1
|
Kim HS, Kim SJ, Bae J, Wang Y, Park SY, Min YS, Je HD, Sohn UD. The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:595-603. [PMID: 27847436 PMCID: PMC5106393 DOI: 10.4196/kjpp.2016.20.6.595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023]
Abstract
Ribosomal S6 kinase is a family of serine/threonine protein kinases involved in the regulation of cell viability. There are two subfamilies of ribosomal s6 kinase, (p90rsk, p70rsk). Especially, p90rsk is known to be an important downstream kinase of p44/42 MAPK. We investigated the role of p90rsk on ethanol-induced cell proliferation of HepG2 cells. HepG2 cells were treated with 10~50 mM of ethanol with or without ERK and p90rsk inhibitors. Cell viability was measured by MTT assay. The expression of pERK1, NHE1 was measured by Western blots. The phosphorylation of p90rsk was measured by ELISA kits. The expression of Bcl-2 was measured by qRT-PCR. When the cells were treated with 10~30 mM of ethanol for 24 hour, it showed significant increase in cell viability versus control group. Besides, 10~30 mM of ethanol induced increased expression of pERK1, p-p90rsk, NHE1 and Bcl-2. Moreover treatment of p90rsk inhibitor attenuated the ethanol-induced increase in cell viability and NHE1 and Bcl-2 expression. In summary, these results suggest that p90rsk, a downstream kinase of ERK, plays a stimulatory role on ethanol-induced hepatocellular carcinoma progression by activating anti-apoptotic factor Bcl-2 and NHE1 known to regulate cell survival.
Collapse
Affiliation(s)
- Han Sang Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Su-Jin Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jinhyung Bae
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yiyi Wang
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Sun Young Park
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Young Sil Min
- Department of Medicinal Plant Science, College of Science and Engineering, Jungwon University, Chungbuk 28024, Korea
| | - Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Catholic University of Daegu, Daegu 38430, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
2
|
Ballif BA, Roux PP, Gerber SA, MacKeigan JP, Blenis J, Gygi SP. Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci U S A 2005; 102:667-72. [PMID: 15647351 PMCID: PMC545566 DOI: 10.1073/pnas.0409143102] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reversible protein phosphorylation is an essential cellular regulatory mechanism. Many proteins integrate and are modulated by multiple phosphorylation events derived from complex signaling cues. Simultaneous detection and quantification of temporal changes in all of a protein's phosphorylation sites could provide not only an immediate assessment of a known biochemical activity but also important insights into molecular signaling mechanisms. Here we show the use of stable isotope-based quantitative MS to globally monitor the kinetics of complex, ordered phosphorylation events on protein players in the canonical mitogen-activated protein kinase signaling pathway. In excellent agreement with activity assays and phosphospecific immunoblotting with the same samples, we quantified epidermal growth factor-induced changes in nine phosphorylation sites in the extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase-signaling cassette. Additionally, we monitored 14 previously uncharacterized and six known phosphorylation events after phorbol ester stimulation in the ERK/p90 ribosomal S6 kinase-signaling targets, the tuberous sclerosis complex (TSC) tumor suppressors TSC1 and TSC2. By using quantitative phosphorylation profiling in conjunction with pharmacological kinase inhibitors we uncovered a ERK-independent, protein kinase C-dependent pathway to TSC2 phosphorylation. These results establish quantitative phosphorylation profiling as a means to simultaneously identify, quantify, and delineate the kinetic changes of ordered phosphorylation events on a given protein and defines parameters for the rapid discovery of important in vivo phosphoregulatory mechanisms.
Collapse
Affiliation(s)
- Bryan A Ballif
- Department of Cell Biology and Taplin Biological Mass Spectrometry Facility, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
3
|
Murphy LO, MacKeigan JP, Blenis J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol 2004; 24:144-53. [PMID: 14673150 PMCID: PMC303364 DOI: 10.1128/mcb.24.1.144-153.2004] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The strength and duration of mitogen-activated protein kinase (MAPK) signaling have been shown to regulate cell fate in different cell types. In this study, a general mechanism is described that explains how subtle differences in signaling kinetics are translated into a specific biological outcome. In fibroblasts, the expression of immediate early gene (IEG)-encoded Fos, Jun, Myc, and early growth response gene 1 (Egr-1) transcription factors is significantly extended by sustained extracellular signal-regulated kinase 1 and 2 (ERK1 and -2) signaling. Several of these proteins contain functional docking site for ERK, FXFP (DEF) domains that serve to locally concentrate the active kinase, thus showing that they can function as ERK sensors. Sustained ERK signaling regulates the posttranslational modifications of these IEG-encoded sensors, which contributes to their sustained expression during the G(1)-S transition. DEF domain-containing sensors can also interpret the small changes in ERK signal strength that arise from less than a threefold reduction in agonist concentration. As a result, downstream target gene expression and cell cycle progression are significantly changed.
Collapse
Affiliation(s)
- Leon O Murphy
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
4
|
Roux PP, Richards SA, Blenis J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol 2003; 23:4796-804. [PMID: 12832467 PMCID: PMC162206 DOI: 10.1128/mcb.23.14.4796-4804.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of the Ras/extracellular signal-regulated kinase (ERK) pathway can modulate cell growth, proliferation, survival, and motility. The p90 ribosomal S6 kinases (RSKs) comprise a family of serine/threonine kinases that lie at the terminus of the ERK pathway. Efficient RSK activation by ERK requires its interaction through a docking site located near the C terminus of RSK, but the regulation of this interaction remains unknown. In this report we show that RSK1 and ERK1/2 form a complex in quiescent HEK293 cells that transiently dissociates upon mitogen stimulation. Complex dissociation requires phosphorylation of RSK1 serine 749, which is a mitogen-regulated phosphorylation site located near the ERK docking site. Using recombinant RSK1 proteins, we find that serine 749 is phosphorylated by the N-terminal kinase domain of RSK1 in vitro, suggesting that ERK1/2 dissociation is mediated through RSK1 autophosphorylation of this residue. Consistent with this hypothesis, we find that inactivating mutations in the RSK1 kinase domains disrupted the mitogen-regulated dissociation of ERK1/2 in vivo. Analysis of different RSK isoforms revealed that RSK1 and RSK2 readily dissociate from ERK1/2 following mitogen stimulation but that RSK3 remains associated with active ERK1/2. RSK activity assays revealed that RSK3 also remains active longer than RSK1 and RSK2, suggesting that prolonged ERK association increased the duration of RSK3 activation. These results provide new evidence for the regulated nature of ERK docking interactions and reveal important differences among the closely related RSK family members.
Collapse
Affiliation(s)
- Philippe P Roux
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
5
|
Richards SA, Dreisbach VC, Murphy LO, Blenis J. Characterization of regulatory events associated with membrane targeting of p90 ribosomal S6 kinase 1. Mol Cell Biol 2001; 21:7470-80. [PMID: 11585927 PMCID: PMC99919 DOI: 10.1128/mcb.21.21.7470-7480.2001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RSK is a serine/threonine kinase containing two distinct catalytic domains. Found at the terminus of the Ras/extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) kinase cascade, mitogen-stimulated ribosomal S6 kinase (RSK) activity requires multiple inputs. These inputs include phosphorylation of the C-terminal kinase domain activation loop by ERK1/2 and phosphorylation of the N-terminal kinase domain activation loop by phosphoinositide-dependent protein kinase-1 (PDK1). Previous work has shown that upon mitogen stimulation, RSK accumulates in the nucleus. Here we show that prior to nuclear translocation, epidermal growth factor-stimulated RSK1 transiently associates with the plasma membrane. Myristylation of wild-type RSK1 results in an activated enzyme in the absence of added growth factors. When RSK is truncated at the C terminus, the characterized ERK docking is removed and RSK phosphotransferase activity is completely abolished. When myristylated, however, this myristylated C-terminal truncated form (myrCTT) is activated at a level equivalent to myristylated wild-type (myrWT) RSK. Both myrWT RSK and myrCTT RSK can signal to the RSK substrate c-Fos in the absence of mitogen activation. Unlike myrWT RSK, myrCTT RSK is not further activated by serum. Only the myristylated RSK proteins are basally phosphorylated on avian RSK1 serine 381, a site critical for RSK activity. The myristylated and unmyristylated RSK constructs interact with PDK1 upon mitogen stimulation, and this interaction is insensitive to the MEK inhibitor UO126. Because a kinase-inactive CTT RSK can be constitutively activated by targeting to the membrane, we propose that ERK may have a dual role in early RSK activation events: preliminary phosphorylation of RSK and escorting RSK to a membrane-associated complex, where additional MEK/ERK-independent activating inputs are encountered.
