1
|
An T, Liu Y, Gourguechon S, Wang CC, Li Z. CDK Phosphorylation of Translation Initiation Factors Couples Protein Translation with Cell-Cycle Transition. Cell Rep 2019; 25:3204-3214.e5. [PMID: 30540951 PMCID: PMC6350937 DOI: 10.1016/j.celrep.2018.11.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
Protein translation in eukaryotes is cell-cycle dependent, with translation rates more robust in G1 phase of the cell cycle than in mitosis. However, whether the fundamental cell-cycle control machinery directly activates protein translation during the G1/S cell-cycle transition remains unknown. Using the early divergent eukaryote Trypanosoma brucei as a model organism, we report that the G1 cyclin-dependent kinase CRK1 phosphorylates two translation initiation factors, eIF4E4 and PABP1, to promote the G1/S cell-cycle transition and global protein translation. Phosphorylation of eIF4E4 by CRK1 enhances binding to the m7G cap structure and interaction with eIF4E4 and eIF4G3, and phosphorylation of PABP1 by CRK1 promotes association with the poly(A) sequence, self-interaction, and interaction with eIF4E4. These findings demonstrate that cyclin-dependent kinase-mediated regulation of translation initiation factors couples global protein translation with the G1/S cell-cycle transition. Protein translation is cell-cycle dependent, with more robust translation rates in the G1 phase of the cell cycle than in mitosis. An et al. show that the G1 cyclin-dependent kinase CRK1 phosphorylates translation initiation factors eIF4E4 and PABP1 to couple protein translation initiation with the G1/S cell-cycle transition.
Collapse
Affiliation(s)
- Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yi Liu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stéphane Gourguechon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ching C Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Ozturk S, Uysal F. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Reprod Fertil Dev 2018; 29:1890-1901. [PMID: 28103468 DOI: 10.1071/rd16283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Poly(A)-binding proteins (PABPs) function in the timely regulation of gene expression during oocyte maturation, fertilisation and early embryo development in vertebrates. To this end, PABPs bind to poly(A) tails or specific sequences of maternally stored mRNAs to protect them from degradation and to promote their translational activities. To date, two structurally different PABP groups have been identified: (1) cytoplasmic PABPs, including poly(A)-binding protein, cytoplasmic 1 (PABPC1), embryonic poly(A)-binding protein (EPAB), induced PABP and poly(A)-binding protein, cytoplasmic 3; and (2) nuclear PABPs, namely embryonic poly(A)-binding protein 2 and nuclear poly(A)-binding protein 1. Many studies have been undertaken to characterise the spatial and temporal expression patterns and subcellular localisations of PABPC1 and EPAB in vertebrate oocytes and early embryos. In the present review, we comprehensively evaluate and discuss the expression patterns and particular functions of the EPAB and PABPC1 genes, especially in mouse and human oocytes and early embryos.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| |
Collapse
|
3
|
Gallie DR. The role of the poly(A) binding protein in the assembly of the Cap-binding complex during translation initiation in plants. ACTA ACUST UNITED AC 2014; 2:e959378. [PMID: 26779409 DOI: 10.4161/2169074x.2014.959378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/19/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022]
Abstract
Translation initiation in eukaryotes requires the involvement of multiple initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA and assemble the 80 S ribosome at the correct initiation codon. eIF4F, composed of eIF4E, eIF4A, and eIF4G, binds to the 5'-cap structure of an mRNA and prepares an mRNA for recruitment of a 40 S subunit. eIF4B promotes the ATP-dependent RNA helicase activity of eIF4A and eIF4F needed to unwind secondary structure present in a 5'-leader that would otherwise impede scanning of the 40 S subunit during initiation. The poly(A) binding protein (PABP), which binds the poly(A) tail, interacts with eIF4G and eIF4B to promote circularization of an mRNA and stimulates translation by promoting 40 S subunit recruitment. Thus, these factors serve essential functions in the early steps of protein synthesis. Their assembly and function requires multiple interactions that are competitive in nature and determine the nature of interactions between the termini of an mRNA. In this review, the domain organization and partner protein interactions are presented for the factors in plants which share similarities with those in animals and yeast but differ in several important respects. The functional consequences of their interactions on factor activity are also discussed.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry; University of California ; Riverside, CA USA
| |
Collapse
|
4
|
Insights from a Paradigm Shift: How the Poly(A)-Binding Protein Brings Translating mRNAs Full Circle. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/873084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, our thinking of how the initiation of protein synthesis occurs has changed dramatically. Initiation was thought to involve only events occurring at or near the 5′-cap structure, which serves as the binding site for the cap-binding complex, a group of translation initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA. Because the poly(A)-binding protein (PABP) binds the poly(A) tail present at the 3′-terminus of an mRNA, it was long thought to play no role in translation initiation. In this review, I present evidence from my laboratory that has contributed to the paradigm shift in how we think of mRNAs during translation. The depiction of mRNAs as straight molecules in which the poly(A) tail is far from events occurring at the 5′-end has now been replaced by the concept of a circular mRNA where the interaction between PABP and the cap-binding complex bridges the termini of an mRNA and promotes translation initiation. The research from my laboratory supports the new paradigm that translation of most mRNAs requires a functional and physical interaction between the termini of an mRNA.
