1
|
Zhu S, Lalani AI, Jin J, Sant’Angelo D, Covey LR, Liu K, Young HA, Ostrand-Rosenberg S, Xie P. The adaptor protein TRAF3 is an immune checkpoint that inhibits myeloid-derived suppressor cell expansion. Front Immunol 2023; 14:1167924. [PMID: 37207205 PMCID: PMC10189059 DOI: 10.3389/fimmu.2023.1167924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are aberrantly expanded in cancer patients and under other pathological conditions. These cells orchestrate the immunosuppressive and inflammatory network to facilitate cancer metastasis and mediate patient resistance to therapies, and thus are recognized as a prime therapeutic target of human cancers. Here we report the identification of the adaptor protein TRAF3 as a novel immune checkpoint that critically restrains MDSC expansion. We found that myeloid cell-specific Traf3-deficient (M-Traf3 -/-) mice exhibited MDSC hyperexpansion during chronic inflammation. Interestingly, MDSC hyperexpansion in M-Traf3 -/- mice led to accelerated growth and metastasis of transplanted tumors associated with an altered phenotype of T cells and NK cells. Using mixed bone marrow chimeras, we demonstrated that TRAF3 inhibited MDSC expansion via both cell-intrinsic and cell-extrinsic mechanisms. Furthermore, we elucidated a GM-CSF-STAT3-TRAF3-PTP1B signaling axis in MDSCs and a novel TLR4-TRAF3-CCL22-CCR4-G-CSF axis acting in inflammatory macrophages and monocytes that coordinately control MDSC expansion during chronic inflammation. Taken together, our findings provide novel insights into the complex regulatory mechanisms of MDSC expansion and open up unique perspectives for the design of new therapeutic strategies that aim to target MDSCs in cancer patients.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Almin I. Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Derek Sant’Angelo
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, United States
| | - Howard A. Young
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, The University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Ping Xie,
| |
Collapse
|
2
|
Karagiannidis I, Salataj E, Said Abu Egal E, Beswick EJ. G-CSF in tumors: Aggressiveness, tumor microenvironment and immune cell regulation. Cytokine 2021; 142:155479. [PMID: 33677228 DOI: 10.1016/j.cyto.2021.155479] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine most well-known for maturation and mobilization of bone marrow neutrophils. Although it is used therapeutically to treat chemotherapy induced neutropenia, it is also highly expressed in some tumors. Case reports suggest that tumors expressing high levels of G-CSF are aggressive, more difficult to treat, and present with poor prognosis and high mortality rates. Research on this topic suggests that G-CSF has tumor-promoting effects on both tumor cells and the tumor microenvironment. G-CSF has a direct effect on tumor cells to promote tumor stem cell longevity and overall tumor cell proliferation and migration. Additionally, it may promote pro-tumorigenic immune cell phenotypes such as M2 macrophages, myeloid-derived suppressor cells, and regulatory T cells. Overall, the literature suggests a plethora of pro-tumorigenic activity that should be balanced with the therapeutic use. In this review, we present an overview of the multiple complex roles of G-CSF and G-CSFR in tumors and their microenvironment and discuss how clinical advances and strategies may open new therapeutic avenues.
Collapse
Affiliation(s)
- Ioannis Karagiannidis
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Eralda Salataj
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Erika Said Abu Egal
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States.
| |
Collapse
|
3
|
Liu L, Liu Y, Yan X, Zhou C, Xiong X. The role of granulocyte colony‑stimulating factor in breast cancer development: A review. Mol Med Rep 2020; 21:2019-2029. [PMID: 32186767 PMCID: PMC7115204 DOI: 10.3892/mmr.2020.11017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Granulocyte-colony-stimulating factor (G-CSF) is a member of the hematopoietic growth factor family that primarily affects the neutrophil lineage. G-CSF serves as a powerful mobilizer of peripheral blood stem cells and recombinant human G-CSF (rhG-CSF) has been used to treat granulocytopenia and neutropenia after chemotherapy for cancer patients. However, recent studies have found that G-CSF plays an important role in cancer progression. G-CSF expression is increased in different types of cancer cells, such as lung cancer, gastric cancer, colorectal cancer, invasive bladder carcinoma, glioma and breast cancer. However, it is unclear whether treatment with G-CSF has an adverse effect. The current review provides an overview of G-CSF in malignant breast cancer development and the data presented in this review are expected to provide new ideas for cancer therapy.
Collapse
Affiliation(s)
- Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yangyang Liu
- Department of Anesthesiology, First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Ridley RB, Young BM, Lee J, Walsh E, Ahmed CM, Lewin AS, Ildefonso CJ. AAV Mediated Delivery of Myxoma Virus M013 Gene Protects the Retina against Autoimmune Uveitis. J Clin Med 2019; 8:jcm8122082. [PMID: 31795515 PMCID: PMC6947576 DOI: 10.3390/jcm8122082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Uveoretinitis is an ocular autoimmune disease caused by the activation of autoreactive T- cells targeting retinal antigens. The myxoma M013 gene is known to block NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) and inflammasome activation, and its gene delivery has been demonstrated to protect the retina against lipopolysaccharide (LPS)-induced uveitis. In this report we tested the efficacy of M013 in an experimental autoimmune uveoretinitis (EAU) mouse model. B10RIII mice were injected intravitreally with AAV (adeno associated virus) vectors delivering either secreted GFP (sGFP) or sGFP-TatM013. Mice were immunized with interphotorecptor retinoid binding protein residues 161–180 (IRBP161–180) peptide in complete Freund’s adjuvant a month later. Mice were evaluated by fundoscopy and spectral domain optical coherence tomography (SD-OCT) at 14 days post immunization. Eyes were evaluated by histology and retina gene expression changes were measured by reverse transcribed quantitative PCR (RT-qPCR). No significant difference in ERG or retina layer thickness was observed between sGFP and sGFP-TatM013 treated non-uveitic mice, indicating safety of the vector. In EAU mice, expression of sGFP-TatM013 strongly lowered the clinical score and number of infiltrative cells within the vitreous humor when compared to sGFP treated eyes. Retina structure was protected, and pro-inflammatory genes expression was significantly decreased. These results indicate that gene delivery of myxoma M013 could be of clinical benefit against autoimmune diseases.