Collapse
Affiliation(s)
- S A Richards
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
6
|
Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR. Bidirectional modulation of insulin action by amino acids. J Clin Invest 1998; 101:1519-29. [PMID: 9525995 PMCID: PMC508730 DOI: 10.1172/jci1326] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amino acids have been shown to stimulate protein synthesis, inhibit proteolysis, and decrease whole-body and forearm glucose disposal. Using cultured hepatoma and myotube cells, we demonstrate that amino acids act as novel signaling elements in insulin target tissues. Exposure of cells to high physiologic concentrations of amino acids activates intermediates important in the initiation of protein synthesis, including p70 S6 kinase and PHAS-I, in synergy with insulin. This stimulatory effect is largely due to branched chain amino acids, particularly leucine, and can be reproduced by its transamination product, ketoisocaproic acid. Concurrently, amino acids inhibit early steps in insulin action critical for glucose transport and inhibition of gluconeogenesis, including decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2, decreased binding of grb 2 and the p85 subunit of phosphatidylinositol 3-kinase to IRS-1 and IRS-2, and a marked inhibition of insulin-stimulated phosphatidylinositol 3-kinase. Taken together, these data support the hypothesis that amino acids act as specific positive signals for maintenance of protein stores, while inhibiting other actions of insulin at multiple levels. This bidirectional modulation of insulin action indicates crosstalk between hormonal and nutritional signals and demonstrates a novel mechanism by which nutritional factors contribute to insulin resistance.
Collapse
Affiliation(s)
- M E Patti
- Research Division, Joslin Diabetes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
7
|
Hei YJ, Farahbakhshian S, Chen X, Battell ML, McNeill JH. Stimulation of MAP kinase and S6 kinase by vanadium and selenium in rat adipocytes. Mol Cell Biochem 1998; 178:367-75. [PMID: 9546621 DOI: 10.1023/a:1006819906820] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To explore the mechanism underlying the insulin-mimetic actions of vanadium and selenium we examined their effects on the mitogen activated protein/myelin basic protein kinases (MAPK) and ribosomal S6 protein kinases, which are among the best characterized of the kinases that comprise the phosphorylation cascade in insulin signal transduction. We observed a transient activation of MAPK and S6 kinases by insulin in rat adipocytes, while both sodium selenate and vanadyl sulphate produced prolonged activation of the kinases. Vanadyl sulphate stimulated the activity of MAPK and S6 kinase by as much as 6 fold and 15 fold, respectively. Pretreatment of the cells with genistein did not affect the activation of MAPK by insulin, but partially blocked the effects of sodium selenate and vanadyl sulphate. Genistein did not change the activation of S6 kinase by insulin, but blocked the activation in vanadyl sulphate- and sodium selenate-treated-cells, suggesting that a genistein sensitive tyrosine kinase may be involved in the activation by these two compounds. Rapamycin, a specific inhibitor of the p70s6k isoform of S6 kinase, partially reduced the activation of S6 kinase activity by sodium selenate, indicating a role for this kinase in the overall activity of the S6 kinase in sodium selenate-treated cells. A similar trend was noted in vanadyl sulphate-treated cells. Thus, this study supports the involvement of MAPK and S6 kinases in the insulin-mimetic actions of vanadium and selenium.
Collapse
Affiliation(s)
- Y J Hei
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
8
|
Neurotransmitter- and growth factor-induced cAMP response element binding protein phosphorylation in glial cell progenitors: role of calcium ions, protein kinase C, and mitogen-activated protein kinase/ribosomal S6 kinase pathway. J Neurosci 1997. [PMID: 9006973 DOI: 10.1523/jneurosci.17-04-01291.1997] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To understand how extracellular signals may produce long-term effects in neural cells, we have analyzed the mechanism by which neurotransmitters and growth factors induce phosphorylation of the transcription factor cAMP response element binding protein (CREB) in cortical oligodendrocyte progenitor (OP) cells. Activation of glutamate receptor channels by kainate, as well as stimulation of G-protein-coupled cholinergic receptors by carbachol and tyrosine kinase receptors by basic fibroblast growth factor (bFGF), rapidly leads to mitogen-activated protein kinase (MAPK) phosphorylation and ribosomal S6 kinase (RSK) activation. Kainate and carbachol activation of the MAPK pathway requires extracellular calcium influx and is accompanied by protein kinase C (PKC) induction, with no significant increase in GTP binding to Ras. Conversely, growth factor-stimulated MAPK phosphorylation is independent of extracellular calcium and is accompanied by Ras activation. Both basal and stimulated MAPK activity in OP cells are influenced by cytoplasmic calcium levels, as shown by their sensitivity to the calcium chelator bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid. The kinetics of CREB phosphorylation in response to the various agonists corresponds to that of MAPK activation. Moreover, CREB phosphorylation and MAPK activation are similarly affected by calcium ions. The MEK inhibitor PD 098059, which selectively prevents activation of the MAPK pathway, strongly reduces induction of CREB phosphorylation by kainate, carbachol, bFGF, and the phorbol ester TPA. We propose that in OPs the MAPK/RSK pathway mediates CREB phosphorylation in response to calcium influx, PKC activation, and growth factor stimulation.
Collapse
|
9
|
Juo P, Kuo CJ, Reynolds SE, Konz RF, Raingeaud J, Davis RJ, Biemann HP, Blenis J. Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases. Mol Cell Biol 1997; 17:24-35. [PMID: 8972182 PMCID: PMC231726 DOI: 10.1128/mcb.17.1.24] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Fas receptor mediates a signalling cascade resulting in programmed cell death (apoptosis) within hours of receptor cross-linking. In this study Fas activated the stress-responsive mitogen-activated protein kinases, p38 and JNK, within 2 h in Jurkat T lymphocytes but not the mitogen-responsive kinase ERK1 or pp70S6k. Fas activation of p38 correlated temporally with the onset of apoptosis, and transfection of constitutively active MKK3 (glu), an upstream regulator of p38, potentiated Fas-induced cell death, suggesting a potential involvement of the MKK3/p38 activation pathway in Fas-mediated apoptosis. Fas has been shown to require ICE (interleukin-1 beta-converting enzyme) family proteases to induce apoptosis from studies utilizing the cowpox ICE inhibitor protein CrmA, the synthetic tetrapeptide ICE inhibitor YVAD-CMK, and the tripeptide pan-ICE inhibitor Z-VAD-FMK. In this study, crmA antagonized, and YVAD-CMK and Z-VAD-FMK completely inhibited, Fas activation of p38 kinase activity, demonstrating that Fas-dependent activation of p38 requires ICE/CED-3 family members and conversely that the MKK3/p38 activation cascade represents a downstream target for the ICE/CED-3 family proteases. Intriguingly, p38 activation by sorbitol and etoposide was resistant to YVAD-CMK and Z-VAD-FMK, suggesting the existence of an additional mechanism(s) of p38 regulation. The ICE/CED-3 family-p38 regulatory relationship described in the current work indicates that in addition to the previously described destructive cleavage of substrates such as poly(ADP ribose) polymerase, lamins, and topoisomerase, the apoptotic cysteine proteases also function to regulate stress kinase signalling cascades.
Collapse
Affiliation(s)
- P Juo
- Department of Cell Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Mitogen-activated protein kinase and one of its targets, pp90rsk (ribosomal S6 kinase [RSK]), represent two serine/threonine kinases in the Ras-activated signalling cascade that are capable of directly regulating gene expression. pp90rsk has been shown to have two highly conserved and distinct catalytic domains. However, whether both domains are active and which domain is responsible for its various identified phosphotransferase activities have not been determined. Here we demonstrate that the N-terminal domain is responsible for its phosphotransferase activity towards a variety of substrates which contain an RXXS motif at the site of in vitro phosphorylation, including serum response factor, c-Fos, Nur77, and the 40S ribosomal protein S6. We also provide evidence that the C-terminal domain is catalytically active and can be further activated by mitogen-activated protein kinase phosphorylation.
Collapse
Affiliation(s)
- T L Fisher
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
11
|
Cheatham L, Monfar M, Chou MM, Blenis J. Structural and functional analysis of pp70S6k. Proc Natl Acad Sci U S A 1995; 92:11696-700. [PMID: 8524831 PMCID: PMC40469 DOI: 10.1073/pnas.92.25.11696] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pp70/85-kDa S6 kinases, collectively referred to as pp70S6k, are thought to participate in transit through the G1 phase of the cell cycle. pp70S6k regulates the phosphorylation of the 40S ribosomal protein S6 and the transcription factor CREM tau. pp70S6k is regulated by serine/threonine phosphorylation, and although 1-phosphatidylinositol 3-kinase and phospholipase C have been implicated as upstream regulators, the mechanism of activation and identity of the upstream pp70S6k kinases remain unknown. To improve our understanding of how this mitogen-stimulated protein kinase is regulated by growth factors and the immunosuppressant rapamycin, we have initiated a structure/function analysis of pp70S6k. Our results indicate that both the N and C termini participate in the complex regulation of pp70S6k activity.
