1
|
Hernández-Contreras KA, Martínez-Díaz JA, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Chi-Castañeda LD, García-Hernández LI, Aranda-Abreu GE. Alterations of mRNAs and Non-coding RNAs Associated with Neuroinflammation in Alzheimer's Disease. Mol Neurobiol 2024; 61:5826-5840. [PMID: 38236345 DOI: 10.1007/s12035-023-03908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease is a neurodegenerative pathology whose pathognomonic hallmarks are increased generation of β-amyloid (Aβ) peptide, production of hyperphosphorylated (pTau), and neuroinflammation. The last is an alteration closely related to the progression of AD and although it is present in multiple neurodegenerative diseases, the pathophysiological events that characterize neuroinflammatory processes vary depending on the disease. In this article, we focus on mRNA and non-coding RNA alterations as part of the pathophysiological events characteristic of neuroinflammation in AD and the influence of these alterations on the course of the disease through interaction with multiple RNAs related to the generation of Aβ, pTau, and neuroinflammation itself.
Collapse
Affiliation(s)
- Karla Aketzalli Hernández-Contreras
- Doctorado en Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Jorge Antonio Martínez-Díaz
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - María Elena Hernández-Aguilar
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Lizbeth Donají Chi-Castañeda
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Luis Isauro García-Hernández
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
2
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
3
|
Kawamoto T, Yoshimoto R, Taniguchi I, Kitabatake M, Ohno M. ISG20 and nuclear exosome promote destabilization of nascent transcripts for spliceosomal U snRNAs and U1 variants. Genes Cells 2020; 26:18-30. [PMID: 33147372 DOI: 10.1111/gtc.12817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
Primary RNA transcripts are processed in a plethora of ways to become mature functional forms. In one example, human spliceosomal U snRNAs are matured at their 3'-end by an exonuclease termed TOE1. This process is important because mutations in TOE1 gene can cause a human genetic disease, pontocerebellar hypoplasia (PCH). Nevertheless, TOE1 may not be the only maturation exonuclease for U snRNAs in the cell. Here, we biochemically identify two exonucleolytic factors, Interferon-stimulated gene 20-kDa protein (ISG20) and the nuclear exosome as such candidates, using a newly developed in vitro system that recapitulates 3'-end maturation of U1 snRNA. However, extensive 3'-end sequencing of endogenous U1 snRNA of the knockdown (KD) cells revealed that these factors are not the maturation factors per se. Instead, the nascent transcripts of the spliceosomal U snRNAs as well as of unstable U1 variants were found to increase in quantity upon KD of the factors. These results indicated that ISG20 and the nuclear exosome promote the degradation of nascent spliceosomal U snRNAs and U1 variants, and therefore implied their role in the quality control of newly synthesized U snRNAs.
Collapse
Affiliation(s)
- Takahito Kawamoto
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | - Ichiro Taniguchi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makoto Kitabatake
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mutsuhito Ohno
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Perumal K, Reddy R. The 3' end formation in small RNAs. Gene Expr 2018; 10:59-78. [PMID: 11868988 PMCID: PMC5977532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Small RNAs are a major class of RNAs along with transfer RNAs, ribosomal RNAs, and messenger RNAs. They vary in size from less than 100 nucleotides to several thousand nucleotides and have been identified and characterized both in prokaryotes and eukaryotes. Small RNAs participate in a variety of cellular functions including regulating RNA synthesis, RNA processing, guiding modifications in RNA, and in transport of proteins. Small RNAs are generated by a series of posttranscriptional processing steps following transcription. While RNA 5' end structure, 5' cap formation, and RNA processing mechanisms have been fairly well characterized, the 3' end processing is poorly understood. Recent data point to an emerging theme in small RNAs metabolism in which the 3' end processing is mediated by the exosome, a large multienzyme complex. In addition to removal of nucleotides by the exosome, there is simultaneous rebuilding of the 3' end of some small RNA by adenylation and/or uridylation. This review presents a picture of both degradative and rebuilding reactions operative on the 3' end of some small RNA molecules in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Karthika Perumal
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Ram Reddy
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
- Address correspondence to Ram Reddy, Ph.D., Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030. Tel: (713) 798-7906; Fax: (713) 798-3145; E-mail:
| |
Collapse
|
5
|
Raimer AC, Gray KM, Matera AG. SMN - A chaperone for nuclear RNP social occasions? RNA Biol 2017; 14:701-711. [PMID: 27648855 PMCID: PMC5519234 DOI: 10.1080/15476286.2016.1236168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
Survival Motor Neuron (SMN) protein localizes to both the nucleus and the cytoplasm. Cytoplasmic SMN is diffusely localized in large oligomeric complexes with core member proteins, called Gemins. Biochemical and cell biological studies have demonstrated that the SMN complex is required for the cytoplasmic assembly and nuclear transport of Sm-class ribonucleoproteins (RNPs). Nuclear SMN accumulates with spliceosomal small nuclear (sn)RNPs in Cajal bodies, sub-domains involved in multiple facets of snRNP maturation. Thus, the SMN complex forms stable associations with both nuclear and cytoplasmic snRNPs, and plays a critical role in their biogenesis. In this review, we focus on potential functions of the nuclear SMN complex, with particular emphasis on its role within the Cajal body.
Collapse
Affiliation(s)
- Amanda C. Raimer
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelsey M. Gray
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Stejskalová E, Staněk D. The splicing factor U1-70K interacts with the SMN complex and is required for nuclear gem integrity. J Cell Sci 2014; 127:3909-15. [PMID: 25052091 DOI: 10.1242/jcs.155838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nuclear SMN complex localizes to specific structures called nuclear gems. The loss of gems is a cellular marker for several neurodegenerative diseases. Here, we identify that the U1-snRNP-specific protein U1-70K localizes to nuclear gems, and we show that U1-70K is necessary for gem integrity. Furthermore, we show that the interaction between U1-70K and the SMN complex is RNA independent, and we map the SMN complex binding site to the unstructured N-terminal tail of U1-70K. Consistent with these results, the expression of the U1-70K N-terminal tail rescues gem formation. These findings show that U1-70K is an SMN-complex-associating protein, and they suggest a new function for U1-70K in the formation of nuclear gems.