Collapse
Affiliation(s)
- Raela B. Ridley
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Brianna M. Young
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Jieun Lee
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Erin Walsh
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Chulbul M. Ahmed
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Alfred S. Lewin
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Cristhian J. Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
- Correspondence: ; Tel.: +1-352-273-8786
| |
Collapse
|
5
|
Tang X, Wang X, Zhao YY, Curtis JM, Brindley DN. Doxycycline attenuates breast cancer related inflammation by decreasing plasma lysophosphatidate concentrations and inhibiting NF-κB activation. Mol Cancer 2017; 16:36. [PMID: 28178994 PMCID: PMC5299726 DOI: 10.1186/s12943-017-0607-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background We previously discovered that tetracyclines increase the expression of lipid phosphate phosphatases at the surface of cells. These enzymes degrade circulating lysophosphatidate and therefore doxycycline increases the turnover of plasma lysophosphatidate and decreases its concentration. Extracellular lysophosphatidate signals through six G protein-coupled receptors and it is a potent promoter of tumor growth, metastasis and chemo-resistance. These effects depend partly on the stimulation of inflammation that lysophosphatidate produces. Methods In this work, we used a syngeneic orthotopic mouse model of breast cancer to determine the impact of doxycycline on circulating lysophosphatidate concentrations and tumor growth. Cytokine/chemokine concentrations in tumor tissue and plasma were measured by multiplexing laser bead technology. Leukocyte infiltration in tumors was analyzed by immunohistochemistry. The expression of IL-6 in breast cancer cell lines was determined by RT-PCR. Cell growth was measured in Matrigel™ 3D culture. The effects of doxycycline on NF-κB-dependent signaling were analyzed by Western blotting. Results Doxycycline decreased plasma lysophosphatidate concentrations, delayed tumor growth and decreased the concentrations of several cytokines/chemokines (IL-1β, IL-6, IL-9, CCL2, CCL11, CXCL1, CXCL2, CXCL9, G-CSF, LIF, VEGF) in the tumor. These results were compatible with the effects of doxycycline in decreasing the numbers of F4/80+ macrophages and CD31+ blood vessel endothelial cells in the tumor. Doxycycline also decreased the lysophosphatidate-induced growth of breast cancer cells in three-dimensional culture. Lysophosphatidate-induced Ki-67 expression was inhibited by doxycycline. NF-κB activity in HEK293 cells transiently expressing a NF-κB-luciferase reporter vectors was also inhibited by doxycycline. Treatment of breast cancer cells with doxycycline also decreased the translocation of NF-κB to the nucleus and the mRNA levels for IL-6 in the presence or absence of lysophosphatidate. Conclusion These results contribute a new dimension for understanding the anti-inflammatory effects of tetracyclines, which make them potential candidates for adjuvant therapy of cancers and other inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0607-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Xianyan Wang
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Yuan Y Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, 3-60D South Academic Building, Edmonton, AB, T6G 2P5, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, 3-60D South Academic Building, Edmonton, AB, T6G 2P5, Canada
| | - David N Brindley
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, AB, T6G 2S2, Canada. .,Department of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
6
|
Chang SF, Lin SS, Yang HC, Chou YY, Gao JI, Lu SC. LPS-Induced G-CSF Expression in Macrophages Is Mediated by ERK2, but Not ERK1. PLoS One 2015; 10:e0129685. [PMID: 26114754 PMCID: PMC4483241 DOI: 10.1371/journal.pone.0129685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/12/2015] [Indexed: 01/12/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) selectively stimulates proliferation and differentiation of neutrophil progenitors which play important roles in host defense against infectious agents. However, persistent G-CSF production often leads to neutrophilia and excessive inflammatory reactions. There is therefore a need to understand the mechanism regulating G-CSF expression. In this study, we showed that U0126, a MEK1/2 inhibitor, decreases lipopolysaccharide (LPS)-stimulated G-CSF promoter activity, mRNA expression and protein secretion. Using short hairpin RNA knockdown, we demonstrated that ERK2, and not ERK1, involves in LPS-induced G-CSF expression, but not LPS-regulated expression of TNF-α. Reporter assays showed that ERK2 and C/EBPβ synergistically activate G-CSF promoter activity. Further chromatin immunoprecipitation (ChIP) assays revealed that U0126 inhibits LPS-induced binding of NF-κB (p50/p65) and C/EBPβ to the G-CSF promoter, but not their nuclear protein levels. Knockdown of ERK2 inhibits LPS-induced accessibility of the G-CSF promoter region to DNase I, suggesting that chromatin remodeling may occur. These findings clarify that ERK2, rather than ERK1, mediates LPS-induced G-CSF expression in macrophages by remodeling chromatin, and stimulates C/EBPβ-dependent activation of the G-CSF promoter. This study provides a potential target for regulating G-CSF expression.