Collapse
Affiliation(s)
- L Cheatham
- Department of Cell Biology, Harvard Medical School, Boston, MA 02130, USA
| | | | | | | |
Collapse
|
12
|
Graus-Porta D, Beerli RR, Hynes NE. Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol Cell Biol 1995; 15:1182-91. [PMID: 7532277 PMCID: PMC230341 DOI: 10.1128/mcb.15.3.1182] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ErbB-2 becomes rapidly phosphorylated and activated following treatment of many cell lines with epidermal growth factor (EGF) or Neu differentiation factor (NDF). However, these factors do not directly bind ErbB-2, and its activation is likely to be mediated via transmodulation by other members of the type I/EGF receptor (EGFR)-related family of receptor tyrosine kinases. The precise role of ErbB-2 in the transduction of the signals elicited by EGF and NDF is unclear. We have used a novel approach to study the role of ErbB-2 in signaling through this family of receptors. An ErbB-2-specific single-chain antibody, designed to prevent transit through the endoplasmic reticulum and cell surface localization of ErbB-2, has been expressed in T47D mammary carcinoma cells, which express all four known members of the EGFR family. We show that cell surface expression of ErbB-2 was selectively suppressed in these cells and that the activation of the mitogen-activated protein kinase pathway and p70/p85S6K, induction of c-fos expression, and stimulation of growth by NDF were dramatically impaired. Activation of mitogen-activated protein kinase and p70/p85S6K and induction of c-fos expression by EGF were also significantly reduced. We conclude that in T47D cells, ErbB-2 is a major NDF signal transducer and a potentiator of the EGF signal. Thus, our observations demonstrate that ErbB-2 plays a central role in the type I/EGFR-related family of receptors and that receptor transmodulation represents a crucial step in growth factor signaling.
Collapse
|
13
|
Monfar M, Lemon KP, Grammer TC, Cheatham L, Chung J, Vlahos CJ, Blenis J. Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP. Mol Cell Biol 1995; 15:326-37. [PMID: 7528328 PMCID: PMC231963 DOI: 10.1128/mcb.15.1.326] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Activation of phosphatidylinositol 3-kinase (PI3K) and activation of the 70/85-kDa S6 protein kinases (alpha II and alpha I isoforms, referred to collectively as pp70S6k) have been independently linked to the regulation of cell proliferation. We demonstrate that these kinases lie on the same signalling pathway and that PI3K mediates the activation of pp70 by the cytokine interleukin-2 (IL-2). We also show that the activation of pp70S6k can be blocked at different points along the signalling pathway by using specific inhibitors of T-cell proliferation. Inhibition of PI3K activity with structurally unrelated but highly specific PI3K inhibitors (wortmannin or LY294002) results in inhibition of IL-2-dependent but not phorbol ester (conventional protein kinase C [cPKC])-dependent pp70S6k activation. The T-cell immunosuppressant rapamycin potently antagonizes IL-2-(PI3K)- and phorbol ester (cPKC)-mediated activation of pp70S6k. Thus, wortmannin and rapamycin antagonize IL-2-mediated activation of pp70S6k at distinct points along the PI3K-regulated signalling pathway, or rapamycin antagonizes another pathway required for pp70S6k activity. Agents that raise the concentration of intracellular cyclic AMP (cAMP) and activate cAMP-dependent protein kinase (PKA) also inhibit IL-2-dependent activation of pp70S6k. In this case, inhibition appears to occur at least two points in this signalling path. Like rapamycin, PKA appears to act downstream of cPKC-mediated pp70S6k activation, and like wortmannin, PKA antagonizes IL-2-dependent activation of PI3K. The results with rapamycin and wortmannin are of added interest since the yeast and mammalian rapamycin targets resemble PI3K in the catalytic domain.
Collapse
Affiliation(s)
- M Monfar
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | |
Collapse
|
14
|
Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 1994. [PMID: 8007986 DOI: 10.1128/mcb.14.7.4902] [Citation(s) in RCA: 713] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by insulin and a variety of growth factors, but its exact role in signal transduction remains unclear. We have used a novel, highly specific inhibitor of PT 3-kinase to dissect the role of this enzyme in insulin action. Treatment of intact 3T3-L1 adipocytes with LY294002 produced a dose-dependent inhibition of insulin-stimulated PI 3-kinase (50% inhibitory concentration, 6 microM) with > 95% reduction in the levels of phosphatidylinositol-3,4,5-trisphosphate without changes in the levels of phosphatidylinositol-4-monophosphate or its derivatives. In parallel, there was a complete inhibition of insulin-stimulated phosphorylation and activation of pp70 S6 kinase. Inhibition of PI 3-kinase also effectively blocked insulin- and serum-stimulated DNA synthesis and insulin-stimulated glucose uptake by inhibiting translocation of GLUT 4 glucose transporters to the plasma membrane. By contrast, LY294002 had no effect on insulin stimulation of mitogen-activated protein kinase or pp90 S6 kinase. Thus, activation of PI 3-kinase plays a critical role in mammalian cells and is required for activation of pp70 S6 kinase and DNA synthesis and certain forms of intracellular vesicular trafficking but not mitogen-activated protein kinase or pp90 S6 kinase activation. These data suggest that PI 3-kinase is not only an important component but also a point of divergence in the insulin signaling network.
Collapse
|
15
|
Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 1994; 14:4902-11. [PMID: 8007986 PMCID: PMC358862 DOI: 10.1128/mcb.14.7.4902-4911.1994] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by insulin and a variety of growth factors, but its exact role in signal transduction remains unclear. We have used a novel, highly specific inhibitor of PT 3-kinase to dissect the role of this enzyme in insulin action. Treatment of intact 3T3-L1 adipocytes with LY294002 produced a dose-dependent inhibition of insulin-stimulated PI 3-kinase (50% inhibitory concentration, 6 microM) with > 95% reduction in the levels of phosphatidylinositol-3,4,5-trisphosphate without changes in the levels of phosphatidylinositol-4-monophosphate or its derivatives. In parallel, there was a complete inhibition of insulin-stimulated phosphorylation and activation of pp70 S6 kinase. Inhibition of PI 3-kinase also effectively blocked insulin- and serum-stimulated DNA synthesis and insulin-stimulated glucose uptake by inhibiting translocation of GLUT 4 glucose transporters to the plasma membrane. By contrast, LY294002 had no effect on insulin stimulation of mitogen-activated protein kinase or pp90 S6 kinase. Thus, activation of PI 3-kinase plays a critical role in mammalian cells and is required for activation of pp70 S6 kinase and DNA synthesis and certain forms of intracellular vesicular trafficking but not mitogen-activated protein kinase or pp90 S6 kinase activation. These data suggest that PI 3-kinase is not only an important component but also a point of divergence in the insulin signaling network.
Collapse
Affiliation(s)
- B Cheatham
- Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
GRB-2 is a small SH2- and SH3 domain-containing adapter protein that associates with the mammalian SOS homolog to regulate p21ras during growth factor signaling. During insulin stimulation, GRB-2 binds to the phosphorylated Y895VNI motif of IRS-1. Substitution of Tyr-895 with phenylalanine (IRS-1F-895) prevented the IRS-1-GRB-2 association in vivo and in vitro. The myeloid progenitor cell line, 32-D, is insensitive to insulin because it contains few insulin receptors and no IRS-1. Coexpression of IRS-1 or IRS-1F-895 with the insulin receptor was required for insulin-stimulated mitogenesis in 32-D cells, while expression of the insulin receptor alone was sufficient to mediate insulin-stimulated tyrosine phosphorylation of Shc and activation of p21ras and mitogen-activated protein (MAP) kinase. The Shc-GRB-2 complex formed during insulin stimulation is a possible mediator of p21ras and MAP kinase activation in IRS-1-deficient 32-D cells. Interestingly, IRS-1, but not IRS-1F-895, enhanced the stimulation of MAP kinase by insulin in 32-D cells expressing insulin receptors. Thus, IRS-1 contributes to the stimulation of MAP kinase by insulin, probably through formation of the IRS-1-GRB-2 complex at Tyr-895. Our results suggest that the Shc-GRB-2 complex and the activation of p21ras-dependent signaling pathways, including MAP kinase, are insufficient for insulin-stimulated mitogenesis and that the essential function(s) of IRS-1 in proliferative signaling is largely unrelated to IRS-1-GRB-2 complex formation.