Collapse
Affiliation(s)
- Eva Stejskalová
- Department of RNA Biology, Institute of Molecular Genetics AS CR, 142 20 Prague, Czech Republic Faculty of Science, Charles University in Prague, 128 43 Prague, Czech Republic
| | - David Staněk
- Department of RNA Biology, Institute of Molecular Genetics AS CR, 142 20 Prague, Czech Republic
| |
Collapse
|
7
|
Fischer U, Englbrecht C, Chari A. Biogenesis of spliceosomal small nuclear ribonucleoproteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:718-31. [PMID: 21823231 DOI: 10.1002/wrna.87] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Virtually, all eukaryotic mRNAs are synthesized as precursor molecules that need to be extensively processed in order to serve as a blueprint for proteins. The three most prevalent processing steps are the capping reaction at the 5'-end, the removal of intervening sequences by splicing, and the formation of poly (A)-tails at the 3'-end of the message by polyadenylation. A large number of proteins and small nuclear ribonucleoprotein complexes (snRNPs) interact with the mRNA and enable the different maturation steps. This chapter focuses on the biogenesis of snRNPs, the major components of the pre-mRNA splicing machinery (spliceosome). A large body of evidence has revealed an intricate and segmented pathway for the formation of snRNPs that involves nucleo-cytoplasmic transport events and elaborates assembly strategies. We summarize the knowledge about the different steps with an emphasis on trans-acting factors of snRNP maturation of higher eukaryotes. WIREs RNA 2011 2 718-731 DOI: 10.1002/wrna.87 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry, University of Wuerzburg, Germany.
| | | | | |
Collapse
|
8
|
Secondary structure of U6 small nuclear RNA: implications for spliceosome assembly. Biochem Soc Trans 2010; 38:1099-104. [PMID: 20659011 DOI: 10.1042/bst0381099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
U6 snRNA (small nuclear RNA), one of five RNA molecules that are required for the essential process of pre-mRNA splicing, is notable for its high level of sequence conservation and the important role it is thought to play in the splicing reaction. Nevertheless, the secondary structure of U6 in the free snRNP (small nuclear ribonucleoprotein) form has remained elusive, with predictions changing substantially over the years. In the present review we discuss the evidence for existing models and critically evaluate a fundamental assumption of these models, namely whether the important 3' ISL (3' internal stem-loop) is present in the free U6 particle, as well as in the active splicing complex. We compare existing models of free U6 with a newly proposed model lacking the 3' ISL and evaluate the implications of the new model for the structure and function of U6's base-pairing partner U4 snRNA. Intriguingly, the new model predicts a role for U4 that was unanticipated previously, namely as an activator of U6 for assembly into the splicing machinery.
Collapse
|
9
|
Castelló A, Izquierdo JM, Welnowska E, Carrasco L. RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. J Cell Sci 2009; 122:3799-809. [PMID: 19789179 DOI: 10.1242/jcs.055988] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytopathic viruses have developed successful strategies to block or, at least, to attenuate host interference with their replication. Here, we have analyzed the effects of poliovirus 2A protease on RNA nuclear export. 2A protease interferes with trafficking of mRNAs, rRNAs and U snRNAs from the nucleus to the cytoplasm, without any apparent effect on tRNA transport. Traffic of newly produced mRNAs is more strongly affected than traffic of other mRNAs over-represented in the cytoplasm, such as mRNA encoding beta-actin. Inhibition of RNA nuclear export in HeLa cells expressing 2A protease is concomitant with the cleavage of Nup98, Nup153, Nup62 and their subsequent subcellular redistribution. The expression of an inactive 2A protease failed to interfere with RNA nuclear export. In addition, other related proteases, such as poliovirus 3C or foot and mouth disease virus L(pro) did not affect mRNA distribution or Nup98 integrity. Treatment of HeLa cells with interferon (IFN)-gamma increased the relative amount of Nup98. Under such conditions, the cleavage of Nup98 induced by 2A protease is partial, and thus IFN-gamma prevents the inhibition of RNA nuclear export. Taken together, these results are consistent with a specific proteolysis of Nup98 by 2A protease to prevent de novo mRNA traffic in poliovirus-infected cells.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular, Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Neuenkirchen N, Chari A, Fischer U. Deciphering the assembly pathway of Sm-class U snRNPs. FEBS Lett 2008; 582:1997-2003. [DOI: 10.1016/j.febslet.2008.03.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/09/2008] [Accepted: 03/10/2008] [Indexed: 11/16/2022]
|
11
|
Dickmanns A, Ficner R. Role of the 5’-cap in the biogenesis of spliceosomal snRNPs. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Watkins NJ, Lemm I, Ingelfinger D, Schneider C, Hossbach M, Urlaub H, Lührmann R. Assembly and Maturation of the U3 snoRNP in the Nucleoplasm in a Large Dynamic Multiprotein Complex. Mol Cell 2004; 16:789-98. [PMID: 15574333 DOI: 10.1016/j.molcel.2004.11.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/01/2004] [Accepted: 10/05/2004] [Indexed: 12/14/2022]
Abstract
The assembly and maturation of box C/D snoRNPs, factors essential for ribosome biogenesis, occur in the nucleoplasm. To investigate this process, we have analyzed non-snoRNP factors associated with the nucleoplasmic human U3 snoRNA. We show that both the precursor and mature length nucleoplasmic U3 snoRNAs are present in larger multiprotein complexes that contain the core box C/D proteins as well as many non-snoRNP factors linked to snoRNP assembly (TIP48, TIP49, Nopp140), RNA processing (TGS1, La, LSm4, hRrp46), and subcellular localization (CRM1, PHAX). Using RNAi, we show that most of these factors are essential for box C/D snoRNA accumulation. Furthermore, we demonstrate that the core proteins undergo a restructuring event that stabilizes their binding to the snoRNA. Importantly, restructuring, which may be mediated by the putative remodeling factor TIP49, appears to be linked to nucleolar localization. We believe that the assembly complex coordinates snoRNA processing, snoRNP assembly, restructuring, and localization.
