1
|
Borao S, Ayté J, Hümmer S. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing. Int J Mol Sci 2021; 22:ijms222212444. [PMID: 34830325 PMCID: PMC8624252 DOI: 10.3390/ijms222212444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is a major process in the regulated expression of genes in eukaryotes, and alternative splicing is used to generate different proteins from the same coding gene. Splicing is a catalytic process that removes introns and ligates exons to create the RNA sequence that codifies the final protein. While this is achieved in an autocatalytic process in ancestral group II introns in prokaryotes, the spliceosome has evolved during eukaryogenesis to assist in this process and to finally provide the opportunity for intron-specific splicing. In the early stage of splicing, the RNA 5' and 3' splice sites must be brought within proximity to correctly assemble the active spliceosome and perform the excision and ligation reactions. The assembly of this first complex, termed E-complex, is currently the least understood process. We focused in this review on the formation of the E-complex and compared its composition and function in three different organisms. We highlight the common ancestral mechanisms in S. cerevisiae, S. pombe, and mammals and conclude with a unifying model for intron definition in constitutive and regulated co-transcriptional splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Correspondence: (J.A.); (S.H.)
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Translational Molecular Pathology, Vall d’Hebron Research Institute (VHIR), CIBERONC, 08035 Barcelona, Spain
- Correspondence: (J.A.); (S.H.)
| |
Collapse
|
2
|
Yeh CS, Chang SL, Chen JH, Wang HK, Chou YC, Wang CH, Huang SH, Larson A, Pleiss JA, Chang WH, Chang TH. The conserved AU dinucleotide at the 5' end of nascent U1 snRNA is optimized for the interaction with nuclear cap-binding-complex. Nucleic Acids Res 2017; 45:9679-9693. [PMID: 28934473 PMCID: PMC5766165 DOI: 10.1093/nar/gkx608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Splicing is initiated by a productive interaction between the pre-mRNA and the U1 snRNP, in which a short RNA duplex is established between the 5' splice site of a pre-mRNA and the 5' end of the U1 snRNA. A long-standing puzzle has been why the AU dincucleotide at the 5'-end of the U1 snRNA is highly conserved, despite the absence of an apparent role in the formation of the duplex. To explore this conundrum, we varied this AU dinucleotide into all possible permutations and analyzed the resulting molecular consequences. This led to the unexpected findings that the AU dinucleotide dictates the optimal binding of cap-binding complex (CBC) to the 5' end of the nascent U1 snRNA, which ultimately influences the utilization of U1 snRNP in splicing. Our data also provide a structural interpretation as to why the AU dinucleotide is conserved during evolution.
Collapse
Affiliation(s)
- Chung-Shu Yeh
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Jui-Hui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Kai Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yue-Chang Chou
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shih-Hsin Huang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Amy Larson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tien-Hsien Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Eckert D, Andrée N, Razanau A, Zock-Emmenthal S, Lützelberger M, Plath S, Schmidt H, Guerra-Moreno A, Cozzuto L, Ayté J, Käufer NF. Prp4 Kinase Grants the License to Splice: Control of Weak Splice Sites during Spliceosome Activation. PLoS Genet 2016; 12:e1005768. [PMID: 26730850 PMCID: PMC4701394 DOI: 10.1371/journal.pgen.1005768] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/03/2015] [Indexed: 12/02/2022] Open
Abstract
The genome of the fission yeast Schizosaccharomyces pombe encodes 17 kinases that are essential for cell growth. These include the cell-cycle regulator Cdc2, as well as several kinases that coordinate cell growth, polarity, and morphogenesis during the cell cycle. In this study, we further characterized another of these essential kinases, Prp4, and showed that the splicing of many introns is dependent on Prp4 kinase activity. For detailed characterization, we chose the genes res1 and ppk8, each of which contains one intron of typical size and position. Splicing of the res1 intron was dependent on Prp4 kinase activity, whereas splicing of the ppk8 intron was not. Extensive mutational analyses of the 5’ splice site of both genes revealed that proper transient interaction with the 5’ end of snRNA U1 governs the dependence of splicing on Prp4 kinase activity. Proper transient interaction between the branch sequence and snRNA U2 was also important. Therefore, the Prp4 kinase is required for recognition and efficient splicing of introns displaying weak exon1/5’ splice sites and weak branch sequences. Prp4 is an essential protein kinase that is involved in the splicing of some introns. Using a conditional mutant of Prp4, we showed that a subset of genes, including several cell cycle–regulatory genes, are dependent on Prp4 for splicing. Furthermore, we could convert genes between Prp4-dependent and -independent states by introducing single-nucleotide mutations in the exon1/5’ splice sites and branch sequence of introns. This work shows that Prp4 activity is required for splicing surveillance in a subset of mRNAs.