Collapse
|
5
|
Cheng S, Gallie DR. eIF4G, eIFiso4G, and eIF4B bind the poly(A)-binding protein through overlapping sites within the RNA recognition motif domains. J Biol Chem 2007; 282:25247-58. [PMID: 17606619 DOI: 10.1074/jbc.m702193200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poly(A)-binding protein (PABP), a protein that contains four conserved RNA recognition motifs (RRM1-4) and a C-terminal domain, is expressed throughout the eukaryotic kingdom and promotes translation through physical and functional interactions with eukaryotic initiation factor (eIF) 4G and eIF4B. Two highly divergent isoforms of eIF4G, known as eIF4G and eIFiso4G, are expressed in plants. As little is known about how PABP can interact with RNA and three distinct translation initiation factors in plants, the RNA binding specificity and organization of the protein interaction domains in wheat PABP was investigated. Wheat PABP differs from animal PABP in that its RRM1 does not bind RNA as an individual domain and that RRM 2, 3, and 4 exhibit different RNA binding specificities to non-poly(A) sequences. The PABP interaction domains for eIF4G and eIFiso4G were distinct despite the functional similarity between the eIF4G proteins. A single interaction domain for eIF4G is present in the RRM1 of PABP, whereas eIFiso4G interacts at two sites, i.e. one within RRM1-2 and the second within RRM3-4. The eIFiso4G binding site in RRM1-2 mapped to a 36-amino acid region encompassing the C-terminal end of RRM1, the linker region, and the N-terminal end of RRM2, whereas the second site in RRM3-4 was more complex. A single interaction domain for eIF4B is present within a 32-amino acid region representing the C-terminal end of RRM1 of PABP that overlaps with the N-proximal eIFiso4G interaction domain. eIF4B and eIFiso4G exhibited competitive binding to PABP, supporting the overlapping nature of their interaction domains. These results support the notion that eIF4G, eIFiso4G, and eIF4B interact with distinct molecules of PABP to increase the stability of the interaction between the termini of an mRNA.
Collapse
Affiliation(s)
- Shijun Cheng
- Department of Biochemistry, University of California, Riverside, California 92521-0129, USA
| | | |
Collapse
|
6
|
Abstract
Protein synthesis requires the involvement of numerous accessory factors that assist the ribosome in translation initiation, elongation, and termination. Extensive protein-protein and protein-RNA interactions are required to bring together the accessory factors, tRNAs, ribosomes, and mRNA into a productive complex and these interactions undergo dynamic alterations during each step of the translation initiation process. Initiation represents the most complex aspect of translation, requiring more accessory proteins, called initiation factors, than either elongation or termination. Not surprisingly, initiation is most often the rate-limiting step of translation and, as such, most (but not all) examples of translational regulation involve the regulation of protein-protein or protein-RNA interactions of the initiation complex. In this review, we focus on those interactions required for efficient translation initiation and how such interactions are regulated by developmental or environmental signals.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
7
|
Wang X, Ullah Z, Grumet R. Interaction between zucchini yellow mosaic potyvirus RNA-dependent RNA polymerase and host poly-(A) binding protein. Virology 2000; 275:433-43. [PMID: 10998341 DOI: 10.1006/viro.2000.0509] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral replication depends on compatible interactions between a virus and its host. For RNA viruses, the viral replicases (RNA-dependent RNA polymerases; RdRps) often associate with components of the host translational apparatus. To date, host factors interacting with potyvirus replicases have not been identified. The Potyviridae, which form the largest and most economically important plant virus family, have numerous similarities with the animal virus family, the Picornaviridae. Potyviruses have a single-stranded, plus sense genome; replication initiates at the viral-encoded, 3' poly-(A) terminus. The yeast two-hybrid system was used to identify host plant proteins associating with the RdRp of zucchini yellow mosaic potyvirus (ZYMV). Several cDNA clones representing a single copy of a poly-(A) binding protein (PABP) gene were isolated from a cucumber (Cucumis sativus L.) leaf cDNA library. Deletion analysis indicated that the C-terminus of the PABP is necessary and sufficient for interaction with the RdRp. Full-length cucumber PABP cDNA was obtained using 5' RACE; in vitro and Escherichia coli-expressed PABP bound to poly-(A)-Sepharose and ZYMY RdRp with or without the presence of poly-(A). This is the first report of an interaction between a viral replicase and PABP and may implicate a role for host PABP in the potyviral infection process.