Collapse
Affiliation(s)
- Shwu-Fen Chang
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Shan Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Ching Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Yi Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jhen-I Gao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Abstract
Systemic bacterial infection induces a hematopoietic response program termed "emergency granulopoiesis" that is characterized by increased de novo bone marrow (BM) neutrophil production. How loss of local immune control and bacterial dissemination is sensed and subsequently translated into the switch from steady-state to emergency granulopoiesis is, however, unknown. Using tissue-specific myeloid differentiation primary response gene 88 (Myd88)-deficient mice and in vivo lipopolysaccharide (LPS) administration to model severe bacterial infection, we here show that endothelial cells (ECs) but not hematopoietic cells, hepatocytes, pericytes, or BM stromal cells, are essential cells for this process. Indeed, ECs from multiple tissues including BM express high levels of Tlr4 and Myd88 and are the primary source of granulocyte colony-stimulating factor (G-CSF), the key granulopoietic cytokine, after LPS challenge or infection with Escherichia coli. EC-intrinsic MYD88 signaling and subsequent G-CSF production by ECs is required for myeloid progenitor lineage skewing toward granulocyte-macrophage progenitors, increased colony-forming unit granulocyte activity in BM, and accelerated BM neutrophil generation after LPS stimulation. Thus, ECs catalyze the detection of systemic infection into demand-adapted granulopoiesis.
Collapse
|
8
|
Abstract
Neutrophils are a key cell type of the innate immune system. They are short-lived and need to be continuously generated in steady-state conditions from haematopoietic stem and progenitor cells in the bone marrow to ensure their immediate availability for the containment of invading pathogens. However, if microbial infection cannot be controlled locally, and consequently develops into a life-threatening condition, neutrophils are used up in large quantities and the haematopoietic system has to rapidly adapt to the increased demand by switching from steady-state to emergency granulopoiesis. This involves the markedly increased de novo production of neutrophils, which results from enhanced myeloid precursor cell proliferation in the bone marrow. In this Review, we discuss the molecular and cellular events that regulate emergency granulopoiesis, a process that is crucial for host survival.
Collapse
|
9
|
Zhang L, Yang M, Wang Q, Liu M, Liang Q, Zhang H, Xiao X. HSF1 regulates expression of G-CSF through the binding element for NF-IL6/CCAAT enhancer binding protein beta. Mol Cell Biochem 2011; 352:11-7. [PMID: 21455770 DOI: 10.1007/s11010-010-0624-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/06/2010] [Indexed: 01/13/2023]
Abstract
Heat shock factor 1 (HSF1) is the major heat shock transcription factor and plays an essential role in mediating the cellular response to physiological and environmental stress. We found that LPS-induced expression of the granulocyte-colony stimulating factor (G-CSF) gene was upregulated in HSF1 knock-out (HSF1(-/-)) mice using a gene array. In order to determine whether and how HSF1 regulates the induced expression of G-CSF, mRNA, and protein levels of G-CSF were detected by Northern blotting and ELISA, the promoter of G-CSF was analyzed with an online transcription element search system and the transcriptional activity of the G-CSF promoter was analyzed by EMSA and a reporter gene assay. The results showed that transcription and protein secretion of G-CSF induced by LPS are both inhibited by HSF1. Three high affinity binding sites for NF-IL6/CCAAT enhancer binding protein beta, but no heat shock element, were identified in the core promoter of G-CSF. The DNA-binding capability of NF-IL6 to the G-CSF promoter was reinforced by LPS but not influenced by heat shock or HSF1. However, HSF1 was observed to bind to the binding sites of NF-IL6 in the G-CSF promoter. The transcriptional activity of the G-CSF promoter was enhanced by LPS or NF-IL6 and inhibited by HSF1 in a dose dependent manner. We conclude that HSF1 regulates expression of G-CSF through binding to the NF-IL6-binding element.
Collapse
Affiliation(s)
- Lingli Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Oyegunwa AO, Sikes ML, Wilson JR, Scholle F, Laster SM. Tetra-O-methyl nordihydroguaiaretic acid (Terameprocol) inhibits the NF-κB-dependent transcription of TNF-α and MCP-1/CCL2 genes by preventing RelA from binding its cognate sites on DNA. JOURNAL OF INFLAMMATION-LONDON 2010; 7:59. [PMID: 21138578 PMCID: PMC3002343 DOI: 10.1186/1476-9255-7-59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/07/2010] [Indexed: 11/28/2022]
Abstract
Background Tetra-O-methyl nordihydroguaiaretic acid, also known as terameprocol (TMP), is a naturally occurring phenolic compound found in the resin of the creosote bush. We have shown previously that TMP will suppress production of certain inflammatory cytokines, chemokines and lipids from macrophages following stimulation with LPS or infection with H1N1 influenza virus. In this study our goal was to elucidate the mechanism underlying TMP-mediated suppression of cytokine and chemokine production. We focused our investigations on the response to LPS and the NF-κB protein RelA, a transcription factor whose activity is critical to LPS-responsiveness. Methods Reporter assays were performed with HEK293 cells overexpressing either TLR-3, -4, or -8 and a plasmid containing the luciferase gene under control of an NF-κB response element. Cells were then treated with LPS, poly(I:C), or resiquimod, and/or TMP, and lysates measured for luciferase activity. RAW 264.7 cells treated with LPS and/or TMP were used in ChIP and EMSA assays. For ChIP assays, chromatin was prepared and complexes precipitated with anti-NF-κB RelA Ab. Cross-links were reversed, DNA purified, and sequence abundance determined by Q-PCR. For EMSA assays, nuclear extracts were incubated with radiolabeled probes, analyzed by non-denaturing PAGE and visualized by autoradiography. RAW 264.7 cells treated with LPS and/or TMP were also used in fluorescence microscopy and western blot experiments. Translocation experiments were performed using a primary Ab to NF-κB RelA and a fluorescein-conjugated secondary Ab. Western blots were performed using Abs to IκB-α and phospho-IκB-α. Bands were visualized by chemiluminescence. Results In reporter assays with TLR-3, -4, and -8 over-expressing cells, TMP caused strong inhibition of NF-κB-dependent transcription. ChIP assays showed TMP caused virtually complete inhibition of RelA binding in vivo to promoters for the genes for TNF-α, MCP-1/CCL2, and RANTES/CCL5 although the LPS-dependent synthesis of IκB-α was not inhibited. EMSA assays did not reveal an effect of TMP on the binding of RelA to naked DNA templates in vitro. TMP did not inhibit the nuclear translocation of NF-κB RelA nor the phosphorylation of IκB-α. Conclusion TMP acts indirectly as an inhibitor of NF-κB-dependent transcription by preventing RelA from binding the promoters of certain key cytokine and chemokine genes.