Collapse
Affiliation(s)
- Daniela Eckert
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nicole Andrée
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Aleh Razanau
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Martin Lützelberger
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susann Plath
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Schmidt
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angel Guerra-Moreno
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Luca Cozzuto
- CRG Bioinformatics Core, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (JA); (NFK)
| | - Norbert F. Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail: (JA); (NFK)
| |
Collapse
|
4
|
Coy S, Volanakis A, Shah S, Vasiljeva L. The Sm complex is required for the processing of non-coding RNAs by the exosome. PLoS One 2013; 8:e65606. [PMID: 23755256 PMCID: PMC3675052 DOI: 10.1371/journal.pone.0065606] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/27/2013] [Indexed: 12/25/2022] Open
Abstract
A key question in the field of RNA regulation is how some exosome substrates, such as spliceosomal snRNAs and telomerase RNA, evade degradation and are processed into stable, functional RNA molecules. Typical feature of these non-coding RNAs is presence of the Sm complex at the 3′end of the mature RNA molecule. Here, we report that in Saccharomyces cerevisiae presence of intact Sm binding site is required for the exosome-mediated processing of telomerase RNA from a polyadenylated precursor into its mature form and is essential for its function in elongating telomeres. Additionally, we demonstrate that the same pathway is involved in the maturation of snRNAs. Furthermore, the insertion of an Sm binding site into an unstable RNA that is normally completely destroyed by the exosome, leads to its partial stabilization. We also show that telomerase RNA accumulates in Schizosaccharomyces pombe exosome mutants, suggesting a conserved role for the exosome in processing and degradation of telomerase RNA. In summary, our data provide important mechanistic insight into the regulation of exosome dependent RNA processing as well as telomerase RNA biogenesis.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sneha Shah
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Newo ANS, Lützelberger M, Bottner CA, Wehland J, Wissing J, Jänsch L, Käufer NF. Proteomic analysis of the U1 snRNP of Schizosaccharomyces pombe reveals three essential organism-specific proteins. Nucleic Acids Res 2007; 35:1391-401. [PMID: 17264129 PMCID: PMC1865046 DOI: 10.1093/nar/gkl1144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Characterization of spliceosomal complexes in the fission yeast Schizosaccharomyces pombe revealed particles sedimenting in the range of 30-60S, exclusively containing U1 snRNA. Here, we report the tandem affinity purification (TAP) of U1-specific protein complexes. The components of the complexes were identified using (LC-MS/MS) mass spectrometry. The fission yeast U1 snRNP contains 16 proteins, including the 7 Sm snRNP core proteins. In both fission and budding yeast, the U1 snRNP contains 9 and 10 U1 specific proteins, respectively, whereas the U1 particle found in mammalian cells contains only 3. Among the U1-specific proteins in S. pombe, three are homolog to the mammalian and six to the budding yeast Saccharomyces cerevisiae U1-specific proteins, whereas three, called U1H, U1J and U1L, are proteins specific to S. pombe. Furthermore, we demonstrate that the homolog of U1-70K and the three proteins specific to S. pombe are essential for growth. We will discuss the differences between the U1 snRNPs with respect to the organism-specific proteins found in the two yeasts and the resulting effect it has on pre-mRNA splicing.