Collapse
|
17
|
Kharbanda S, Saleem A, Shafman T, Emoto Y, Weichselbaum R, Kufe D. Activation of the pp90rsk and mitogen-activated serine/threonine protein kinases by ionizing radiation. Proc Natl Acad Sci U S A 1994; 91:5416-20. [PMID: 8202500 PMCID: PMC44006 DOI: 10.1073/pnas.91.12.5416] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cellular response to ionizing radiation (IR) includes induction of the c-jun and EGR1 early response genes. The present work has examined potential cytoplasmic signaling cascades that transduce IR-induced signals to the nucleus. The results demonstrate activation of the 40S ribosomal protein S6 kinase, pp90rsk, in human U-937 myeloid leukemia cells. Partial purification of pp90rsk by affinity chromatography demonstrated an increase in S6 peptide phosphorylation when comparing irradiated with control cells. IR-induced activation of pp90rsk was further confirmed in immune-complex kinase assays. In contrast to these findings, there was no detectable induction of pp70S6K. Previous work has demonstrated that mitogen-activated protein kinase activates pp90rsk. The present results further show that IR treatment is associated with induction of mitogen-activated protein kinase activity and that this event is temporally related to activation of pp90rsk and early response gene expression. These findings suggest that activation of the mitogen-activated protein kinase/pp90rsk cascade is involved in the response of cells to IR exposure.
Collapse
Affiliation(s)
- S Kharbanda
- Division of Cancer Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | |
Collapse
|
18
|
Myers MG, Wang LM, Sun XJ, Zhang Y, Yenush L, Schlessinger J, Pierce JH, White MF. Role of IRS-1-GRB-2 complexes in insulin signaling. Mol Cell Biol 1994; 14:3577-87. [PMID: 8196603 PMCID: PMC358725 DOI: 10.1128/mcb.14.6.3577-3587.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
GRB-2 is a small SH2- and SH3 domain-containing adapter protein that associates with the mammalian SOS homolog to regulate p21ras during growth factor signaling. During insulin stimulation, GRB-2 binds to the phosphorylated Y895VNI motif of IRS-1. Substitution of Tyr-895 with phenylalanine (IRS-1F-895) prevented the IRS-1-GRB-2 association in vivo and in vitro. The myeloid progenitor cell line, 32-D, is insensitive to insulin because it contains few insulin receptors and no IRS-1. Coexpression of IRS-1 or IRS-1F-895 with the insulin receptor was required for insulin-stimulated mitogenesis in 32-D cells, while expression of the insulin receptor alone was sufficient to mediate insulin-stimulated tyrosine phosphorylation of Shc and activation of p21ras and mitogen-activated protein (MAP) kinase. The Shc-GRB-2 complex formed during insulin stimulation is a possible mediator of p21ras and MAP kinase activation in IRS-1-deficient 32-D cells. Interestingly, IRS-1, but not IRS-1F-895, enhanced the stimulation of MAP kinase by insulin in 32-D cells expressing insulin receptors. Thus, IRS-1 contributes to the stimulation of MAP kinase by insulin, probably through formation of the IRS-1-GRB-2 complex at Tyr-895. Our results suggest that the Shc-GRB-2 complex and the activation of p21ras-dependent signaling pathways, including MAP kinase, are insufficient for insulin-stimulated mitogenesis and that the essential function(s) of IRS-1 in proliferative signaling is largely unrelated to IRS-1-GRB-2 complex formation.
Collapse
Affiliation(s)
- M G Myers
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Franklin RA, Tordai A, Patel H, Gardner AM, Johnson GL, Gelfand EW. Ligation of the T cell receptor complex results in activation of the Ras/Raf-1/MEK/MAPK cascade in human T lymphocytes. J Clin Invest 1994; 93:2134-40. [PMID: 8182145 PMCID: PMC294346 DOI: 10.1172/jci117209] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Stimulation of T cells with antibodies directed towards the T cell receptor complex results in the activation of mitogen-associated protein kinase (MAPK). Two pathways have been described in other cell types that can lead to MAPK activation. One of these pathways involves the activation of Ras, leading to the activation of Raf-1, and the subsequent activation of MEK (MAPK or ERK kinase). The contribution of this pathway in T cells for anti-CD3 or phorbol myristate acetate (PMA)-mediated MAPK activation was examined. We detected the kinase activities of Raf-1 and MEK towards their substrates (MEK for Raf-1 and MAPK for MEK) in this pathway leading to the activation of MAPK. Stimulation of the T cells with either anti-CD3 antibody or PMA resulted in a rapid activation of both Ras and Raf-1. MEK activity towards kinase-active or -inactive recombinant MAPK also increased upon stimulation. In addition, both MAPK and p90rsk were activated in these cells. We suggest that activation of MAPK and the subsequent activation of ribosomal S6 kinase (p90rsk) occurs by the Ras/Raf-1/MEK cascade in T lymphocytes stimulated by ligation of the T cell receptor complex.
Collapse
Affiliation(s)
- R A Franklin
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206
| | | | | | | | | | | |
Collapse
|
20
|
Pasqualini R, Hemler ME. Contrasting roles for integrin beta 1 and beta 5 cytoplasmic domains in subcellular localization, cell proliferation, and cell migration. J Biophys Biochem Cytol 1994; 125:447-60. [PMID: 7512969 PMCID: PMC2120033 DOI: 10.1083/jcb.125.2.447] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To carry out a detailed comparison of the roles of integrin beta 1 and beta 5 cytoplasmic domains, we expressed both wild type beta 1 and chimeric beta 1/5 constructs in CHO cells. In the latter, the cytoplasmic domain of beta 1 was replaced with that of beta 5. The human beta 1 and beta 1/5 constructs appeared at similar levels at the cell surface (mostly as alpha 5 beta 1 heterodimers) and contributed equally to CHO cell adhesion to fibronectin. However, beta 1 but not beta 1/5 localized to focal adhesion-like structures when CHO cells were spread on fibronectin. Furthermore, only the beta 1-CHO cells showed increased proliferation in response to fibronectin plus an integrin-activating anti-beta 1 antibody, and showed increased appearance of 32P-labeled protein (p90) that correlated with proliferation. In sharp contrast, the beta 1/5-CHO cells were notably more migratory than beta 1-CHO cells in a transwell haptotactic migration assay. These results indicate that the beta 1 and beta 5 integrin subunit cytoplasmic domains can translate similar adhesive information into highly contrasting subsequent events. Thus, we have established that "inside-out" and "outside-in" integrin signaling pathways are regulated by fundamentally distinct mechanisms. In addition, we suggest that the same properties of the beta 1 cytoplasmic domain that promote recruitment to visible focal adhesion-like structures may also be conductive to cell proliferation. Conversely, the properties of the beta 5 tail that make it less likely to localize into focal adhesion-like structures may contribute to enhanced cell migration.
Collapse
Affiliation(s)
- R Pasqualini
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | |
Collapse
|
21
|
p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol Cell Biol 1994. [PMID: 8264614 DOI: 10.1128/mcb.14.1.463] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human platelets provide an excellent model system for the study of phosphorylation events during signal transduction and cell adhesion. Platelets are terminally differentiated cells that exhibit rapid phosphorylation of many proteins upon agonist-induced activation and aggregation. We have sought to identify the kinases as well as the phosphorylated substrates that participate in thrombin-induced signal transduction and platelet aggregation. In this study, we have identified two forms of mitogen-activated protein kinase (MAPK), p42mapk and p44mapk, in platelets. The data demonstrate that p42mapk but not p44mapk becomes phosphorylated on serine, threonine, and tyrosine during platelet activation. Immune complex kinase assays, gel renaturation assays, and a direct assay for MAPK activity in platelet extracts all support the conclusion that p42mapk but not p44mapk shows increased kinase activity during platelet activation. The activation of p42mapk, independently of p44mapk, in platelets is unique since in other systems, both kinases are coactivated by a variety of stimuli. We also show that platelets express p90rsk, a ribosomal S6 kinase that has previously been characterized as a substrate for MAPK. p90rsk is phosphorylated on serine in resting platelets, and this phosphorylation is enhanced upon thrombin-induced platelet activation. Immune complex kinase assays demonstrate that the activity of p90rsk is markedly increased during platelet activation. Another ribosomal S6 protein kinase, p70S6K, is expressed by platelets but shows no change in kinase activity upon platelet activation with thrombin. Finally, we show that the increased phosphorylation and activity of both p42mapk and p90rsk does not require integrin-mediated platelet aggregation. Since platelets are nonproliferative cells, the signal transduction pathways that include p42mapk and p90rsk cannot lead to a mitogenic signal and instead may regulate cytoskeletal or secretory changes during platelet activation.