Collapse
Affiliation(s)
- Akinbolade O Oyegunwa
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina, 27695-7615, USA.
| | | | | | | | | |
Collapse
|
11
|
Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 2008; 42:277-88. [PMID: 18400509 DOI: 10.1016/j.cyto.2008.03.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/14/2008] [Accepted: 03/03/2008] [Indexed: 01/13/2023]
Abstract
Neutrophils are phagocytes whose principal function is to maintain anti-bacterial immunity. Neutrophils ingest and kill invading bacteria, releasing cytotoxic, chemotactic and inflammatory mediators at sites of infection. This serves to control the immediate host immune response and attract other cells, such as macrophages and dendritic cells, which are important for establishing long-term adaptive immunity. Neutrophils thus contribute to both the initiation and the maintenance of inflammation at sites of infection. Aberrant neutrophil activity is deleterious; suppressed responses can cause extreme susceptibility to infection while overactivation can lead to excessive inflammation and tissue damage. This review will focus on neutrophil regulation by granulocyte colony-stimulating factor (G-CSF), the principal cytokine controlling neutrophil development and function. The review will emphasize the molecular aspects of G-CSF-driven granulopoiesis in steady state (healthy) conditions and during demand-driven or 'emergency' conditions elicited by infection or clinical administration of G-CSF. Understanding the molecular control of granulopoiesis will aid in the development of new approaches designed to treat disorders of neutrophil production and function.
Collapse
Affiliation(s)
- Athanasia D Panopoulos
- Department of Immunology and Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, PO Box 301402, Unit 902, Houston, TX 77030, USA
| | | |
Collapse
|
12
|
Matsumoto T, Moriya M, Kiyohara H, Tabuchi Y, Yamada H. Hochuekkito, a Kampo (Traditional Japanese Herbal) Medicine, and its Polysaccharide Portion Stimulate G-CSF Secretion from Intestinal Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2008; 7:331-40. [PMID: 18955322 PMCID: PMC2887329 DOI: 10.1093/ecam/nen007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/07/2008] [Indexed: 01/28/2023]
Abstract
Kampo (traditional Japanese herbal) medicines are taken orally due to which the gastric mucosal immune system may act as one of the major targets for the expression of pharmacological activity. The inner surface of the intestinal tract possesses a large area of mucosal membranes, and the intestinal epithelial cells sit at the interface between a lumen and a lymphocyte-rich lamina propria. The cross talk that occurs between these compartments serves to maintain intestinal homeostasis, and the cytokine network plays an important role in the cross talk. In this study, the effect of Hochuekkito (HET), one of Kampo medicines, on cytokine secretion of intestinal epithelial cells was investigated. When murine normal colonic epithelial cell-line MCE301 cells were stimulated with HET, the contents of granulocyte colony-stimulating factor (G-CSF) in the conditioned medium were significantly increased in dose- and time-dependent manners. The enhanced G-CSF gene transcription in MCE301 cells by the stimulation of HET was observed by RT-PCR. The enhanced G-CSF secretion by HET was also observed in C3H/HeJ mice-derived primary cultured colonic epithelial cells. When the HET was fractionated, only the polysaccharide fraction (F-5) enhanced the G-CSF secretion of MCE301 cells, and the activity of F-5 lost after the treatment of periodate that can degrade the carbohydrate moiety. These results suggest that HET enhances secretion of G-CSF from colonic epithelial cells and the polysaccharide is one of the active ingredients of HET. The enhanced G-CSF secretion by HET may partly contribute to the clinically observed various pharmacological activities of HET including immunomodulating activity.
Collapse
Affiliation(s)
- Tsukasa Matsumoto
- Kitasato Institute for Life Sciences & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Oriental Medicine Research Center, The Kitasato Institute, Tokyo 108-8642 and Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
13
|
Santos MD, Yasuike M, Hirono I, Aoki T. The granulocyte colony-stimulating factors (CSF3s) of fish and chicken. Immunogenetics 2006; 58:422-32. [PMID: 16738939 DOI: 10.1007/s00251-006-0106-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
Granulocyte colony-stimulating factor (CSF3) is a glycoprotein cytokine, which influences the hematopoiesis of the phagocytic neutrophils and its precursors and was used extensively in cancer therapy and for the treatment of neutropenia in mammals. However, CSF3 is yet to be identified in nonmammalian species mainly because of its rapid mutation. Here, we report the first CSF3 genes from three teleost fishes: Japanese flounder (Paralichthys olivaceus), fugu (Takifugu rubripes), and green-spotted pufferfish (Tetraodon nigroviridis) and present evidence that the chicken (Gallus gallus) myelomonocytic growth factor is in fact the chicken CSF3 orthologue. We support this by showing significant conservation of the CSF3 genes' structure, domains, regulatory motifs, and synteny across species and by phylogenetic analysis. CSF3 orthologues are indeed evolving rapidly and appears to be undergoing purifying selection in mammals but positive selection in fish and chicken. Furthermore, the paralogous fugu and pufferfish CSF3-1s and CSF3-2s are shown to be the ancestral and duplicate genes, respectively. Finally, we demonstrate that the Japanese flounder CSF3 gene is at least involved in immunity based on its basal expression in immune-related tissues and its upregulation in kidney and peripheral blood leukocytes after in vitro stimulation with lipopolysaccharide and a combination of concanavalin A/phorbol myristate acetate.