Collapse
Affiliation(s)
- Alain N. S. Newo
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Martin Lützelberger
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Claudia A. Bottner
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Jürgen Wehland
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Josef Wissing
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Norbert F. Käufer
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany and Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- *To whom correspondence should be addressed. +49 531 391 5774+49 531 391 5765
| |
Collapse
|
6
|
Webb CJ, Wise JA. The splicing factor U2AF small subunit is functionally conserved between fission yeast and humans. Mol Cell Biol 2004; 24:4229-40. [PMID: 15121844 PMCID: PMC400479 DOI: 10.1128/mcb.24.10.4229-4240.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 12/17/2003] [Accepted: 02/25/2004] [Indexed: 01/22/2023] Open
Abstract
The small subunit of U2AF, which functions in 3' splice site recognition, is more highly conserved than its heterodimeric partner yet is less thoroughly investigated. Remarkably, we find that the small subunit of Schizosaccharomyces pombe U2AF (U2AF(SM)) can be replaced in vivo by its human counterpart, demonstrating that the conservation extends to function. Precursor mRNAs accumulate in S. pombe following U2AF(SM) depletion in a time frame consistent with a role in splicing. A comprehensive mutational analysis reveals that all three conserved domains are required for viability. Notably, however, a tryptophan in the pseudo-RNA recognition motif implicated in a key contact with the large subunit by crystallographic data is dispensable whereas amino acids implicated in RNA recognition are critical. Mutagenesis of the two zinc-binding domains demonstrates that they are neither equivalent nor redundant. Finally, two- and three-hybrid analyses indicate that mutations with effects on large-subunit interactions are rare whereas virtually all alleles tested diminished RNA binding by the heterodimer. In addition to demonstrating extraordinary conservation of U2AF small-subunit function, these results provide new insights into the roles of individual domains and residues.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
7
|
Zhou D, Lobo-Ruppert SM. Transcription of the Schizosaccharomyces pombe U2 gene in vivo and in vitro is directed by two essential promoter elements. Nucleic Acids Res 2001; 29:2003-11. [PMID: 11353068 PMCID: PMC55464 DOI: 10.1093/nar/29.10.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As compared to the metazoan small nuclear RNAs (snRNAs), relatively little is known about snRNA synthesis in unicellular organisms. We have analyzed the transcription of the Schizosaccharomyces pombe U2 snRNA gene in vivo and in the homologous in vitro system. Deletion and linker-scanning analyses show that the S.pombe U2 promoter contains at least two elements: the spUSE centered at -55, which functions as an activator, and a TATA box at -26, which is essential for basal transcription. These data point to a similar architecture among S.pombe, plant and invertebrate snRNA promoters. Factors recognizing the spUSE can be detected in whole cell extracts by DNase I footprinting and competition studies show that the binding of these factors correlates with transcriptional activity. Electrophoretic mobility shift assays and gel-filtration chromatography revealed a native molecular mass of approximately 200 kDa for the spUSE binding activity. Two polypeptides of molecular masses 25 and 65 kDa were purified by virtue of their ability to specifically bind the spUSE.