Collapse
|
22
|
Papkoff J, Chen RH, Blenis J, Forsman J. p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol Cell Biol 1994; 14:463-72. [PMID: 8264614 PMCID: PMC358396 DOI: 10.1128/mcb.14.1.463-472.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human platelets provide an excellent model system for the study of phosphorylation events during signal transduction and cell adhesion. Platelets are terminally differentiated cells that exhibit rapid phosphorylation of many proteins upon agonist-induced activation and aggregation. We have sought to identify the kinases as well as the phosphorylated substrates that participate in thrombin-induced signal transduction and platelet aggregation. In this study, we have identified two forms of mitogen-activated protein kinase (MAPK), p42mapk and p44mapk, in platelets. The data demonstrate that p42mapk but not p44mapk becomes phosphorylated on serine, threonine, and tyrosine during platelet activation. Immune complex kinase assays, gel renaturation assays, and a direct assay for MAPK activity in platelet extracts all support the conclusion that p42mapk but not p44mapk shows increased kinase activity during platelet activation. The activation of p42mapk, independently of p44mapk, in platelets is unique since in other systems, both kinases are coactivated by a variety of stimuli. We also show that platelets express p90rsk, a ribosomal S6 kinase that has previously been characterized as a substrate for MAPK. p90rsk is phosphorylated on serine in resting platelets, and this phosphorylation is enhanced upon thrombin-induced platelet activation. Immune complex kinase assays demonstrate that the activity of p90rsk is markedly increased during platelet activation. Another ribosomal S6 protein kinase, p70S6K, is expressed by platelets but shows no change in kinase activity upon platelet activation with thrombin. Finally, we show that the increased phosphorylation and activity of both p42mapk and p90rsk does not require integrin-mediated platelet aggregation. Since platelets are nonproliferative cells, the signal transduction pathways that include p42mapk and p90rsk cannot lead to a mitogenic signal and instead may regulate cytoskeletal or secretory changes during platelet activation.
Collapse
Affiliation(s)
- J Papkoff
- Syntex Research, Palo Alto, California 94304
| | | | | | | |
Collapse
|
23
|
Chen RH, Abate C, Blenis J. Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc Natl Acad Sci U S A 1993; 90:10952-6. [PMID: 8248197 PMCID: PMC47899 DOI: 10.1073/pnas.90.23.10952] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphorylation of the C terminus of c-Fos has been implicated in serum response element-mediated repression of c-fos transcription after its induction by serum growth factors. The growth-regulated enzymes responsible for this phosphorylation in early G1 phase of the cell cycle and the sites of phosphorylation have not been identified. We now provide evidence that two growth-regulated, nucleus- and cytoplasm-localized protein kinases, 90-kDa ribosomal S6 kinase (RSK) and mitogen-activated protein kinase (MAP kinase), contribute to the serum-induced phosphorylation of c-Fos. The major phosphopeptides derived from biosynthetically labeled c-Fos correspond to phosphopeptides generated after phosphorylation of c-Fos in vitro with both RSK and MAP kinase. The phosphorylation sites identified for RSK (Ser-362) and MAP kinase (Ser-374) are in the transrepression domain. Cooperative phosphorylation at these sites by both enzymes was observed in vitro and reflected in vivo by the predominance of the peptide phosphorylated on both sites, as opposed to singly phosphorylated peptides. This study suggests a role for nuclear RSK and MAP kinase in modulating newly synthesized c-Fos phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- R H Chen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
24
|
A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol Cell Biol 1993. [PMID: 8413226 DOI: 10.1128/mcb.13.10.6260] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A signaling pathway by which growth factors may induce transcription of the c-fos proto-oncogene has been characterized. Growth factor stimulation of quiescent fibroblasts activates a protein kinase cascade that leads to the rapid and transient phosphorylation of the serum response factor (SRF), a regulator of c-fos transcription. The in vivo kinetics of SRF phosphorylation and dephosphorylation parallel the activation and subsequent repression of c-fos transcription, suggesting that this phosphorylation event plays a critical role in the control of c-fos expression. The ribosomal S6 kinase pp90rsk, a growth factor-inducible kinase, phosphorylates SRF in vitro at serine 103, the site that becomes newly phosphorylated upon growth factor stimulation in vivo. Phosphorylation of serine 103 significantly enhances the affinity and rate with which SRF associates with its binding site, the serum response element, within the c-fos promoter. These results suggest a model in which the growth factor-induced phosphorylation of SRF at serine 103 contributes to the activation of c-fos transcription by facilitating the formation of an active transcription complex at the serum response element.
Collapse
|
25
|
Rivera VM, Miranti CK, Misra RP, Ginty DD, Chen RH, Blenis J, Greenberg ME. A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol Cell Biol 1993; 13:6260-73. [PMID: 8413226 PMCID: PMC364685 DOI: 10.1128/mcb.13.10.6260-6273.1993] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A signaling pathway by which growth factors may induce transcription of the c-fos proto-oncogene has been characterized. Growth factor stimulation of quiescent fibroblasts activates a protein kinase cascade that leads to the rapid and transient phosphorylation of the serum response factor (SRF), a regulator of c-fos transcription. The in vivo kinetics of SRF phosphorylation and dephosphorylation parallel the activation and subsequent repression of c-fos transcription, suggesting that this phosphorylation event plays a critical role in the control of c-fos expression. The ribosomal S6 kinase pp90rsk, a growth factor-inducible kinase, phosphorylates SRF in vitro at serine 103, the site that becomes newly phosphorylated upon growth factor stimulation in vivo. Phosphorylation of serine 103 significantly enhances the affinity and rate with which SRF associates with its binding site, the serum response element, within the c-fos promoter. These results suggest a model in which the growth factor-induced phosphorylation of SRF at serine 103 contributes to the activation of c-fos transcription by facilitating the formation of an active transcription complex at the serum response element.
Collapse
Affiliation(s)
- V M Rivera
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | |
Collapse
|
26
|
Shibuya EK, Ruderman JV. Mos induces the in vitro activation of mitogen-activated protein kinases in lysates of frog oocytes and mammalian somatic cells. Mol Biol Cell 1993; 4:781-90. [PMID: 8241566 PMCID: PMC300992 DOI: 10.1091/mbc.4.8.781] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are rapidly and transiently activated when both quiescent Go-arrested cells and G2-arrested oocytes are stimulated to reenter the cell cycle. We previously developed a cell-free system from lysates of quiescent Xenopus oocytes that responds to oncogenic H-ras protein by activating a MAPK, p42MAPK. Here, we show that the oncogenic protein kinase mos is also a potent activator of p42MAPK in these lysates. Mos also induces p42MAPK activation in lysates of activated eggs taken at a time when neither mos nor p42MAPK is normally active, showing that the mos-responsive MAPK activation pathway persists beyond the stage where mos normally functions. Similarly, lysates of somatic cells (rabbit reticulocytes) also retain a mos-inducible MAPK activation pathway. The mos-induced activation of MAPKs in all three lysates leads to phosphorylation of the pp90rsk proteins, downstream targets of the MAPK signaling pathway in vivo. The in vitro activation of MAPKs by mos in cell-free systems derived from oocytes and somatic cells suggests that mos contributes to oncogenic transformation by inappropriately inducing the activation of MAPKs.
Collapse
Affiliation(s)
- E K Shibuya
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
27
|
Abate C, Baker SJ, Lees-Miller SP, Anderson CW, Marshak DR, Curran T. Dimerization and DNA binding alter phosphorylation of Fos and Jun. Proc Natl Acad Sci U S A 1993; 90:6766-70. [PMID: 8341696 PMCID: PMC47013 DOI: 10.1073/pnas.90.14.6766] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fos and Jun form dimeric complexes that bind to activator protein 1 (AP-1) DNA sequences and regulate gene expression. The levels of expression and activities of these proteins are regulated by a variety of extracellular stimuli. They are thought to function in nuclear signal transduction processes in many different cell types. The role of Fos and Jun in gene transcription is complex and may be regulated in several ways including association with different dimerization partners, interactions with other transcriptional factors, effects on DNA topology, and reduction/oxidation of a conserved cysteine residue in the DNA-binding domain. In addition, phosphorylation has been suggested to control the activity of Fos and Jun. Here we show that phosphorylation of Fos and Jun by several protein kinases is affected by dimerization and binding to DNA. Jun homodimers are phosphorylated efficiently by casein kinase II, whereas Fos-Jun heterodimers are not. DNA binding also reduces phosphorylation of Jun by casein kinase II, p34cdc2 (cdc2) kinase, and protein kinase C. Phosphorylation of Fos by cAMP-dependent protein kinase and cdc2 is relatively insensitive to dimerization and DNA binding, whereas phosphorylation of Fos and Jun by DNA-dependent protein kinase is dramatically stimulated by binding to the AP-1 site. These results imply that different protein kinases can distinguish among Fos and Jun proteins in the form of monomers, homodimers, and heterodimers and between DNA-bound and non-DNA-bound proteins. Thus, potentially, these different states of Fos and Jun can be recognized and regulated independently by phosphorylation.