Collapse
Affiliation(s)
- X Wang
- Plant Breeding and Genetics Program, Genetics Program, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
8
|
Le H, Browning KS, Gallie DR. The phosphorylation state of poly(A)-binding protein specifies its binding to poly(A) RNA and its interaction with eukaryotic initiation factor (eIF) 4F, eIFiso4F, and eIF4B. J Biol Chem 2000; 275:17452-62. [PMID: 10747998 DOI: 10.1074/jbc.m001186200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poly(A)-binding protein (PABP) interacts with the eukaryotic initiation factor (eIF) 4G (or eIFiso4G), the large subunit of eIF4F (or eIFiso4F) to promote translation initiation. In plants, PABP also interacts with eIF4B, a factor that assists eIF4F function. PABP is a phosphoprotein, although the function of its phosphorylation has not been previously investigated. In this study, we have purified the phosphorylated and hypophosphorylated isoforms of PABP from wheat to examine whether its phosphorylation state affects its binding to poly(A) RNA and its interaction with eIF4G, eIFiso4G, or eIF4B. Phosphorylated PABP exhibited cooperative binding to poly(A) RNA even under non-stoichiometric binding conditions, whereas multiple molecules of hypophosphorylated PABP bound to poly(A) RNA only after free poly(A) RNA was no longer available. Together, phosphorylated and hypophosphorylated PABP exhibited synergistic binding. eIF4B interacted with PABP in a phosphorylation state-specific manner; native eIF4B increased the RNA binding activity specifically of phosphorylated PABP and was greater than 14-fold more effective than was recombinant eIF4B, whereas eIF4F promoted the cooperative binding of hypophosphorylated PABP. These data suggest that the phosphorylation state of PABP specifies the type of binding to poly(A) RNA and its interaction with its partner proteins.
Collapse
Affiliation(s)
- H Le
- Department of Biochemistry, University of California, Riverside, California 92521-0129, USA
| | | | | |
Collapse
|
9
|
Hamill DR, Suprenant KA. Characterization of the sea urchin major vault protein: a possible role for vault ribonucleoprotein particles in nucleocytoplasmic transport. Dev Biol 1997; 190:117-28. [PMID: 9331335 DOI: 10.1006/dbio.1997.8676] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vaults are large ribonucleoprotein particles that have been identified in a wide range of eukaryotic organisms. Although present in thousands of copies per cell, their function remains unknown. In this report, we identify the major vault protein in sea urchins as a 107-kDa polypeptide that copurifies with microtubules and ribosomes. Although initially identified in microtubule preparations, the sea urchin major vault protein is not predominantly microtubule-associated in vivo. Rather, the sea urchin major vault protein is present throughout the cytoplasm in eggs and embryos and in the nucleus in adult somatic cells. Within the nucleus, the sea urchin major vault protein is concentrated in the region of the nucleolus and to punctate regions of the nuclear envelope. In addition, the vault protein localizes to short linear strings juxtaposed to the exterior of the nucleus and extending outward into the cytoplasm. Based on their copurification and intracellular distribution, vaults may be involved in the nucleocytoplasmic transport of ribosomes and/or mRNA.