Collapse
Affiliation(s)
- Nicholas J Watkins
- Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, D-37070 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Huber J, Dickmanns A, Lührmann R. The importin-beta binding domain of snurportin1 is responsible for the Ran- and energy-independent nuclear import of spliceosomal U snRNPs in vitro. J Cell Biol 2002; 156:467-79. [PMID: 11815630 PMCID: PMC2173342 DOI: 10.1083/jcb.200108114] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear localization signal (NLS) of spliceosomal U snRNPs is composed of the U snRNA's 2,2,7-trimethyl-guanosine (m3G)-cap and the Sm core domain. The m3G-cap is specifically bound by snurportin1, which contains an NH2-terminal importin-beta binding (IBB) domain and a COOH-terminal m3G-cap--binding region that bears no structural similarity to known import adaptors like importin-alpha (impalpha). Here, we show that recombinant snurportin1 and importin-beta (impbeta) are not only necessary, but also sufficient for U1 snRNP transport to the nuclei of digitonin-permeabilized HeLa cells. In contrast to impalpha-dependent import, single rounds of U1 snRNP import, mediated by the nuclear import receptor complex snurportin1-impbeta, did not require Ran and energy. The same Ran- and energy-independent import was even observed for U5 snRNP, which has a molecular weight of more than one million. Interestingly, in the presence of impbeta and a snurportin1 mutant containing an impalpha IBB domain (IBBimpalpha), nuclear U1 snRNP import was Ran dependent. Furthermore, beta-galactosidase (betaGal) containing a snurportin1 IBB domain, but not IBBimpalpha-betaGal, was imported into the nucleus in a Ran-independent manner. Our results suggest that the nature of the IBB domain modulates the strength and/or site of interaction of impbeta with nucleoporins of the nuclear pore complex, and thus whether or not Ran is required to dissociate these interactions.
Collapse
Affiliation(s)
- Jochen Huber
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
14
|
Meister G, Bühler D, Pillai R, Lottspeich F, Fischer U. A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 2001; 3:945-9. [PMID: 11715014 DOI: 10.1038/ncb1101-945] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The spliceosomal snRNPs U1, U2, U4 and U5 contain a common RNP structure termed the Sm core that is formed by the binding of Sm proteins onto the U snRNA. Although isolated Sm proteins assemble spontaneously onto U snRNAs in vitro, there is increasing evidence that SMN and its interactor Gemin2 are involved in this process in vivo. Here, we describe a cell-free assay system for the assembly of U snRNPs that closely reproduces in vivo conditions. Using this system, we show that assembly of U1 snRNP depends on ATP. Immunodepletion of SMN-Gemin2 from the extract abolished assembly even though the extract contained high levels of Sm proteins. An affinity-purified macromolecular SMN complex consisting of 16 components including all Sm proteins restored assembly in the immunodepleted extract. These data provide the first direct evidence that a complex containing SMN and Gemin2 mediates the active assembly of spliceosomal U snRNPs.
Collapse
Affiliation(s)
- G Meister
- Max-Planck Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
15
|
Suzuki N, Noguchi E, Nakashima N, Oki M, Ohba T, Tartakoff A, Ohishi M, Nishimoto T. The Saccharomyces cerevisiae small GTPase, Gsp1p/Ran, is involved in 3' processing of 7S-to-5.8S rRNA and in degradation of the excised 5'-A0 fragment of 35S pre-rRNA, both of which are carried out by the exosome. Genetics 2001; 158:613-25. [PMID: 11404326 PMCID: PMC1461697 DOI: 10.1093/genetics/158.2.613] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dis3p, a subunit of the exosome, interacts directly with Ran. To clarify the relationship between the exosome and the RanGTPase cycle, a series of temperature-sensitive Saccharomyces cerevisiae dis3 mutants were isolated and their 5.8S rRNA processing was compared with processing in strains with mutations in a S. cerevisiae Ran homologue, Gsp1p. In both dis3 and gsp1 mutants, 3' processing of 7S-to-5.8S rRNA was blocked at three identical sites in an allele-specific manner. In contrast, the 5' end of 5.8S rRNA was terminated normally in gsp1 and in dis3. Inhibition of 5.8S rRNA maturation in gsp1 was rescued by overexpression of nuclear exosome components Dis3p, Rrp4p, and Mtr4p, but not by a cytoplasmic exosome component, Ski2p. Furthermore, gsp1 and dis3 accumulated the 5'-A0 fragment of 35S pre-rRNA, which is also degraded by the exosome, and the level of 27S rRNA was reduced. Neither 5.8S rRNA intermediates nor 5'-A0 fragments were observed in mutants defective in the nucleocytoplasmic transport, indicating that Gsp1p regulates rRNA processing through Dis3p, independent of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- N Suzuki
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maedashi, Higashiku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Significant advances have been made in elucidating the biogenesis pathway and three-dimensional structure of the UsnRNPs, the building blocks of the spliceosome. U2 and U4/U6*U5 tri-snRNPs functionally associate with the pre-mRNA at an earlier stage of spliceosome assembly than previously thought, and additional evidence supporting UsnRNA-mediated catalysis of pre-mRNA splicing has been presented.