Collapse
Affiliation(s)
- C Abate
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| | | | | | | | | | | |
Collapse
|
28
|
Jun is phosphorylated by several protein kinases at the same sites that are modified in serum-stimulated fibroblasts. Mol Cell Biol 1992. [PMID: 1328860 DOI: 10.1128/mcb.12.10.4694] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-jun is a member of the family of immediate-early genes whose expression is induced by factors such as serum stimulation, phorbol ester, and differentiation signals. Here we show that increased Jun synthesis after serum stimulation is accompanied by a concomitant increase in phosphorylation. Several serine-threonine kinases were evaluated for their ability to phosphorylate Jun in vitro. p34cdc2, protein kinase C, casein kinase II, and pp44mapk phosphorylated Jun efficiently, whereas cyclic AMP-dependent protein kinase and glycogen synthase kinase III did not. The sites phosphorylated by p34cdc2 were similar to those phosphorylated in vivo after serum induction. The major sites of phosphorylation were mapped to serines 63, 73, and 246. Phosphorylation of full-length Jun with several kinases did not affect the DNA-binding activity of Jun homodimers or Fos-Jun heterodimers. Comparison of the DNA binding and in vitro transcription properties of wild-type and mutated proteins containing either alanine or aspartic acid residues in place of Ser-63, -73, and -246 revealed only minor differences among homodimeric complexes and no differences among Fos-Jun heterodimers. Thus, phosphorylation of Jun did not produce a significant change in dimerization, DNA-binding, or in vitro transcription activity. The regulatory role of phosphorylation in the modulation of Jun function is likely to be considerably more complex than previously suggested.
Collapse
|
29
|
Baker SJ, Kerppola TK, Luk D, Vandenberg MT, Marshak DR, Curran T, Abate C. Jun is phosphorylated by several protein kinases at the same sites that are modified in serum-stimulated fibroblasts. Mol Cell Biol 1992; 12:4694-705. [PMID: 1328860 PMCID: PMC360396 DOI: 10.1128/mcb.12.10.4694-4705.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
c-jun is a member of the family of immediate-early genes whose expression is induced by factors such as serum stimulation, phorbol ester, and differentiation signals. Here we show that increased Jun synthesis after serum stimulation is accompanied by a concomitant increase in phosphorylation. Several serine-threonine kinases were evaluated for their ability to phosphorylate Jun in vitro. p34cdc2, protein kinase C, casein kinase II, and pp44mapk phosphorylated Jun efficiently, whereas cyclic AMP-dependent protein kinase and glycogen synthase kinase III did not. The sites phosphorylated by p34cdc2 were similar to those phosphorylated in vivo after serum induction. The major sites of phosphorylation were mapped to serines 63, 73, and 246. Phosphorylation of full-length Jun with several kinases did not affect the DNA-binding activity of Jun homodimers or Fos-Jun heterodimers. Comparison of the DNA binding and in vitro transcription properties of wild-type and mutated proteins containing either alanine or aspartic acid residues in place of Ser-63, -73, and -246 revealed only minor differences among homodimeric complexes and no differences among Fos-Jun heterodimers. Thus, phosphorylation of Jun did not produce a significant change in dimerization, DNA-binding, or in vitro transcription activity. The regulatory role of phosphorylation in the modulation of Jun function is likely to be considerably more complex than previously suggested.
Collapse
Affiliation(s)
- S J Baker
- Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | | | | | | | | | | | |
Collapse
|
30
|
Reinhard C, Thomas G, Kozma SC. A single gene encodes two isoforms of the p70 S6 kinase: activation upon mitogenic stimulation. Proc Natl Acad Sci U S A 1992; 89:4052-6. [PMID: 1570332 PMCID: PMC525630 DOI: 10.1073/pnas.89.9.4052] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previously, two cDNA clones were isolated from a rat liver or hepatoma cDNA library for the mitogenic-activated p70 S6 kinase (p70s6k). Except for a single amino acid change and a 23-amino acid N-terminal extension in the latter clone, the open reading frames of the two clones are identical. A probe common to both clones also revealed four distinct transcripts. Here, by using specific probes, it was possible to show which transcript corresponds to which clone and that both clones are derived from the same gene. Furthermore, analysis of in vitro translation products using specific antibodies demonstrates that both clones encode the p70s6k but that the clone harboring the 23-amino acid extension also encodes an additional isoform of the kinase, referred to as p85s6k. It could be shown by using the specific antibody to the p85s6k that this isoform of the kinase is present in rat liver and is activated after mitogenic stimulation of quiescent Swiss 3T3 cells.
Collapse
Affiliation(s)
- C Reinhard
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
31
|
Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 1992. [PMID: 1545823 DOI: 10.1128/mcb.12.3.915] [Citation(s) in RCA: 689] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that members of the erk-encoded family of mitogen-activated protein (MAP) kinases (pp44/42mapk/erk) and members of the rsk-encoded protein kinases (RSKs or pp90rsk) are present in the cytoplasm and nucleus of HeLa cells. Addition of growth factors to serum-deprived cells results in increased tyrosine and threonine phosphorylation and in the activation of cytosolic and nuclear MAP kinases. Activated MAP kinases then phosphorylate (serine/threonine) and activate RSKs. Concurrently, a fraction of the activated MAP kinases and RSKs enter the nucleus. In addition, a distinct growth-regulated RSK-kinase activity (an enzyme[s] that phosphorylates recombinant RSK in vitro and that may be another member of the erk-encoded family of MAP kinases) was found associated with a postnuclear membrane fraction. Regulation of nuclear MAP kinase and RSK activities by growth factors and phorbol ester is coordinate with immediate-early gene expression. Indeed, in vitro, MAP kinase and/or RSK phosphorylates histone H3 and the recombinant c-Fos and c-Jun polypeptides, transcription factors phosphorylated in a variety of cells in response to growth stimuli. These in vitro studies raise the possibility that the MAP kinase/RSK signal transduction pathway represents a protein-Tyr/Ser/Thr phosphorylation cascade with the spatial distribution and temporal regulation that can account for the rapid transmission of growth-regulating information from the membrane, through the cytoplasm, and to the nucleus.
Collapse
|
32
|
Chen RH, Sarnecki C, Blenis J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 1992; 12:915-27. [PMID: 1545823 PMCID: PMC369523 DOI: 10.1128/mcb.12.3.915-927.1992] [Citation(s) in RCA: 327] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We demonstrate that members of the erk-encoded family of mitogen-activated protein (MAP) kinases (pp44/42mapk/erk) and members of the rsk-encoded protein kinases (RSKs or pp90rsk) are present in the cytoplasm and nucleus of HeLa cells. Addition of growth factors to serum-deprived cells results in increased tyrosine and threonine phosphorylation and in the activation of cytosolic and nuclear MAP kinases. Activated MAP kinases then phosphorylate (serine/threonine) and activate RSKs. Concurrently, a fraction of the activated MAP kinases and RSKs enter the nucleus. In addition, a distinct growth-regulated RSK-kinase activity (an enzyme[s] that phosphorylates recombinant RSK in vitro and that may be another member of the erk-encoded family of MAP kinases) was found associated with a postnuclear membrane fraction. Regulation of nuclear MAP kinase and RSK activities by growth factors and phorbol ester is coordinate with immediate-early gene expression. Indeed, in vitro, MAP kinase and/or RSK phosphorylates histone H3 and the recombinant c-Fos and c-Jun polypeptides, transcription factors phosphorylated in a variety of cells in response to growth stimuli. These in vitro studies raise the possibility that the MAP kinase/RSK signal transduction pathway represents a protein-Tyr/Ser/Thr phosphorylation cascade with the spatial distribution and temporal regulation that can account for the rapid transmission of growth-regulating information from the membrane, through the cytoplasm, and to the nucleus.