Collapse
Affiliation(s)
- D Zhou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 844 BBRB, 845 19th Street South, Birmingham, AL 35294, USA
| | | |
Collapse
|
8
|
Romfo CM, Wise JA. Both the polypyrimidine tract and the 3' splice site function prior to the first step of splicing in fission yeast. Nucleic Acids Res 1997; 25:4658-65. [PMID: 9358179 PMCID: PMC147086 DOI: 10.1093/nar/25.22.4658] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
While it is known that several trans -acting splicing factors are highly conserved between Schizosaccharomyces pombe and mammals, the roles of cis -acting signals have received comparatively little attention. In Saccharomyces cerevisiae, sequences downstream from the branch point are not required prior to the first transesterification reaction, whereas in mammals the polypyrimidine tract and, in some introns, the 3' AG dinucleotide are critical for initial recognition of an intron. We have investigated the contribution of these two sequence elements to splicing in S.pombe. To determine the stage at which the polypyrimidine tract functions, we analyzed the second intron of the cdc2 gene (cdc 2-Int2), in which pyrimidines span the entire interval between the branch point and 3' splice site. Our data indicate that substitution of a polypurine tract results in accumulation of linear pre-mRNA, while expanding the polypyrimidine tract enhances splicing efficiency, as in mammals. To examine the role of the AG dinucleotide in cdc 2-Int2 splicing, we mutated the 3' splice junction in both the wild-type and pyrimidine tract variant RNAs. These changes block the first transesterification reaction, as in a subset of mammalian introns. However, in contrast to the situation in mammals, we were unable to rescue the first step of splicing in a 3' splice site mutant by expanding the polypyrimidine tract. Mutating the terminal G in the third intron of the nda 3 gene (nda 3-Int3) also blocks the first transesterification reaction, suggesting that early recognition of the 3' splice site is a general property of fission yeast introns. Counter to earlier work with an artificial intron, it is not possible to restore the first step of splicing in cdc 2-Int2 and nda 3-Int3 3' splice site mutants by introducing compensatory changes in U1 snRNA. These results highlight the diversity and probable redundancy of mechanisms for identifying the 3' ends of introns.
Collapse
Affiliation(s)
- C M Romfo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
9
|
VanHoy RW, Wise JA. Molecular analysis of a novel schizosaccharomyces pombe gene containing two RNP consensus-sequence RNA-binding domains. Curr Genet 1996; 29:307-15. [PMID: 8598051 DOI: 10.1007/bf02208611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteins containing RNP consensus-sequence RNA-binding domains (CS-RBDs) play diverse roles in many aspects of RNA metabolism. Using a PCR strategy, we cloned portions of six new Schizosaccharomyces pombe genes encoding RBD proteins, including a putative homolog of the mammalian splicing factor SAP49. The genomic locus corresponding to a second PCR product, designated rnp24a, was cloned and characterized in detail. Sequence analysis revealed that the Rnp24 protein is highly charged and contains a second RBD with an unusually long Loop-3 sequence. Strains containing a disrupted copy of the rnp24 gene display neither loss of viability nor any discernible growth defects under a variety of conditions, suggesting that the function of Rnp24p overlaps with that of another fission yeast protein. Although database searches did not identify proteins that share extensive amino-acid identity with Rnp24p, phylogenetic analysis suggests that its closest relatives are metazoan hnRNP proteins. The lack of an observable phenotype in S. pombe cells lacking Rnp24p is consistent with this classification, since hnRNP proteins in higher cells include several distinct subfamilies with similar sequences and RNA-binding specificities.
Collapse
Affiliation(s)
- R W VanHoy
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
10
|
Witt I, Kwart M, Gross T, Käufer NF. The tandem repeat AGGGTAGGGT is, in the fission yeast, a proximal activation sequence and activates basal transcription mediated by the sequence TGTGACTG. Nucleic Acids Res 1995; 23:4296-302. [PMID: 7501449 PMCID: PMC307383 DOI: 10.1093/nar/23.21.4296] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ribosomal protein (rp) genes in the fission yeast Schizosaccharomyces pombe display two highly conserved sequence elements in the promoter region. The molecular dissection of these promoters revealed that basal transcription is not based on a TATA element. The sequence which promotes basal transcription is the conserved sequence CAGTCACA or the inverted form TGTGACTG, called the homol D box. Upstream of the homol D box a tandem repeat AGGGTAGGGT or the inverted form ACCCTACCCT appears in some promoters, called homol E. This element functions in the proximal arrangement with homol D as an activation sequence. A compilation of homol D and homol E sequences identified in other S.pombe promoters revealed that several putative polymerase II and polymerase III promoters display a homol D box or the homol E/homol D arrangement.