Collapse
MESH Headings
- Animals
- Crystallography
- Humans
- Macromolecular Substances
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- RNA Splicing/genetics
- RNA Splicing/physiology
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U1 Small Nuclear/biosynthesis
- Ribonucleoprotein, U1 Small Nuclear/chemistry
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/biosynthesis
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- C L Will
- Max Planck Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | |
Collapse
|
17
|
Kwan S, Gerlach VL, Brow DA. Disruption of the 5' stem-loop of yeast U6 RNA induces trimethylguanosine capping of this RNA polymerase III transcript in vivo. RNA (NEW YORK, N.Y.) 2000; 6:1859-69. [PMID: 11142384 PMCID: PMC1370054 DOI: 10.1017/s1355838200991325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Primary transcripts made by RNA polymerase II (Pol II), but not Pol I or Pol III, are modified by addition of a 7-methylguanosine (m7G) residue to the triphosphate 5' end shortly after it emerges from the polymerase. The m7G "caps" of small nuclear and small nucleolar RNAs, but not messenger RNAs, are subsequently hypermethylated to a 2,2,7-trimethylguanosine (TMG) residue. U6 RNA, the only small nuclear RNA synthesized by Pol III in most eukaryotes, does not receive a methylguanosine cap. However, human U6 RNA is O-methylated on the 5'-terminal (gamma) phosphate by an enzyme that recognizes the 5' stem-loop of U6. Here we show that variant yeast U6 RNAs truncated or substituted within the 5' stem-loop are TMG capped in vivo. Accumulation of the most efficiently TMG-capped U6 RNA variant is strongly inhibited by a conditional mutation in the largest subunit of Pol III, confirming that it is indeed synthesized by Pol III. Thus, methylguanosine capping and cap hypermethylation are not exclusive to Pol II transcripts in yeast. We propose that TMG capping of variant U6 RNAs occurs posttranscriptionally due to exposure of the 5' triphosphate by disruption of protein binding and/or gamma-methyl phosphate capping. 5' truncation and TMG capping of U6 RNA does not appear to affect its normal function in splicing, suggesting that assembly and action of the spliceosome is not very sensitive to the 5' end structure of U6 RNA.
Collapse
Affiliation(s)
- S Kwan
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706-1532, USA
| | | | | |
Collapse
|
18
|
Rodrigues JP, Sitterlin D, Bachi A, Wu X, Wilm M, Carmo-Fonseca M, Izaurralde E. Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98. Mol Cell 2000; 6:1243-52. [PMID: 11106761 DOI: 10.1016/s1097-2765(00)00120-9] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vesicular stomatitis virus matrix protein (VSV M) has been shown to inhibit both transcription and nucleocytoplasmic transport. We have isolated a mutant form of M, termed M(D), lacking both inhibitory activities. HeLa cells expressing M, but not M(D), accumulate polyadenylated RNAs within the nucleus. Concomitantly, a fraction of M, but not of the M(D) mutant, localizes at the nuclear rim. Additionally, the nucleoporin Nup98 specifically interacts with M but not with M(D). In Nup98(-/-) cells, both the levels of M at the nuclear envelope and its inhibitory effects on host cell-directed expression of reporter genes were significantly reduced. Together, our data demonstrate that VSV M inhibits host cell gene expression by targeting a nucleoporin and primarily blocking nuclear export.
Collapse
|
19
|
Friesen WJ, Dreyfuss G. Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J Biol Chem 2000; 275:26370-5. [PMID: 10851237 DOI: 10.1074/jbc.m003299200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spinal muscular atrophy disease gene product (SMN) is crucial for small nuclear ribonuclear protein (snRNP) biogenesis in the cytoplasm and plays a role in pre-mRNA splicing in the nucleus. SMN oligomers interact avidly with the snRNP core proteins SmB, -D1, and -D3. We have delineated the specific sequences in the Sm proteins that mediate their interaction with SMN. We show that unique carboxyl-terminal arginine- and glycine-rich domains comprising the last 29 amino acids of SmD1 and the last 32 amino acids of SmD3 are necessary and sufficient for SMN binding. Interestingly, SMN also interacts with at least two of the U6-associated Sm-like (Lsm) proteins, Lsm4 and Lsm6. Furthermore, the carboxyl-terminal arginine- and glycine-rich domain of Lsm4 directly interacts with SMN. This suggests that SMN also functions in the assembly of the U6 snRNP in the nucleus and in the assembly of other Lsm-containing complexes. These findings demonstrate that arginine- and glycine-rich domains are necessary and sufficient for SMN interaction, and they expand further the range of targets of the SMN protein.
Collapse
Affiliation(s)
- W J Friesen
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | |
Collapse
|
20
|
Charroux B, Pellizzoni L, Perkinson RA, Yong J, Shevchenko A, Mann M, Dreyfuss G. Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 2000; 148:1177-86. [PMID: 10725331 PMCID: PMC2174312 DOI: 10.1083/jcb.148.6.1177] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The survival of motor neurons (SMN) protein, the product of the neurodegenerative disease spinal muscular atrophy (SMA) gene, is localized both in the cytoplasm and in discrete nuclear bodies called gems. In both compartments SMN is part of a large complex that contains several proteins including Gemin2 (formerly SIP1) and the DEAD box protein Gemin3. In the cytoplasm, the SMN complex is associated with snRNP Sm core proteins and plays a critical role in spliceosomal snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing by serving in the regeneration of spliceosomes. These functions are likely impaired in cells of SMA patients because they have reduced levels of functional SMN. Here, we report the identification by nanoelectrospray mass spectrometry of a novel component of the SMN complex that we name Gemin4. Gemin4 is associated in vivo with the SMN complex through a direct interaction with Gemin3. The tight interaction of Gemin4 with Gemin3 suggests that it could serve as a cofactor of this DEAD box protein. Gemin4 also interacts directly with several of the Sm core proteins. Monoclonal antibodies against Gemin4 efficiently immunoprecipitate the spliceosomal U snRNAs U1 and U5 from Xenopus oocytes cytoplasm. Immunolocalization experiments show that Gemin4 is colocalized with SMN in the cytoplasm and in gems. Interestingly, Gemin4 is also detected in the nucleoli, suggesting that the SMN complex may also function in preribosomal RNA processing or ribosome assembly.