Collapse
Affiliation(s)
- R H Chen
- Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
33
|
Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol Cell Biol 1991. [PMID: 1922062 DOI: 10.1128/mcb.11.11.5541] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two classes of human cDNA encoding the insulin/mitogen-activated p70 S6 kinase have been isolated; the two classes differ only in the 5' region, such that the longer polypeptide (p70 S6 kinase alpha I; calculated Mr 58,946) consists of 525 amino acids, of which the last 502 residues are identical in sequence to the entire polypeptides encoded by the second cDNA (p70 S6 kinase alpha II; calculated Mr 56,153). Both p70 S6 kinase polypeptides predicted by these cDNAs are present in p70 S6 kinase purified from rat liver, and each is thus expressed in vivo. Moreover, both polypeptides are expressed from a single mRNA transcribed from the (longer) p70 S6 kinase alpha I cDNA through the utilization of different translational start sites. Although the two p70 S6 kinase polypeptides differ by only 23 amino acid residues, the slightly longer alpha I polypeptide exhibits anomalously slow mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), migrating at an apparent Mr of 90,000 probably because of the presence of six consecutive Arg residues immediately following the initiator methionine. Transient expression of p70 alpha I and alpha II S6 kinase cDNA in COS cells results in a 2.5- to 4-fold increase in overall S6 kinase activity. Upon immunoblotting, the recombinant p70 polypeptides appear as a closely spaced ladder of four to five bands between 65 and 70 kDa (alpha II) and 85 and 90 kDa (alpha I). Transfection with the alpha II cDNA yields only the smaller set of bands, while transfection with the alpha I cDNA generates both sets of bands. Mutation of Met-24 in the alpha I cDNA to Leu or Thr suppresses synthesis of the alpha II polypeptides. Only the p70 alpha I and alpha II polypeptides of slowest mobility on SDS-PAGE comigrate with the 70- and 90-kDa proteins observed in purified rat liver S6 kinase. Moreover, it is the recombinant p70 polypeptides of slowest mobility that coelute with S6 kinase activity on anion-exchange chromatography. The slower mobility and higher enzymatic activity of these p70 proteins is due to Ser/Thr phosphorylation, inasmuch as treatment with phosphatase 2A inactivates kinase activity and increases the mobility of the bands on SDS-PAGE in an okadaic acid-sensitive manner. Thus, the recombinant p70 S6 kinase undergoes multiple phosphorylation and partial activation in COS cells. Acquisition of S6 protein kinase catalytic function, however, is apparently restricted to the most extensively phosphorylated recombinant polypeptides.
Collapse
|
34
|
Grove JR, Banerjee P, Balasubramanyam A, Coffer PJ, Price DJ, Avruch J, Woodgett JR. Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol Cell Biol 1991; 11:5541-50. [PMID: 1922062 PMCID: PMC361924 DOI: 10.1128/mcb.11.11.5541-5550.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two classes of human cDNA encoding the insulin/mitogen-activated p70 S6 kinase have been isolated; the two classes differ only in the 5' region, such that the longer polypeptide (p70 S6 kinase alpha I; calculated Mr 58,946) consists of 525 amino acids, of which the last 502 residues are identical in sequence to the entire polypeptides encoded by the second cDNA (p70 S6 kinase alpha II; calculated Mr 56,153). Both p70 S6 kinase polypeptides predicted by these cDNAs are present in p70 S6 kinase purified from rat liver, and each is thus expressed in vivo. Moreover, both polypeptides are expressed from a single mRNA transcribed from the (longer) p70 S6 kinase alpha I cDNA through the utilization of different translational start sites. Although the two p70 S6 kinase polypeptides differ by only 23 amino acid residues, the slightly longer alpha I polypeptide exhibits anomalously slow mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), migrating at an apparent Mr of 90,000 probably because of the presence of six consecutive Arg residues immediately following the initiator methionine. Transient expression of p70 alpha I and alpha II S6 kinase cDNA in COS cells results in a 2.5- to 4-fold increase in overall S6 kinase activity. Upon immunoblotting, the recombinant p70 polypeptides appear as a closely spaced ladder of four to five bands between 65 and 70 kDa (alpha II) and 85 and 90 kDa (alpha I). Transfection with the alpha II cDNA yields only the smaller set of bands, while transfection with the alpha I cDNA generates both sets of bands. Mutation of Met-24 in the alpha I cDNA to Leu or Thr suppresses synthesis of the alpha II polypeptides. Only the p70 alpha I and alpha II polypeptides of slowest mobility on SDS-PAGE comigrate with the 70- and 90-kDa proteins observed in purified rat liver S6 kinase. Moreover, it is the recombinant p70 polypeptides of slowest mobility that coelute with S6 kinase activity on anion-exchange chromatography. The slower mobility and higher enzymatic activity of these p70 proteins is due to Ser/Thr phosphorylation, inasmuch as treatment with phosphatase 2A inactivates kinase activity and increases the mobility of the bands on SDS-PAGE in an okadaic acid-sensitive manner. Thus, the recombinant p70 S6 kinase undergoes multiple phosphorylation and partial activation in COS cells. Acquisition of S6 protein kinase catalytic function, however, is apparently restricted to the most extensively phosphorylated recombinant polypeptides.
Collapse
Affiliation(s)
- J R Grove
- Medical Services, Massachusetts General Hospital, Boston
| | | | | | | | | | | | | |
Collapse
|
35
|
Chung J, Pelech SL, Blenis J. Mitogen-activated Swiss mouse 3T3 RSK kinases I and II are related to pp44mpk from sea star oocytes and participate in the regulation of pp90rsk activity. Proc Natl Acad Sci U S A 1991; 88:4981-5. [PMID: 2052581 PMCID: PMC51791 DOI: 10.1073/pnas.88.11.4981] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Using a recombinant rsk gene product as a substrate for in vitro kinase assays, we have identified two mitogen-activated Swiss 3T3 RSK protein kinase activities (referred to as RSK kinase I and RSK kinase II, based on their order of elution from phenyl-Sepharose). Polyclonal antisera prepared against maturation-regulated 44-kDa myelin basic protein (MBP) kinase (pp44mpk) purified from sea star oocytes demonstrated immunocrossreactivity with polypeptides of approximately 44 kDa in the RSK kinase I preparation and approximately 42 kDa in the RSK kinase II preparation, respectively. These polypeptides were also recognized by anti-phosphotyrosine antibodies, and either phosphatase 1B or 2A (tyrosine- and serine/threonine-specific phosphatases, respectively) separately inactivated RSK phosphotransferase activity supporting the notion that tyrosine and serine/threonine phosphorylation are required for activity. In vitro, both RSK kinases and MBP kinase phosphorylated recombinant RSK and generated nearly identical two-dimensional tryptic phosphopeptide maps. They also phosphorylated MBP and microtubule-associated protein 2 but not 40S ribosomal protein S6. Furthermore, these protein kinases phosphorylated and partially activated pp90rsk in immune complexes obtained from quiescent cells.
Collapse
Affiliation(s)
- J Chung
- Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
36
|
Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Mol Cell Biol 1991. [PMID: 1708093 DOI: 10.1128/mcb.11.5.2517] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiotic maturation of Xenopus and sea star oocytes involves the activation of a number of protein-serine/threonine kinase activities, including a myelin basic protein (MBP) kinase. A 44-kDa MBP kinase (p44mpk) purified from mature sea star oocytes is shown here to be phosphorylated at tyrosine. Antiserum to purified sea star p44mpk was used to identify antigenically related proteins in Xenopus oocytes. Two tyrosine-phosphorylated 42-kDa proteins (p42) were detected with this antiserum in Xenopus eggs. Xenopus p42 chromatographs with MBP kinase activity on a Mono Q ion-exchange column. Tyrosine phosphorylation of Xenopus p42 approximately parallels MBP kinase activity during meiotic maturation. These results suggest that related MBP kinases are activated during meiotic maturation of Xenopus and sea star oocytes. Previous studies have suggested that Xenopus p42 is related to the mitogen-activated protein (MAP) kinases of culture mammalian cells. We have cloned a MAP kinase relative from a Xenopus ovary cDNA library and demonstrate that this clone encodes the Xenopus p42 that is tyrosine phosphorylated during oocyte maturation. Comparison of the sequences of Xenopus p42 and a rat MAP kinase (ERK1) and peptide sequences from sea star p44mpk indicates that these proteins are close relatives. The family members appear to be tyrosine phosphorylated, and activated, in different contexts, with the murine MAP kinase active during the transition from quiescence to the G1 stage of the mitotic cell cycle and the sea star and Xenopus kinases being active during M phase of the meiotic cell cycle.