Collapse
Affiliation(s)
- I Witt
- Institut für Biochemie und Molekularbiologie, Freie Universität Berlin, Germany
| | | | | | | |
Collapse
|
11
|
The Srp54 GTPase is essential for protein export in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 1994. [PMID: 7969124 DOI: 10.1128/mcb.14.12.7839] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein required for targeting a subset of presecretory proteins to the endoplasmic reticulum (ER) membrane. Here we report the results of a series of experiments to define the function of the Schizosaccharomyces pombe homolog of the 54-kDa subunit of mammalian SRP. One-step gene disruption reveals that the Srp54 protein, like SRP RNA, is essential for viability in S. pombe. Precursor to the secretory protein acid phosphatase accumulates in cells in which Srp54 synthesis has been repressed under the control of a regulated promoter, indicating that S. pombe SRP functions in protein targeting. In common with other Srp54 homologs, the S. pombe protein has a modular structure consisting of an amino-terminal G (GTPase) domain and a carboxyl-terminal M (methionine-rich) domain. We have analyzed the effects of 17 site-specific mutations designed to alter the function of each of the four GTPase consensus motifs individually. Several alleles, including some with relatively conservative amino acid substitutions, confer lethal or conditional phenotypes, indicating that GTP binding and hydrolysis are critical to the in vivo role of the protein. Two mutations (R to L at position 194 [R194L] and R194H) which were designed, by analogy to oncogenic mutations in rats, to dramatically decrease the catalytic rate and one (T248N) predicted to alter nucleotide binding specificity produce proteins that are unable to support growth at 18 degrees C. Consistent with its design, the R194L mutant hydrolyzes GTP at a reduced rate relative to wild-type Srp54 in enzymatic assays on immunoprecipitated proteins. In strains that also contain wild-type srp54, this mutant protein, as well as others designed to be locked in a GTP-bound conformation, exhibits temperature-dependent dominant inhibitory effects on growth, while a mutant predicted to be GDP locked does not interfere with the function of the wild-type protein. These results form the basis of a simple model for the role of GTP hydrolysis by Srp54 during the SRP cycle.
Collapse
|
12
|
Althoff SM, Stevens SW, Wise JA. The Srp54 GTPase is essential for protein export in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 1994; 14:7839-54. [PMID: 7969124 PMCID: PMC359323 DOI: 10.1128/mcb.14.12.7839-7854.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein required for targeting a subset of presecretory proteins to the endoplasmic reticulum (ER) membrane. Here we report the results of a series of experiments to define the function of the Schizosaccharomyces pombe homolog of the 54-kDa subunit of mammalian SRP. One-step gene disruption reveals that the Srp54 protein, like SRP RNA, is essential for viability in S. pombe. Precursor to the secretory protein acid phosphatase accumulates in cells in which Srp54 synthesis has been repressed under the control of a regulated promoter, indicating that S. pombe SRP functions in protein targeting. In common with other Srp54 homologs, the S. pombe protein has a modular structure consisting of an amino-terminal G (GTPase) domain and a carboxyl-terminal M (methionine-rich) domain. We have analyzed the effects of 17 site-specific mutations designed to alter the function of each of the four GTPase consensus motifs individually. Several alleles, including some with relatively conservative amino acid substitutions, confer lethal or conditional phenotypes, indicating that GTP binding and hydrolysis are critical to the in vivo role of the protein. Two mutations (R to L at position 194 [R194L] and R194H) which were designed, by analogy to oncogenic mutations in rats, to dramatically decrease the catalytic rate and one (T248N) predicted to alter nucleotide binding specificity produce proteins that are unable to support growth at 18 degrees C. Consistent with its design, the R194L mutant hydrolyzes GTP at a reduced rate relative to wild-type Srp54 in enzymatic assays on immunoprecipitated proteins. In strains that also contain wild-type srp54, this mutant protein, as well as others designed to be locked in a GTP-bound conformation, exhibits temperature-dependent dominant inhibitory effects on growth, while a mutant predicted to be GDP locked does not interfere with the function of the wild-type protein. These results form the basis of a simple model for the role of GTP hydrolysis by Srp54 during the SRP cycle.