Collapse
Affiliation(s)
- Bernard Charroux
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Livio Pellizzoni
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Robert A. Perkinson
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Jeongsik Yong
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | | | - Matthias Mann
- Protein Interaction Laboratory University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| |
Collapse
|
21
|
Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G. Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 1999; 147:1181-94. [PMID: 10601333 PMCID: PMC2168095 DOI: 10.1083/jcb.147.6.1181] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The survival of motor neurons (SMN) gene is the disease gene of spinal muscular atrophy (SMA), a common motor neuron degenerative disease. The SMN protein is part of a complex containing several proteins, of which one, SIP1 (SMN interacting protein 1), has been characterized so far. The SMN complex is found in both the cytoplasm and in the nucleus, where it is concentrated in bodies called gems. In the cytoplasm, SMN and SIP1 interact with the Sm core proteins of spliceosomal small nuclear ribonucleoproteins (snRNPs), and they play a critical role in snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing, likely by serving in the regeneration of snRNPs. Here, we report the identification of another component of the SMN complex, a novel DEAD box putative RNA helicase, named Gemin3. Gemin3 interacts directly with SMN, as well as with SmB, SmD2, and SmD3. Immunolocalization studies using mAbs to Gemin3 show that it colocalizes with SMN in gems. Gemin3 binds SMN via its unique COOH-terminal domain, and SMN mutations found in some SMA patients strongly reduce this interaction. The presence of a DEAD box motif in Gemin3 suggests that it may provide the catalytic activity that plays a critical role in the function of the SMN complex on RNPs.
Collapse
Affiliation(s)
- Bernard Charroux
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Livio Pellizzoni
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Robert A. Perkinson
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Andrej Shevchenko
- Peptide and Protein Group, European Molecular Biology Laboratory (EMBL), 69012 Heidelberg, Germany
| | - Matthias Mann
- Protein Interaction Laboratory, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| |
Collapse
|
22
|
Filali M, Qiu J, Awasthi S, Fischer U, Monos D, Kamoun M. Monoclonal antibody specific to a subclass of polyproline-arg motif provides evidence for the presence of an snRNA-free spliceosomal Sm protein complex in vivo: Implications for molecular interactions involving proline-rich sequences of Sm B/B? proteins. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990801)74:2<168::aid-jcb3>3.0.co;2-j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Ullman KS, Shah S, Powers MA, Forbes DJ. The nucleoporin nup153 plays a critical role in multiple types of nuclear export. Mol Biol Cell 1999; 10:649-64. [PMID: 10069809 PMCID: PMC25193 DOI: 10.1091/mbc.10.3.649] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The fundamental process of nucleocytoplasmic transport takes place through the nuclear pore. Peripheral pore structures are presumably poised to interact with transport receptors and their cargo as these receptor complexes first encounter the pore. One such peripheral structure likely to play an important role in nuclear export is the basket structure located on the nuclear side of the pore. At present, Nup153 is the only nucleoporin known to localize to the surface of this basket, suggesting that Nup153 is potentially one of the first pore components an RNA or protein encounters during export. In this study, anti-Nup153 antibodies were used to probe the role of Nup153 in nuclear export in Xenopus oocytes. We found that Nup153 antibodies block three major classes of RNA export, that of snRNA, mRNA, and 5S rRNA. Nup153 antibodies also block the NES protein export pathway, specifically the export of the HIV Rev protein, as well as Rev-dependent RNA export. Not all export was blocked; Nup153 antibodies did not impede the export of tRNA or the recycling of importin beta to the cytoplasm. The specific antibodies used here also did not affect nuclear import, whether mediated by importin alpha/beta or by transportin. Overall, the results indicate that Nup153 is crucial to multiple classes of RNA and protein export, being involved at a vital juncture point in their export pathways. This juncture point appears to be one that is bypassed by tRNA during its export. We asked whether a physical interaction between RNA and Nup153 could be observed, using homoribopolymers as sequence-independent probes for interaction. Nup153, unlike four other nucleoporins including Nup98, associated strongly with poly(G) and significantly with poly(U). Thus, Nup153 is unique among the nucleoporins tested in its ability to interact with RNA and must do so either directly or indirectly through an adaptor protein. These results suggest a unique mechanistic role for Nup153 in the export of multiple cargos.
Collapse
Affiliation(s)
- K S Ullman
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0347, USA.
| | | | | | | |
Collapse
|
24
|
Seipelt RL, Zheng B, Asuru A, Rymond BC. U1 snRNA is cleaved by RNase III and processed through an Sm site-dependent pathway. Nucleic Acids Res 1999; 27:587-95. [PMID: 9862984 PMCID: PMC148219 DOI: 10.1093/nar/27.2.587] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Core snRNP proteins bind snRNA through the conserved Sm site, PuA(U)n>/=3GPu. While yeast U1 snRNA has three matches to the Sm consensus, the U1 3'-terminal Sm site was found to be both necessary and sufficient for U1 function. Mutation of this site inhibited pre-mRNA splicing, blocked cell division and resulted in the accumulation of two 3'-extended forms of the U1 snRNA. Cells which harbor the Sm site mutation lack mature U1 RNA (U1alpha) but have a minor polyadenylated species, U1gamma, and a prominent, non-polyadenylated species, U1beta. Metabolic depletion of the essential Sm core protein, Smd1p, also resulted in the increased accumulation of U1beta and U1gamma. In vitro, synthetic U1 precursors were cleaved by Rnt1p (RNase III) very near the U1beta 3'-end observed in vivo. We propose that U1beta is an Rnt1p-cleaved intermediate and that U1 maturation to the U1alpha form occurs through an Sm-sensitive step. Interestingly, both U1alpha and a second, much longer RNA, U1straightepsilon, were produced in an rnt1 mutant strain. These results suggest that yeast U1 snRNA processing may progress through Rnt1p-dependent and Rnt1p-independent pathways, both of which require a fun-ctional Sm site for final snRNA maturation.