Collapse
Affiliation(s)
- Mudjekeewis D Santos
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7 Minato-ku, Tokyo, 108-8477, Japan
| | | | | | | |
Collapse
|
14
|
Abstract
The vertebrate transcription factor NF-kappaB is induced by over 150 different stimuli. Active NF-kappaB, in turn, participates in the control of transcription of over 150 target genes. Because a large variety of bacteria and viruses activate NF-kappaB and because the transcription factor regulates the expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion molecules, NF-kappaB has often been termed a 'central mediator of the human immune response'. This article contains a complete listing of all NF-kappaB inducers and target genes described to date. The collected data argue that NF-kappaB functions more generally as a central regulator of stress responses. In addition, NF-kappaB activation blocks apoptosis in several cell types. Coupling stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
15
|
Murai K, Murakami H, Nagata S. Myeloid-specific transcriptional activation by murine myeloid zinc-finger protein 2. Proc Natl Acad Sci U S A 1998; 95:3461-6. [PMID: 9520388 PMCID: PMC19858 DOI: 10.1073/pnas.95.7.3461] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myeloid zinc finger protein 2 (MZF-2) is a zinc-finger transcription factor that is expressed in myeloid cells, particularly in the cells committed to the neutrophilic lineage. Here we examine the ability of murine MZF-2 (mMZF-2) to activate transcription. The mMZF-2 protein binds to a DNA element (MZF-binding site) through its zinc-finger domain. When the intact mMZF-2 was cotransfected with a reporter gene, it did not activate transcription. However, N-terminal deletion mutants greatly enhanced transcription specifically in myeloid cells. Furthermore, in an in vivo competition assay, the middle region of MZF-2 inhibited the mMZF-2-mediated transcription activation. These results suggest that mMZF-2 is a transcriptional factor that can specifically work in myeloid cells and can be divided into at least three functional domains. The N-terminal domain inhibits transactivation by masking the effect of the activation domain. The middle region recruits a coactivator, which is responsible for myeloid-specific transcriptional activation. The C-terminal zinc-finger domain functions as a DNA-binding domain.
Collapse
Affiliation(s)
- K Murai
- Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565, Japan
| | | | | |
Collapse
|
16
|
Goldring CE, Reveneau S, Algarté M, Jeannin JF. In vivo footprinting of the mouse inducible nitric oxide synthase gene: inducible protein occupation of numerous sites including Oct and NF-IL6. Nucleic Acids Res 1996; 24:1682-7. [PMID: 8649986 PMCID: PMC145849 DOI: 10.1093/nar/24.9.1682] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A wide variety of cells usefully but sometimes destructively produce nitric oxide via inducible nitric oxide synthase (iNOS). Data obtained by gel shift analysis and reporter assays have linked murine iNOS gene induction by cytokines and bacterial products with the binding of a number of proteins to a proximal promoter, as well as to a distal enhancer of the iNOS gene. Nevertheless, these techniques do not necessarily reflect protein occupation of sites in vivo. To address this, we have used dimethyl sulphate in vivo footprinting to determine binding events in the two murine iNOS transcription control regions, using a classical lipopolysaccharide induction of RAW 264.7 macrophages. Protein-DNA interactions are absent before activation. Exposure to lipopolysaccharide induces protection at a NF-kappaB site and hypersensitivity at a shared gamma-activated site/interferon-stimulated response element within the enhancer. Protections are seen at a NF-IL6, and an Oct site within the promoter. We also observe modulations in guanine methylation at two regions which do not correspond to any known putative binding elements. Furthermore, we confirm the probable involvement of interferon regulatory factor-1 (binding to its -901 to -913 site) and the binding of NF-kappaB to its proximal site. Our data demonstrate an abundance of hitherto-unrecognised protein-DNA binding events upon simple lipopolysaccharide activation of the iNOS gene and suggests a role for protein-protein interactions in its transcriptional induction.
Collapse
Affiliation(s)
- C E Goldring
- Cancer Immunotherapy Laboratory, Ecole Pratique des Hautes Etudes, Faculté de Médecine, Dijon, France
| | | | | | | |
Collapse
|
17
|
Ritter LM, Bryans M, Abdo O, Sharma V, Wilkie NM. MIP1 alpha nuclear protein (MNP), a novel transcription factor expressed in hematopoietic cells that is crucial for transcription of the human MIP-1 alpha gene. Mol Cell Biol 1995; 15:3110-8. [PMID: 7760807 PMCID: PMC230542 DOI: 10.1128/mcb.15.6.3110] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Murine macrophage inflammatory protein 1 alpha (MIP-1 alpha) and its human equivalent (GOS19, LD78, or AT464) are members of the -C-C family of low-molecular-weight chemokines. Secreted from activated T cells and macrophages, bone marrow-derived MIP-1 alpha/GOS19 inhibits primitive hematopoietic stem cells and appears to be involved in the homeostatic control of stem cell proliferation. It also induces chemotaxis and inflammatory responses in mature cell types. Therefore, it is important to understand the mechanisms which control the expression of MIP-1 alpha/GOS19. Previous work has shown that in Jurkat T cells, a set of widely expressed transcription factors (the ICK-1 family) affect the GOS19 promoter. One member, ICK-1A, behaves as a strong negative regulator. In this communication, we provide evidence that the pathway of induction in the macrophage cell line U937 is different from that in Jurkat cells. Furthermore, we show that the ICK-1 binding site does not confer negative regulation in U937 cells. We provide evidence for an additional binding site, the MIP-1 alpha nuclear protein (MNP) site, which overlaps the ICK-1 site. Interaction of nuclear extracts from various cell lines and tissue with the MNP site leads to the formation of fast-migrating protein-DNA complexes with similar but distinct electrophoretic mobilities. A mutation of the MNP site which does not abrogate ICK-1 binding inactivates the GOS19.1 promoter in U937 cells and reduces its activity by fourfold in Jurkat cells. We propose that the MNP protein(s) binding at the MNP site constitutes a novel transcription factor(s) expressed in hematopoietic cells.