Collapse
|
37
|
Posada J, Sanghera J, Pelech S, Aebersold R, Cooper JA. Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Mol Cell Biol 1991; 11:2517-28. [PMID: 1708093 PMCID: PMC360021 DOI: 10.1128/mcb.11.5.2517-2528.1991] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Meiotic maturation of Xenopus and sea star oocytes involves the activation of a number of protein-serine/threonine kinase activities, including a myelin basic protein (MBP) kinase. A 44-kDa MBP kinase (p44mpk) purified from mature sea star oocytes is shown here to be phosphorylated at tyrosine. Antiserum to purified sea star p44mpk was used to identify antigenically related proteins in Xenopus oocytes. Two tyrosine-phosphorylated 42-kDa proteins (p42) were detected with this antiserum in Xenopus eggs. Xenopus p42 chromatographs with MBP kinase activity on a Mono Q ion-exchange column. Tyrosine phosphorylation of Xenopus p42 approximately parallels MBP kinase activity during meiotic maturation. These results suggest that related MBP kinases are activated during meiotic maturation of Xenopus and sea star oocytes. Previous studies have suggested that Xenopus p42 is related to the mitogen-activated protein (MAP) kinases of culture mammalian cells. We have cloned a MAP kinase relative from a Xenopus ovary cDNA library and demonstrate that this clone encodes the Xenopus p42 that is tyrosine phosphorylated during oocyte maturation. Comparison of the sequences of Xenopus p42 and a rat MAP kinase (ERK1) and peptide sequences from sea star p44mpk indicates that these proteins are close relatives. The family members appear to be tyrosine phosphorylated, and activated, in different contexts, with the murine MAP kinase active during the transition from quiescence to the G1 stage of the mitotic cell cycle and the sea star and Xenopus kinases being active during M phase of the meiotic cell cycle.
Collapse
Affiliation(s)
- J Posada
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | | | |
Collapse
|
38
|
Regulation of pp90rsk phosphorylation and S6 phosphotransferase activity in Swiss 3T3 cells by growth factor-, phorbol ester-, and cyclic AMP-mediated signal transduction. Mol Cell Biol 1991. [PMID: 1848664 DOI: 10.1128/mcb.11.4.1861] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Somatic cell homologs to the Xenopus laevis S6 protein kinases (referred to collectively as pp90rsk) have recently been identified and partially characterized. Here we examine alterations in pp90rsk phosphorylation and S6 phosphotransferase activity in response to regulators of multiple signal transduction systems: purified growth factors, phorbol ester, changes in cyclic AMP (cAMP) levels, and sodium vanadate. All reagents tested increased pp90rsk serine and threonine phosphorylation, but only those agents that regulate cell proliferation and sodium vanadate activated its S6 kinase activity. In addition to the cAMP-stimulated phosphorylation of pp90rsk, a simple correlation between the extent of growth-regulated pp90rsk phosphorylation and S6 phosphotransferase activity was not observed. Quantitative phosphorylation of pp90rsk continued to increase after its S6 kinase activity began its return towards basal levels. However, a close correlation between the appearance and disappearance of a slow-mobility form of phosphorylated pp90rsk (by electrophoresis) and pp90rsk activity was observed. In addition, pp90rsk was regulated by both protein kinase C-independent and -dependent signaling mechanisms. The extent of protein kinase C participation, however, varied depending on which growth factor receptor was activated. Furthermore, growth factor-specific differences in the temporal regulation of pp90rsk S6 phosphotransferase activity were also observed. These results support the notion that the complex regulation of the rsk gene product constitutes one of the primary responses of animal cells to mitogenic signals.
Collapse
|
39
|
Coordinate regulation of pp90rsk and a distinct protein-serine/threonine kinase activity that phosphorylates recombinant pp90rsk in vitro. Mol Cell Biol 1991. [PMID: 1826043 DOI: 10.1128/mcb.11.4.1868] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase assays that use recombinant pp90rsk as a substrate were developed in an attempt to identify growth-regulated enzymes responsible for the phosphorylation and activation of pp90rsk S6 phosphotransferase activity. With this assay we have ientified a pp60v-src-, growth factor-, phorbol ester-, and vanadate-regulated serine/threonine protein kinase activity that is not related to two other cofactor-independent, growth-regulated protein kinases, pp70-S6 protein kinase and pp90rsk. The pp90rsk-protein kinase activity (referred to as rsk-kinase) is also not related to cofactor-dependent signal transducing protein kinases such as the cyclic AMP-dependent protein kinases, members of the protein kinase C family, or other Ca2(+)-dependent protein kinases. In vitro, partially purified rsk-kinase phosphorylates several of the sites (serine and threonine) that are phosphorylated in growth-stimulated cultured cells. A detailed examination of the mitogen-regulated activation kinetics of rsk-kinase and pp90rsk activities demonstrated that they are coordinately regulated. In addition, protein kinase C is not absolutely required for epidermal and fibroblast growth factor-stimulated activation of rsk-kinase, whereas, like pp90rsk, platelet-derived growth factor- and vanadate-stimulated rsk-kinase activity exhibits a greater dependence on protein kinase C-mediated signal transduction. The characterization and future purification of the rsk-kinase(s) will improve our understanding of the early signaling events regulating cell growth.
Collapse
|
40
|
Chung J, Chen RH, Blenis J. Coordinate regulation of pp90rsk and a distinct protein-serine/threonine kinase activity that phosphorylates recombinant pp90rsk in vitro. Mol Cell Biol 1991; 11:1868-74. [PMID: 1826043 PMCID: PMC359863 DOI: 10.1128/mcb.11.4.1868-1874.1991] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein kinase assays that use recombinant pp90rsk as a substrate were developed in an attempt to identify growth-regulated enzymes responsible for the phosphorylation and activation of pp90rsk S6 phosphotransferase activity. With this assay we have ientified a pp60v-src-, growth factor-, phorbol ester-, and vanadate-regulated serine/threonine protein kinase activity that is not related to two other cofactor-independent, growth-regulated protein kinases, pp70-S6 protein kinase and pp90rsk. The pp90rsk-protein kinase activity (referred to as rsk-kinase) is also not related to cofactor-dependent signal transducing protein kinases such as the cyclic AMP-dependent protein kinases, members of the protein kinase C family, or other Ca2(+)-dependent protein kinases. In vitro, partially purified rsk-kinase phosphorylates several of the sites (serine and threonine) that are phosphorylated in growth-stimulated cultured cells. A detailed examination of the mitogen-regulated activation kinetics of rsk-kinase and pp90rsk activities demonstrated that they are coordinately regulated. In addition, protein kinase C is not absolutely required for epidermal and fibroblast growth factor-stimulated activation of rsk-kinase, whereas, like pp90rsk, platelet-derived growth factor- and vanadate-stimulated rsk-kinase activity exhibits a greater dependence on protein kinase C-mediated signal transduction. The characterization and future purification of the rsk-kinase(s) will improve our understanding of the early signaling events regulating cell growth.
Collapse
Affiliation(s)
- J Chung
- Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
41
|
Chen RH, Chung J, Blenis J. Regulation of pp90rsk phosphorylation and S6 phosphotransferase activity in Swiss 3T3 cells by growth factor-, phorbol ester-, and cyclic AMP-mediated signal transduction. Mol Cell Biol 1991; 11:1861-7. [PMID: 1848664 PMCID: PMC359862 DOI: 10.1128/mcb.11.4.1861-1867.1991] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Somatic cell homologs to the Xenopus laevis S6 protein kinases (referred to collectively as pp90rsk) have recently been identified and partially characterized. Here we examine alterations in pp90rsk phosphorylation and S6 phosphotransferase activity in response to regulators of multiple signal transduction systems: purified growth factors, phorbol ester, changes in cyclic AMP (cAMP) levels, and sodium vanadate. All reagents tested increased pp90rsk serine and threonine phosphorylation, but only those agents that regulate cell proliferation and sodium vanadate activated its S6 kinase activity. In addition to the cAMP-stimulated phosphorylation of pp90rsk, a simple correlation between the extent of growth-regulated pp90rsk phosphorylation and S6 phosphotransferase activity was not observed. Quantitative phosphorylation of pp90rsk continued to increase after its S6 kinase activity began its return towards basal levels. However, a close correlation between the appearance and disappearance of a slow-mobility form of phosphorylated pp90rsk (by electrophoresis) and pp90rsk activity was observed. In addition, pp90rsk was regulated by both protein kinase C-independent and -dependent signaling mechanisms. The extent of protein kinase C participation, however, varied depending on which growth factor receptor was activated. Furthermore, growth factor-specific differences in the temporal regulation of pp90rsk S6 phosphotransferase activity were also observed. These results support the notion that the complex regulation of the rsk gene product constitutes one of the primary responses of animal cells to mitogenic signals.
Collapse
Affiliation(s)
- R H Chen
- Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|