Collapse
Affiliation(s)
- S M Althoff
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
13
|
Abstract
A database of 210 Schizosaccharomyces pombe DNA sequences (524,794 bp) was extracted from GenBank (release number 81.0) and examined by a number of methods in order to characterize statistical features of these sequences that might serve as signals or constraints for messenger RNA splicing. The statistical information compiled includes splicing signal (donor, acceptor and branch site) profiles, translational initiation start profile, exon/intron length distributions, ORF distribution, CDS size distribution, codon usage table, and 6-tuple distribution. The information content of the various signals are also presented. A rule-based interactive computer program for finding introns called INTRON.PLOT has been developed and was used to successfully analyze 7 newly sequenced genes.
Collapse
Affiliation(s)
- M Q Zhang
- Cold Spring Harbor Laboratory, NY 11724
| | | |
Collapse
|
14
|
Aronson BD, Lindgren KM, Dunlap JC, Loros JJ. An efficient method for gene disruption in Neurospora crassa. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:490-4. [PMID: 8121407 DOI: 10.1007/bf00281802] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The frequency with which transforming DNA undergoes homologous recombination at a chromosomal site can be quite low in some fungal systems. In such cases, strategies for gene disruption or gene replacement must either select against ectopic integration events or provide easy screening to identify homologous site, double-crossover insertion events. A protocol is presented for efficient isolation of Neurospora crassa strains carrying a definitive null allele in a target gene. The protocol relies on the presence of a selectable marker flanking a disrupted plasmid-borne copy of the gene, and in the case presented led to a seven-fold enrichment for putative homologous site replacement events. In addition, a polymerase chain reaction assay is utilized for rapid identification of homologous recombinants among the remaining candidates. This protocol was used to identify 3 isolates, out of 129 primary transformants, which have a disruption in the Neurospora ccg-1 gene. The method should be applicable to a variety of fungal systems in which two selectable markers can be expressed, including those in which homologous recombination rates are too low to allow easy identification of homologous site insertions by the more traditional molecular method of Southern analysis. In addition to disrupting target genes for the purpose of generating null mutations, this method is useful for the targeting of reporter gene fusions to a native chromosomal site for the purpose of studying gene regulation.
Collapse
Affiliation(s)
- B D Aronson
- Dartmouth Medical School, Department of Biochemistry, Hanover, NH 03755-3844
| | | | | | | |
Collapse
|
15
|
Sturchler C, Carbon P, Krol A. An additional long-range interaction in human U1 snRNA. Nucleic Acids Res 1992; 20:1215-21. [PMID: 1532853 PMCID: PMC312161 DOI: 10.1093/nar/20.6.1215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We present evidence for the existence of an additional long-range interaction in vertebrate U1 snRNAs. By submitting human U1 snRNP, HeLa nuclear extracts, authentic human or X. laevis in vitro transcribed U1 snRNAs to RNase V1, a nuclease specific for double-stranded regions, cleavages occurred in the sequence psi psi ACC (positions 5-9) residing in the 5' terminal region of the RNA. The RNase V1 sensitive region is insensitive to single-stranded probes, something unexpected knowing that it was considered single-stranded in order to base-pair to pre-mRNA 5' splice site. We have identified the sequence GGUAG (positions 132-136) as the only possible 3' partner. Mutants, either abolishing or restoring the interaction between the partners, coupled to an RNase V1 assay, served to substantiate this base-pairing model. The presence of this additional helix, even detected in nuclear extracts under in vitro splicing conditions, implies that a conformational change must occur to release a free U1 snRNA 5' end.