Collapse
Affiliation(s)
- L M Ritter
- Department of Molecular Genetics, Ohio State University, Columbus, USA
| | | | | | | | | |
Collapse
|
18
|
Bretz JD, Williams SC, Baer M, Johnson PF, Schwartz RC. C/EBP-related protein 2 confers lipopolysaccharide-inducible expression of interleukin 6 and monocyte chemoattractant protein 1 to a lymphoblastic cell line. Proc Natl Acad Sci U S A 1994; 91:7306-10. [PMID: 8041785 PMCID: PMC44388 DOI: 10.1073/pnas.91.15.7306] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
C/EBP-related proteins 2 and 3 (CRP2 and CRP3) are differentially expressed by P388 lymphoblasts and their derivative P388D1(IL1) macrophages. We have ectopically expressed CRP2, the predominant CRP in macrophages, in P388 lymphoblasts. The expression of CRP2 is sufficient to confer the lipopolysaccharide (LPS)-inducible expression of interleukin 6 and monocyte chemoattractant protein 1 to lymphoblasts, which normally do not display LPS induction of inflammatory cytokines. Consistent with these findings, the expression of CRP2 antisense RNA blocks the LPS induction of IL-6 expression in P388D1(IL1) macrophages. This work clearly establishes the essential role of CRP2 in the induction of cytokine genes by LPS. Additionally, these data add MCP-1 to the list of cytokines showing an involvement of CRP2 in their expression.
Collapse
Affiliation(s)
- J D Bretz
- Department of Microbiology, Michigan State University, East Lansing 48824-1101
| | | | | | | | | |
Collapse
|
19
|
Read MA, Whitley MZ, Williams AJ, Collins T. NF-kappa B and I kappa B alpha: an inducible regulatory system in endothelial activation. J Exp Med 1994; 179:503-12. [PMID: 7507507 PMCID: PMC2191350 DOI: 10.1084/jem.179.2.503] [Citation(s) in RCA: 348] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Structural analysis of the promoters of several endothelial genes induced at sites of inflammatory or immune responses reveals binding sites for the transcription factor nuclear factor kappa B (NF-kappa B). Endothelial cells express transcripts encoding the p50/p105 and p65 components of NF-kappa B and the rel-related proto-oncogene c-rel; steady state levels of these transcripts are transiently increased by tumor necrosis factor alpha (TNF-alpha). Western blotting revealed that stimulation of endothelial cells with TNF-alpha resulted in nuclear accumulation of the p50 and p65 components of NF-kappa B. Ultraviolet crosslinking and immunoprecipitation demonstrated binding of the p50 and p65 components of NF-kappa B to the E-selectin kappa B site. Endothelial cells express an inhibitor of NF-kappa B activation, I kappa B-alpha (MAD-3). Protein levels of this inhibitor fall rapidly after TNF-alpha stimulation. In parallel, p50 and p65 accumulate in the nucleus and RNA transcript levels for I kappa B-alpha are dramatically upregulated. Recombinant p65 stimulates expression of E-selectin promoter-reporter constructs. I kappa B-alpha inhibits p65 or TNF-alpha-stimulated E-selectin promoter-reporter gene expression in transfected endothelial cells. The NF-kappa B and I kappa B-alpha system may be an inducible regulatory mechanism in endothelial activation.
Collapse
Affiliation(s)
- M A Read
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
20
|
Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S. Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci U S A 1993; 90:10193-7. [PMID: 8234276 PMCID: PMC47740 DOI: 10.1073/pnas.90.21.10193] [Citation(s) in RCA: 769] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Single binding sites for transcription factors NF-IL6 and NF-kappa B are present in the promoter of the interleukin (IL) 6 gene. Previous studies of internally deleted promoter mutants demonstrated that these two sites are important for the transcriptional regulation of this gene. In this report, we describe the synergistic activation of the IL-6 promoter by transcription factors NF-IL6 and NF-kappa B. Cotransfection of NF-IL6 with the NF-kappa B p65 subunit resulted in strong synergistic activation of an IL-6 promoter-reporter construct. Both the NF-IL6 and NF-kappa B binding sites in the IL-6 promoter were required for synergistic activation. Similar synergistic activation was observed in the IL-8 promoter, which also contains both NF-IL6 and NF-kappa B binding sites. Furthermore, we demonstrated that NF-IL6 and the NF-kappa B p65 subunit directly associated via the basic leucine-zipper domain of NF-IL6 and the Rel homology domain of p65. Since the promoters of many other genes involved in the inflammatory and acute-phase responses also contain binding sites for NF-IL6 and NF-kappa B, the cooperation between these two factors may have an important role in these responses. We also discuss the possible interplay between various viral gene products and these two factors in the process of viral infection and constitutive cytokine production.