Collapse
Affiliation(s)
- R L Seipelt
- T. H. Morgan School of Biological Sciences and the Markey Cancer Center, University of Kentucky, Lexington,KY 40506-0225, USA
| | | | | | | |
Collapse
|
25
|
Chen Y, Sinha K, Perumal K, Gu J, Reddy R. Accurate 3' end processing and adenylation of human signal recognition particle RNA and alu RNA in vitro. J Biol Chem 1998; 273:35023-31. [PMID: 9857035 DOI: 10.1074/jbc.273.52.35023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human signal recognition particle (SRP) RNA is transcribed by RNA polymerase III and terminates with -GUCUCUUUUOH on its 3' end. Our previous studies showed that the three terminal uridylic acid residues of human SRP RNA are post-transcriptionally removed and a single adenylic acid residue is added, resulting in a 3' end sequence of -GUCUCUAOH (Sinha, K. M., Gu, J., Chen, Y., and Reddy, R. (1998) J. Biol. Chem. 273, 6853-6859). In this study we show that the Alu RNA, corresponding to the 5' and 3' ends of SRP RNA, is also accurately processed and adenylated in vitro. Alu RNAs containing 7 or 11 additional nucleotides on the 3' end were accurately processed and then adenylated. Deletion analysis showed that an 87-nucleotide-long motif comprising of the 5' and 3' ends, including stem IV of the Alu RNA, is sufficient and necessary for the 3' end processing and adenylation. A 73-nucleotide-long construct with deletion of stem IV, required for the binding of SRP 9/14-kDa proteins, was neither processed nor adenylated. The adenylated Alu RNA as well as adenylated SRP RNA were bound to the SRP 9/14-kDa heterodimer and were immunoprecipitated by specific antibodies. A significant fraction of SRP RNA in the nucleoli was found to be processed and adenylated. These data are consistent with nascent SRP and/or Alu RNAs first binding to SRP 9/14-kDa protein heterodimer, followed by the removal of extra sequence on the 3' end and then the addition of one adenylic acid residue in the nucleus, before transport into the cytoplasm.
Collapse
Affiliation(s)
- Y Chen
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 1998; 95:615-24. [PMID: 9845364 DOI: 10.1016/s0092-8674(00)81632-3] [Citation(s) in RCA: 413] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a common motor neuron degenerative disease that results from reduced levels of, or mutations in, the Survival of Motor Neurons (SMN) protein. SMN is found in the cytoplasm and the nucleus where it is concentrated in gems. SMN interacts with spliceosomal snRNP proteins and is critical for snRNP assembly in the cytoplasm. We show that a dominant-negative mutant SMN (SMNdeltaN27) causes a dramatic reorganization of snRNPs in the nucleus. Furthermore, SMNdeltaN27 inhibits pre-mRNA splicing in vitro, while wild-type SMN stimulates splicing. SMN mutants found in SMA patients cannot stimulate splicing. These findings demonstrate that SMN plays a crucial role in the generation of the pre-mRNA splicing machinery and thus in mRNA biogenesis, and they link the function of SMN in this pathway to SMA.
Collapse
Affiliation(s)
- L Pellizzoni
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | |
Collapse
|
27
|
Izaurralde E, Adam S. Transport of macromolecules between the nucleus and the cytoplasm. RNA (NEW YORK, N.Y.) 1998; 4:351-364. [PMID: 9630243 PMCID: PMC1369623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nuclear transport is an energy-dependent process mediated by saturable receptors. Import and export receptors are thought to recognize and bind to nuclear localization signals or nuclear export signals, respectively, in the transported molecules. The receptor-substrate interaction can be direct or mediated by an additional adapter protein. The transport receptors dock their cargoes to the nuclear pore complexes (NPC) and facilitate their translocation through the NPC. After delivering their cargoes, the receptors are recycled to initiate additional rounds of transport. Because a transport event for a cargo molecule is unidirectional, the transport receptors engage in asymmetric cycles of translocation across the NPC. The GTPase Ran acts as a molecular switch for receptor-cargo interaction and imparts directionality to the transport process. Recently, the combined use of different in vitro and in vivo approaches has led to the characterization of novel import and export signals and to the identification of the first nuclear import and export receptors.
Collapse
|
28
|
Affiliation(s)
- M P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
29
|
Liu Q, Fischer U, Wang F, Dreyfuss G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 1997; 90:1013-21. [PMID: 9323129 DOI: 10.1016/s0092-8674(00)80367-0] [Citation(s) in RCA: 473] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinal muscular atrophy (SMA), one of the most common fatal autosomal recessive diseases, is characterized by degeneration of motor neurons and muscular atrophy. The SMA disease gene, termed Survival of Motor Neurons (SMN), is deleted or mutated in over 98% of SMA patients. The function of the SMN protein is unknown. We found that SMN is tightly associated with a novel protein, SIP1, and together they form a specific complex with several spliceosomal snRNP proteins. SMN interacts directly with several of the snRNP Sm core proteins, including B, D1-3, and E. Interestingly, SIP1 has significant sequence similarity with Brr1, a yeast protein critical for snRNP biogenesis. These findings suggest a role for SMN and SIP1 in spliceosomal snRNP biogenesis and function and provide a likely molecular mechanism for the cause of SMA.
Collapse
Affiliation(s)
- Q Liu
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Spinal muscular atrophy (SMA) is an often fatal neuromuscular disease that has been directly linked to the protein product of the Survival of Motor Neurons (SMN) gene. The SMN protein is tightly associated with a novel protein, SIP1, and together they form a complex with several spliceosomal snRNP proteins. Here we show that the SMN-SIP1 complex is associated with spliceosomal snRNAs U1 and U5 in the cytoplasm of Xenopus oocytes. Antibodies directed against the SMN-SIP1 complex strongly interfere with the cytoplasmic assembly of the common (Sm) snRNP proteins with spliceosomal snRNAs and with the import of the snRNP complex into the nucleus. Thus, the SMN-SIP1 complex is directly involved in the biogenesis of spliceosomal snRNPs. Defects in spliceosomal snRNP biogenesis may, therefore, be the cause of SMA.
Collapse
Affiliation(s)
- U Fischer
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | |
Collapse
|
31
|
Abstract
The past year has seen significant advances in our understanding of the mechanism of RNA movement between the nucleus and the cytoplasm. The emerging view is that proteins bind to and escort RNAs to their proper subcellular location. The discovery of peptide signals that target nuclear export and the identification of novel protein mediators of RNA export are examples of significant recent discoveries.