Collapse
Affiliation(s)
- C Sturchler
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
16
|
Abstract
Although the number of plant U1, U2, U4 and U5 small nuclear RNA (snRNA) variants sequenced has steadily increased over the past few years, the function of these variants in plant splicing is still not understood. In an effort to elucidate the function of plant snRNA variants, we have examined the expression of U1-U6 snRNA variants during pea seedling development. In contrast to mammalian nuclei which express a single, abundant form of each snRNA, pea nuclei express several equally abundant variants of the same snRNA. Comparison of the snRNAs in pea seeds and seedlings has revealed that four (U1, U2, U4, U5) of the five snRNAs required for pre-mRNA splicing have differentially- and developmentally-regulated forms detectable on Northerns. Only U6 snRNA, which fractionates as a single species on Northerns, appears to be constitutively expressed. Switches in the expression of the pea U1, U2 and U4 snRNAs occur at three distinct stages in development: seed maturation, seed germination and seedling maturation. Surprisingly, the snRNA profiles of mature desiccated seeds and mature leaf tissues are nearly identical and different from developing seeds and seedlings suggesting that switches in the snRNA population occur at transitions between active and inactive transcription. Sequence analysis and differential hybridization of the U1 snRNA variants has demonstrated that some of the developmentally-regulated forms represent sequence variants. We conclude that select subsets of pea snRNAs accumulate at particular stages during plant development.
Collapse
Affiliation(s)
- B A Hanley
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | |
Collapse
|
17
|
Hanley BA, Schuler MA. cDNA cloning of U1, U2, U4 and U5 snRNA families expressed in pea nuclei. Nucleic Acids Res 1991; 19:1861-9. [PMID: 2030967 PMCID: PMC328116 DOI: 10.1093/nar/19.8.1861] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differences observed between plant and animal pre-mRNA splicing may be the result of primary or secondary structure differences in small nuclear RNAs (snRNAs). A cDNA library of pea snRNAs was constructed from anti-trimethylguanosine (m3(2,2,7)G immunoprecipitated pea nuclear RNA. The cDNA library was screened using oligo-deoxyribonucleotide probes specific for the U1, U2, U4 and U5 snRNAs. cDNA clones representing U1, U2, U4 and U5 snRNAs expressed in seedling tissue have been isolated and sequenced. Comparison of the pea snRNA variants with other organisms suggest that functionally important primary sequences are conserved phylogenetically even though the overall sequences have diverged substantially. Structural variations in U1 snRNA occur in regions required for U1-specific protein binding. In light of this sequence analysis, it is clear that the dicot snRNA variants do not differ in sequences implicated in RNA:RNA interactions with pre-mRNA. Instead, sequence differences occur in regions implicated in the binding of small ribonucleoproteins (snRNPs) to snRNAs and may result in the formation of unique snRNP particles.
Collapse
Affiliation(s)
- B A Hanley
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | |
Collapse
|
18
|
van Venrooij WJ, Hoet R, Castrop J, Hageman B, Mattaj IW, van de Putte LB. Anti-(U1) small nuclear RNA antibodies in anti-small nuclear ribonucleoprotein sera from patients with connective tissue diseases. J Clin Invest 1990; 86:2154-60. [PMID: 1701452 PMCID: PMC329856 DOI: 10.1172/jci114954] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small nuclear ribonucleoprotein (snRNP) particles are a class of RNA-containing particles in the nucleus of eukaryotic cells. Sera from patients with connective tissue diseases often contain antibodies against the proteins present in these snRNPs. Antibodies against the RNA components of snRNPs, the U snRNAs, are thought to be rare. We tested 118 anti-snRNP sera for the presence of anti-snRNA antibodies and found them in 45 sera (38%). In all sera the antibodies (IgG and F(ab)2 fragments thereof) were exclusively directed against U1 snRNA. The anti-(U1) RNA antibodies were always accompanied by anti-(U1)RNP antibodies but were not found in sera which contain antibodies of the Sm serotype directed against all nucleoplasmic U snRNP particles. Like anti-RNP antibodies, anti-U1 RNA activity is confined to sera from patients with SLE or SLE overlap syndromes and is rarely found in patients with other connective tissue diseases. By analyzing binding to subfragments of U1 snRNA made in vitro, it was demonstrated that anti-(U1)RNA antibodies recognize epitopes distributed throughout the U1 RNA molecule. In most sera, however, either the second or the fourth hairpin loop is the main target of the antibody. The possible mechanisms that could lead to the production of this new type of autoantibody are discussed.
Collapse
Affiliation(s)
- W J van Venrooij
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|