Collapse
Affiliation(s)
- T Matsusaka
- Institute for Molecular and Cellular Biology, Osaka University, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Read MA, Cordle SR, Veach RA, Carlisle CD, Hawiger J. Cell-free pool of CD14 mediates activation of transcription factor NF-kappa B by lipopolysaccharide in human endothelial cells. Proc Natl Acad Sci U S A 1993; 90:9887-91. [PMID: 7694295 PMCID: PMC47677 DOI: 10.1073/pnas.90.21.9887] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lipopolysaccharide (LPS), a major envelope component of Gram-negative bacteria, is the most frequent causative agent of septic shock and disseminated intravascular coagulation. LPS activates both CD14-positive (monocytes, macrophages, polymorphonuclear leukocytes) and CD14-negative (B-cell lines, endothelial cells) cells. CD14, a 55-kDa glycosyl-phosphatidylinositol-anchored membrane protein present on mature myeloid cells, serves as a receptor for LPS in complex with a soluble (serum-derived) LPS-binding protein (LBP). In this report, we show that human umbilical vein endothelial cells (HUVEC), which do not express measurable CD14 protein, become 3000-fold more sensitive to LPS-induced activation in the presence of serum, as measured by activation of the transcription factor NF-kappa B and expression of mRNA encoding tissue factor, a procoagulant molecule. This enhanced responsiveness of HUVEC is specifically mediated by the cell-free pool of CD14 (soluble CD14, sCD14) found in serum. The role of sCD14 in HUVEC activation by LPS was established by (i) the blocking effect of monoclonal anti-CD14 antibodies which discriminate between cell-bound and sCD14, (ii) the lack of the serum-enhancing effect after immunodepletion of sCD14, and (iii) establishing a reconstituted system in which recombinant sCD14 was sufficient to enhance the effects of LPS in the absence of serum and without a requirement for LBP. Thus, this mechanism of endothelial cell activation by LPS involves a cell-free pool of sCD14 most likely shed from CD14-positive cells of the monocytic lineage.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/metabolism
- Base Sequence
- Binding Sites
- Cell Nucleus/metabolism
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Enhancer Elements, Genetic
- Gene Expression
- Humans
- Immunoglobulin kappa-Chains/genetics
- Lipopolysaccharide Receptors
- Lipopolysaccharides/pharmacology
- Mice
- Molecular Sequence Data
- NF-kappa B/metabolism
- Oligodeoxyribonucleotides
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Recombinant Proteins/metabolism
- Umbilical Veins
Collapse
Affiliation(s)
- M A Read
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | | | | | |
Collapse
|
22
|
Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, Murphy WJ. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A 1993; 90:9730-4. [PMID: 7692452 PMCID: PMC47644 DOI: 10.1073/pnas.90.20.9730] [Citation(s) in RCA: 824] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The promoter region of the mouse gene for macrophage-inducible nitric oxide synthase (mac-NOS; EC 1.14.13.39) has been characterized. A putative TATA box is 30 base pairs upstream of the transcription start site. Computer analysis reveals numerous potential binding sites for transcription factors, many of them associated with stimuli that induce mac-NOS expression. To localize functionally important portions of the regulatory region, we constructed deletion mutants of the mac-NOS 5' flanking region and placed them upstream of a luciferase reporter gene. The macrophage cell line RAW 264.7, when transfected with a minimal promoter construct, expresses little luciferase activity when stimulated by lipopolysaccharide (LPS), interferon gamma (IFN-gamma), or both. Maximal expression depends on two discrete regulatory regions upstream of the putative TATA box. Region I (position -48 to -209) increases luciferase activity approximately 75-fold over the minimal promoter construct. Region I contains LPS-related responsive elements, including a binding site for nuclear factor interleukin 6 (NF-IL6) and the kappa B binding site for NF-kappa B, suggesting that this region regulates LPS-induced expression of the mac-NOS gene. Region II (position -913 to -1029) alone does not increase luciferase expression, but together with region I it causes an additional 10-fold increase in expression. Together the two regions increase expression 750-fold over activity obtained from a minimal promoter construct. Region II contains motifs for binding IFN-related transcription factors and thus probably is responsible for IFN-mediated regulation of LPS-induced mac-NOS. Delineation of these two cooperative regions explains at the level of transcription how IFN-gamma and LPS act in concert to induce maximally the mac-NOS gene and, furthermore, how IFN-gamma augments the inflammatory response to LPS.
Collapse
Affiliation(s)
- C J Lowenstein
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | | | |
Collapse
|
23
|
C/EBP, NF-kappa B, and c-Ets family members and transcriptional regulation of the cell-specific and inducible macrophage inflammatory protein 1 alpha immediate-early gene. Mol Cell Biol 1993. [PMID: 8355682 DOI: 10.1128/mcb.13.9.5276] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage inflammatory protein 1 alpha (MIP-1 alpha) cytokine gene expression is restricted to a limited number of cells of hemopoietic origin and is rapidly and transiently induced by serum and endotoxin in macrophages. A single nuclear DNase I-hypersensitive site, which maps to the proximal promoter of the MIP-1 alpha gene, was identified in macrophage cells but was absent in cells which do not express basal levels of MIP-1 alpha mRNA. The proximal promoter sequences (+36 to -220 bp) are sufficient to confer cell-specific and inducible transcription in transfection assays. In vitro DNA-binding studies revealed five major nuclear protein binding sites in the proximal promoter which bind C/EBP, NF-kappa B, and/or c-Ets family members. Cell-specific differences in DNA binding by members of the NF-kappa B and c-Ets families correlate with the cell-specificity of MIP-1 alpha gene expression and the chromosomal conformation of the promoter. Changes in promoter binding by members of the C/EBP and NF-kappa B families correlate with the transcriptional up-regulation observed in serum- or endotoxin-stimulated macrophages in functional studies.