Collapse
Affiliation(s)
- M S Lee
- Division of Cellular and Molecular Biology Dana-Farber Cancer Institute Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 44 Binney Street, Boston, Massachusetts, 02115, USA
| | | |
Collapse
|
32
|
Powers MA, Forbes DJ, Dahlberg JE, Lund E. The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways. J Cell Biol 1997; 136:241-50. [PMID: 9015297 PMCID: PMC2134807 DOI: 10.1083/jcb.136.2.241] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1996] [Revised: 11/21/1996] [Indexed: 02/03/2023] Open
Abstract
The 97-kD O-linked glycoprotein, Nup98, is a component of the Xenopus laevis nuclear pore complex and the only vertebrate GLFG nucleoporin identified (Powers, M.A., C. Macauley, F. Masiarz, and D.J. Forbes. 1995. J. Cell Biol. 128:721-736). We have investigated possible roles of xNup98 in the nucleocytoplasmic transport of proteins and RNAs by analyzing the consequences of injecting monospecific polyclonal antibodies to xNup98 into X. laevis oocytes. We show here that nuclear injection of anti-xNup98 inhibited the export of multiple classes of RNAs, including snRNAs, 5S RNA, large ribosomal RNAs, and mRNA. In contrast, the export of tRNA was unaffected. Injection of anti-xNup98 into the oocyte cytoplasm had no effect on export of any of the RNAs. Significantly, nuclear injection of anti-xNup98 antibodies did not inhibit import of either karyophilic proteins or snRNPs. This latter result is in agreement with our previous finding that Nup98 is not an essential element of the protein import pathway. Thus, Nup98 plays a role specifically in RNA export from the nucleus, and it appears to be an essential component of multiple RNA export pathways.
Collapse
Affiliation(s)
- M A Powers
- Department of Biology, University of California at San Diego, La Jolla 92093-0347, USA
| | | | | | | |
Collapse
|
33
|
Ramamurthy L, Ingledue TC, Pilch DR, Kay BK, Marzluff WF. Increasing the distance between the snRNA promoter and the 3' box decreases the efficiency of snRNA 3'-end formation. Nucleic Acids Res 1996; 24:4525-34. [PMID: 8948645 PMCID: PMC146281 DOI: 10.1093/nar/24.22.4525] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chimeric genes which contained the mouse U1b snRNA promoter, portions of the histone H2a or globin coding regions and the U1b 3'-end followed by a histone 3'-end were constructed. The distance between the U1 promoter and the U1 3' box was varied between 146 and 670 nt. The chimeric genes were introduced into CHO cells by stable transfection or into Xenopus oocytes by microinjection. The efficiency of utilization of the U1 3' box, as measured by the relative amounts of transcripts that ended at the U1 3' box and the histone 3'-end, was dependent on the distance between the promoter and 3'-end box. U1 3'-ends were formed with >90% efficiency on transcripts shorter than 200 nt, with 50-70% efficiency on transcripts of 280-400 nt and with only 10-20% efficiency on transcripts >500 nt. Essentially identical results were obtained after stable transfection of CHO cells or after injecting the genes into Xenopus oocytes. The distance between the U1 promoter and the U1 3' box must be <280 nt for efficient transcription termination at the U1 3' box, regardless of the sequence transcribed.
Collapse
Affiliation(s)
- L Ramamurthy
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|
34
|
Ray R, Chakraborty BK, Ray K, Mukherji S, Chowdhury JR, Panda CK. Effect of anthracycline antitumor antibiotics (adriamycin and nogalamycin) and cycloheximide on the biosynthesis and processing of major UsnRNAs. Mol Cell Biochem 1996; 162:75-82. [PMID: 8905628 DOI: 10.1007/bf00250998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study, anthracycline antitumor antibiotics (e.g. adriamycin and nogalamycin), the potent RNA synthesis inhibitors and cycloheximide, the protein synthesis inhibitor, have been used to understand the events of biosynthesis and processing of major UsnRNAs (U1-U6). The anthracyclines inhibit the UsnRNAs biosynthesis (in terms of labelling) differentially in a dose dependent manner. The inhibitory effect of adriamycin and nogalamycin reached plateau at a concentration of 2.5 micrograms/ 10(6) cells/ml and 0.1 microgram/10(6) cells/ml respectively and indicates that nogalamycin is more inhibitory than adriamycin. The inhibition of the UsnRNAs synthesis (in terms of labelling) became maximum within 30 min of incubation and remained unaltered even after 2 h. Thus, it shows that the anthracyclines preferentially inhibit the initiation of the UsnRNA genes' transcription as it has been seen in cases of other large RNAs' synthesis by some other laboratories. The higher inhibitory effect of the anthracyclines on the biosynthesis of U5 and U6 compared to other UsnRNAs indicates the presence of more binding sites on the U5 and U6 snRNA genes. In presence of the anthracyclines, there was high retention of cytoplasmic major pre-UsnRNAs/ UsnRNAs which indicates that the elongation of the UsnRNA synthesis is probably impaired along with initiation; because for the proper processing of the pre-UsnRNAs, formation of the correct secondary structure of that pre-UsnRNA is necessary. Cycloheximide showed some differential effect on the pol II transcribed UsnRNAs (U1-U5) biosynthesis (in terms of labelling) however it has no effect on the pol III transcribed U6 snRNA. It implies that in the pol II transcribed UsnRNAs, some transacting labile factors, either activator or inhibitor, are involved. Whereas, the processing of the UsnRNAs (either pol II or pol III transcribed) was affected more or less in a similar fashion in presence of cycloheximide, indicating the involvement of some transacting labile factors in this event.
