamellipodia that had recently undergone protrusion. Cell bodies were brightly labelled for myosin heavy chain B. Myosin heavy chain A staining was dimmer and its colocalization with filamentous actin bundles in growth cones was less striking than that of myosin heavy chain B. Growth cones stained for both myosin heavy chain A and B revealed that the two antigens overlapped frequently, but not exclusively, and that myosin heavy chain A lacked the elevation in the marginal zone that was characteristic of myosin heavy chain B. The pattern of staining we observed is consistent with a prominent role for myosin heavy chain B in either generating tension between widely separated areas of the growth cone, or bundling of actin filaments, which would enable other motors to effect this tension. These data support the notion that conventional myosin is important in growth cone advance and turning.
Collapse
Affiliation(s)
- M W Rochlin
- Department of Anatomy and Neurobiology, Washington University Medical School, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
28
|
Thomas JW, Holdener BC, Magnuson T. Sequence analysis of a radiation-induced deletion breakpoint fusion in mouse. Mamm Genome 1994; 5:518-9. [PMID: 7949739 DOI: 10.1007/bf00369324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J W Thomas
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955
| | | | | |
Collapse
|
29
|
Affiliation(s)
- J A Hammer
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
30
|
Radiation-Induced Mutation in Mammalian Cells at Low Doses and Dose Rates. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-12-035416-0.50008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
31
|
|
32
|
Jackson IJ. Mouse coat colour mutations: a molecular genetic resource which spans the centuries. Bioessays 1991; 13:439-46. [PMID: 1796906 DOI: 10.1002/bies.950130903] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- I J Jackson
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| |
Collapse
|
33
|
Abstract
The traditional view of myosin, drawn from studies of myosins from striated muscles, is that of an elongated two-headed molecule that assembles into filaments. However, biochemical, molecular genetic and genetic studies have uncovered a host of ubiquitous single-headed nonfilamentous myosins known collectively as myosins I. All of the myosins I possess the myosin head domain, the motor portion of muscle myosins they have tail the filament-forming tail domain of muscle myosins they have tail domains that interact variously with membranes, actin and calmodulin. These alternative molecular interactions confer novel motile properties on myosins I, such as the ability to move membranes relative to actin and to move actin relative to actin without having to assemble into filaments. The numerous actin-based movements retained by cells lacking myosin II, the two-headed filamentous form of nonmuscle myosin, may be supported by myosins I.
Collapse
Affiliation(s)
- J A Hammer
- Laboratory of Cell Biology, Bldg 3, Rm B1-22, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 1991; 349:709-13. [PMID: 1996138 DOI: 10.1038/349709a0] [Citation(s) in RCA: 423] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hundreds of murine dilute mutations have been identified and analysed, making dilute one of the best genetically characterized of all mammalian loci. The recessive dilute (d) coat colour mutation carried by many inbred strains of mice produces a lightening of coat colour, caused by an abnormal adendritic melanocyte morphology that results in an uneven release of pigment granules into the developing hair shaft. Most dilute alleles (dilute-lethal) also produce a neurological defect, characterized by convulsions and opisthotonus, apparent at 8-10 days of age and continuing until the death of the animal at 2-3 weeks of age. The discovery that the original dilute allele (now termed dilute-viral or dV) is the result of the integration of an ecotropic murine leukaemia provirus has allowed the cloning of genomic DNA and in this study complementary DNA, from the dilute locus. The predicted dilute amino-acid sequence indicates that dilute encodes a novel type of myosin heavy chain, with a tail, or C-terminal, region that has elements of both type II (alpha-helical coiled-coil) and type I (non-coiled-coil) myosin heavy chains. Dilute transcripts are differentially expressed in both embryonic and adult tissues and are very abundant in neurons of the central nervous system, cephalic ganglia, and spinal ganglia. These results suggest an important role for the dilute gene product in the elaboration, maintenance, or function of cellular processes of melanocytes and neurons.
Collapse
Affiliation(s)
- J A Mercer
- Mammalian Genetics Laboratory, NCI-Frederick Cancer Research and Development Center, Maryland 21702
| | | | | | | | | |
Collapse
|
35
|
Lock LF, Jenkins NA, Copeland NG. Mutagenesis of the mouse germline using retroviruses. Curr Top Microbiol Immunol 1991; 171:27-41. [PMID: 1667628 DOI: 10.1007/978-3-642-76524-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- L F Lock
- Mammalian Genetics Laboratory, NCI-Frederick Cancer Research and Development Center, MD 21702
| | | | | |
Collapse
|
36
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1990; 18:4303-14. [PMID: 2377496 PMCID: PMC331241 DOI: 10.1093/nar/18.14.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|