Collapse
|
24
|
Grove M, Plumb M. C/EBP, NF-kappa B, and c-Ets family members and transcriptional regulation of the cell-specific and inducible macrophage inflammatory protein 1 alpha immediate-early gene. Mol Cell Biol 1993; 13:5276-89. [PMID: 8355682 PMCID: PMC360221 DOI: 10.1128/mcb.13.9.5276-5289.1993] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Macrophage inflammatory protein 1 alpha (MIP-1 alpha) cytokine gene expression is restricted to a limited number of cells of hemopoietic origin and is rapidly and transiently induced by serum and endotoxin in macrophages. A single nuclear DNase I-hypersensitive site, which maps to the proximal promoter of the MIP-1 alpha gene, was identified in macrophage cells but was absent in cells which do not express basal levels of MIP-1 alpha mRNA. The proximal promoter sequences (+36 to -220 bp) are sufficient to confer cell-specific and inducible transcription in transfection assays. In vitro DNA-binding studies revealed five major nuclear protein binding sites in the proximal promoter which bind C/EBP, NF-kappa B, and/or c-Ets family members. Cell-specific differences in DNA binding by members of the NF-kappa B and c-Ets families correlate with the cell-specificity of MIP-1 alpha gene expression and the chromosomal conformation of the promoter. Changes in promoter binding by members of the C/EBP and NF-kappa B families correlate with the transcriptional up-regulation observed in serum- or endotoxin-stimulated macrophages in functional studies.
Collapse
Affiliation(s)
- M Grove
- CRC Beatson Laboratories, Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | | |
Collapse
|
25
|
Characterization of cytokine LD78 gene promoters: positive and negative transcriptional factors bind to a negative regulatory element common to LD78, interleukin-3, and granulocyte-macrophage colony-stimulating factor gene promoters. Mol Cell Biol 1993. [PMID: 8474441 DOI: 10.1128/mcb.13.5.2787] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytokine LD78 is a human counterpart of the mouse macrophage inflammatory protein 1 alpha/hematopoietic stem cell inhibitor. Promoters of the LD78 alpha and LD78 beta genes showed similar inducible activities in two leukemic cell lines, K562 and Jurkat, but the induction mechanisms differed between the two cell lines. Further characterization of the LD78 alpha promoter indicated that multiple positive and negative regulatory elements are present, some of which are differentially required for induction and repression of the promoter activity in different cells. One of the negative regulatory elements, ICK-1, functioned in both cell lines in the absence and presence of stimulation and was shown to be a recognition site for positive and negative transcriptional factors. This ICK-1 element contained a direct repeat, and similar repeats were also found in the negative regulatory elements of hematopoietic growth factor interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene promoters. Nuclear extracts from K562 and Jurkat cells formed several protein-DNA complexes with the LD78 alpha ICK-1 element, one of which was also observed with the IL-3 and GM-CSF ICK-1 elements. Results from in vivo and in vitro analyses suggested that the protein forming this complex functions as a negative factor. The binding affinity of this protein, ICK-1A, to the LD78 alpha ICK-1 element was low and was significantly affected by the incubation temperature and the salt concentration in the binding buffer. ICK-1B, another protein bound specifically by the LD78 alpha ICK-1 element, was shown to be a positive factor important for induction of the promoter. These results suggested that ICK-1A plays an important role in balanced expression of LD78, IL-3, and GM-CSF during hematopoietic cell growth and differentiation.
Collapse
|
26
|
Nomiyama H, Hieshima K, Hirokawa K, Hattori T, Takatsuki K, Miura R. Characterization of cytokine LD78 gene promoters: positive and negative transcriptional factors bind to a negative regulatory element common to LD78, interleukin-3, and granulocyte-macrophage colony-stimulating factor gene promoters. Mol Cell Biol 1993; 13:2787-801. [PMID: 8474441 PMCID: PMC359660 DOI: 10.1128/mcb.13.5.2787-2801.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cytokine LD78 is a human counterpart of the mouse macrophage inflammatory protein 1 alpha/hematopoietic stem cell inhibitor. Promoters of the LD78 alpha and LD78 beta genes showed similar inducible activities in two leukemic cell lines, K562 and Jurkat, but the induction mechanisms differed between the two cell lines. Further characterization of the LD78 alpha promoter indicated that multiple positive and negative regulatory elements are present, some of which are differentially required for induction and repression of the promoter activity in different cells. One of the negative regulatory elements, ICK-1, functioned in both cell lines in the absence and presence of stimulation and was shown to be a recognition site for positive and negative transcriptional factors. This ICK-1 element contained a direct repeat, and similar repeats were also found in the negative regulatory elements of hematopoietic growth factor interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene promoters. Nuclear extracts from K562 and Jurkat cells formed several protein-DNA complexes with the LD78 alpha ICK-1 element, one of which was also observed with the IL-3 and GM-CSF ICK-1 elements. Results from in vivo and in vitro analyses suggested that the protein forming this complex functions as a negative factor. The binding affinity of this protein, ICK-1A, to the LD78 alpha ICK-1 element was low and was significantly affected by the incubation temperature and the salt concentration in the binding buffer. ICK-1B, another protein bound specifically by the LD78 alpha ICK-1 element, was shown to be a positive factor important for induction of the promoter. These results suggested that ICK-1A plays an important role in balanced expression of LD78, IL-3, and GM-CSF during hematopoietic cell growth and differentiation.
Collapse
Affiliation(s)
- H Nomiyama
- Department of Biochemistry, Kumamoto University Medical School, Japan
| | | | | | | | | | | |
Collapse
|