Collapse
Affiliation(s)
- R Ray
- Department of Biochemistry, Chittaranjan National Cancer Institute, Calcutta, India
| | | | | | | | | | | |
Collapse
|
35
|
Noble SM, Guthrie C. Transcriptional pulse-chase analysis reveals a role for a novel snRNP-associated protein in the manufacture of spliceosomal snRNPs. EMBO J 1996; 15:4368-79. [PMID: 8861964 PMCID: PMC452161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vertebrate spliceosomal snRNAs associate with a conserved set of proteins, the Sm proteins, via a conserved RNA sequence, the Sm site. Assembly of this complex is required for the accumulation of stable snRNPs, hypermethylation of the 5' cap structure and nuclear import of the resultant particles. The function of individual core snRNP proteins is poorly understood, in part because of the difficulty of selectively inactivating individual polypeptides in vivo. Using a transcriptional pulse-chase method we have defined for the first time the steps of snRNP biogenesis in Saccharomyces cerevisiae. We describe a novel component of spliceosomal snRNPs, Brr1, which is distinct in sequence from Sm core proteins and yet which shares many of their properties, as well as a genetic interaction with the yeast homolog of Sm D1 core protein. Through a kinetic analysis of snRNP formation in wild-type and brr1 mutant cells we demonstrate specific defects in a subset of steps in the brr1 mutant: newly synthesized snRNAs are destabilized and 3'-end processing is slowed, whereas the cap hypermethylation reaction is unaffected. Notably, the stability of mature particles, as measured by promoter shut-off experiments, is normal in the absence of the Brr1 snRNP protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Cold Temperature
- Fungal Proteins/genetics
- Fungal Proteins/isolation & purification
- Fungal Proteins/physiology
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Small Nuclear/biosynthesis
- RNA, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/biosynthesis
- Ribonucleoproteins, Small Nuclear/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Spliceosomes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- S M Noble
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA
| | | |
Collapse
|
36
|
Abstract
In the past two years, our knowledge concerning the mechanisms of nucleocytoplasmic transport through the nuclear pore complex (NPC) has considerably expanded. The application of in vitro systems that reconstitute nuclear protein import has allowed the identification of cytosolic factors that are required for the import process. Microinjection into Xenopus oocytes and yeast genetic systems have provided interesting candidates for RNA export mediators. Functional and structural analysis of nucleoporins has demonstrated the involvement of NPC components in the transport process. Finally, new concepts have emerged such as the integration of the mechanisms of the nuclear protein import and RNA export reactions and the assembly of the transport machinery at specialised domains of the NPC.
Collapse
|
37
|
Affiliation(s)
- E Izaurralde
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | |
Collapse
|
38
|
He XP, Bataillé N, Fried HM. Nuclear export of signal recognition particle RNA is a facilitated process that involves the Alu sequence domain. J Cell Sci 1994; 107 ( Pt 4):903-12. [PMID: 7520043 DOI: 10.1242/jcs.107.4.903] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal recognition particle is a cytoplasmic RNA-protein complex that mediates translocation of secretory polypeptides into the endoplasmic reticulum. We have used a Xenopus oocyte microinjection assay to determine how signal recognition particle (SRP) RNA is exported from the nucleus. Following nuclear injection, SRP RNA accumulated in the cytoplasm while cytoplasmically injected SRP RNA did not enter the nucleus. Cytoplasmic accumulation of SRP RNA was an apparently facilitated process dependent on limiting trans-acting factors, since nuclear export exhibited saturation kinetics and was completely blocked either at low temperature or by wheat germ agglutinin, a known inhibitor of nuclear pore-mediated transport. At least one target for trans-acting factors that promote nuclear export of SRP RNA appears to be the Alu element of the molecule, since a transcript consisting of only the Alu sequence was exported from the nucleus in a temperature-dependent manner and the Alu transcript competed in the nucleus for transport with intact SRP RNA. Although the identities of trans-acting factors responsible for SRP RNA transport are at present unknown, we suggest that proteins contained within the cytoplasmic form of SRP are candidates. Consistent with this idea were the effects of a mutation in SRP RNA that prevented binding of two known SRP proteins to the Alu sequence.
Collapse
Affiliation(s)
- X P He
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599
| | | | | |
Collapse
|
39
|
Mattaj IW, Boelens W, Izaurralde E, Jarmolowski A, Kambach C. Nucleocytoplasmic transport and snRNP assembly. Mol Biol Rep 1993; 18:79-83. [PMID: 8232299 DOI: 10.1007/bf00986760] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- I W Mattaj
- European Molecular Biology Laboratory, Gene Expression Programme, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
The transport out of the nucleus of RNAs transcribed by RNA polymerase II (U snRNAs and mRNAs) has not been extensively studied. Basic questions, such as whether export requires association of the RNA with specific proteins, are not yet definitively answered. Nevertheless, recent progress in this area has been significant. Sequence or structural features of RNAs which are either required for export or which result in nuclear retention have been defined. These are presumed to interact with components of the transport machinery or with anchoring nuclear factors respectively. The unexplained dependence of the transport of certain mRNAs on either intervening sequences or for transcription from specific promoters suggests that RNAs may have to pass through different intranuclear compartments before export. Studies of the import of RNAs from the cytoplasm has revealed that different classes of nuclear localization signals exist, and protein components of viral RNPs that appear to determine the direction in which they move through the nuclear envelope have been identified.
Collapse
Affiliation(s)
- E Izaurralde
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
41
|
Phillips SC, Birnstiel ML. Analysis of a gene cluster coding for the Xenopus laevis U7 snRNA. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1131:95-8. [PMID: 1374647 DOI: 10.1016/0167-4781(92)90104-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A cluster of Xenopus laevis U7 snRNA genes has been isolated and sequenced. The gene structure is more compact than, but otherwise comparable to, the major U snRNA genes since the distal sequence element (DSE) is located only 4 nt upstream of the PSE. The corresponding RNA is present in the oocyte and accumulates early in oogenesis.
Collapse
Affiliation(s)
- S C Phillips
- Research Institute of Molecular Pathology, Vienna, Austria
| | | |
Collapse
|
42
|
Gruber A, Soldati D, Burri M, Schümperli D. Isolation of an active gene and of two pseudogenes for mouse U7 small nuclear RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1088:151-4. [PMID: 1989694 DOI: 10.1016/0167-4781(91)90167-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Three U7 RNA-related sequences were isolated from mouse genomic DNA libraries. Only one of the sequences completely matches the published mouse U7 RNA sequence, whereas the other two apparently represent pseudogenes. The matching sequence represents a functional gene, as it is expressed after microinjection into Xenopus laevis oocytes. Sequence variations of the conserved cis-acting 5' and 3' elements of U RNA genes may partly explain the low abundance of U7 RNA.
Collapse
Affiliation(s)
- A Gruber
- Abteilung für Entwicklungsbiologie, Zoologisches Institut der Universität Bern, Switzerland
| | | | | | | |
Collapse
|