Collapse
Affiliation(s)
- D R Hamill
- Department of Biochemistry, Cell and Molecular Biology, University of Kansas, Lawrence 66045, USA
| | | |
Collapse
|
10
|
Le H, Chang SC, Tanguay RL, Gallie DR. The wheat poly(A)-binding protein functionally complements pab1 in yeast. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:350-7. [PMID: 9030759 DOI: 10.1111/j.1432-1033.1997.0350a.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Poly(A)-binding protein (PAB) binds to the poly(A) tail of most eukaryotic mRNAs and influences its translational efficiency as well as its stability. Although the primary structure of PAB is well conserved in eukaryotes, its functional conservation across species has not been extensively investigated. In order to determine whether PAB from a monocot plant species could function in yeast, a protein characterized as having PAB activity was purified from wheat and a cDNA encoding for PAB was isolated from a wheat seedling expression library. Wheat PAB (72 kDa as estimated by SDS/PAGE and a theoretical mass of 70 823 Da as determined from the cDNA) was present in multiple isoforms and exhibited binding characteristics similar to that determined for yeast PAB. Comparison of the wheat PAB protein sequence with PABs from yeast and other species revealed that wheat PAB contained the characteristic features of all PABs, including four RNA binding domains each of which contained the conserved RNP1 and RNP2 sequence motifs. The wheat PAB cDNA functionally complemented a pab1 mutant in yeast suggesting that, although the amino acid sequence of wheat PAB is only 47% conserved from that of yeast PAB, this monocot protein can function in yeast.
Collapse
Affiliation(s)
- H Le
- Department of Biochemistry, University of California, Riverside 92521-0129, USA
| | | | | | | |
Collapse
|
11
|
Gallie DR, Le H, Caldwell C, Tanguay RL, Hoang NX, Browning KS. The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J Biol Chem 1997; 272:1046-53. [PMID: 8995401 DOI: 10.1074/jbc.272.2.1046] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Several translation initiation factors in mammals and yeast are regulated by phosphorylation. The phosphorylation state of these factors is subject to alteration during development, environmental stress (heat shock, starvation, or heme deprivation), or viral infection. The phosphorylation state and the effect of changes in phosphorylation of the translation initiation factors of higher plants have not been previously investigated. We have determined the isoelectric states for the wheat translation initiation factors eIF-4A, eIF-4B, eIF-4F, eIF-iso4F, and eIF-2 and the poly(A)-binding protein in the seed, during germination, and following heat shock of wheat seedlings using two-dimensional gel electrophoresis and Western analysis. We found that the developmentally induced changes in isoelectric state observed during germination or the stress-induced changes were consistent with changes in phosphorylation. Treatment of the phosphorylated forms of the factors with phosphatases confirmed that the nature of the modification was due to phosphorylation. The isoelectric states of eIF-4B, eIF-4F (eIF-4E, p26), eIF-iso4F (eIF-iso4E, p28), and eIF-2alpha (p42) were altered during germination, suggesting that phosphorylation of these factors is developmentally regulated and correlates with the resumption of protein synthesis that occurs during germination. The phosphorylation of eIF-2beta (p38) or poly(A)-binding protein did not change either during germination or following a thermal stress. Only the phosphorylation state of two factors, eIF-4A and eIF-4B, changed following a heat shock, suggesting that plants may differ significantly from animals in the way in which their translational machinery is modified in response to a thermal stress.
Collapse
Affiliation(s)
- D R Gallie
- Department of Biochemistry, University of California, Riverside 92521-0129, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Proweller A, Butler JS. Ribosomal association of poly(A)-binding protein in poly(A)-deficient Saccharomyces cerevisiae. J Biol Chem 1996; 271:10859-65. [PMID: 8631901 DOI: 10.1074/jbc.271.18.10859] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Poly(A)-binding protein, the most abundant eukaryotic mRNP protein, is known primarily for its association with polyadenylate tails of mRNA. In the yeast, Saccharomyces cerevisiae, this protein (Pabp) was found to be essential for viability and has been implicated in models featuring roles in mRNA stability and as an enhancer of translation initiation. Although the mechanism of action is unknown, it is thought to require an activity to bind poly(A) tails and an additional capacity for an interaction with 60 S ribosomal subunits, perhaps via ribosomal protein L46 (Rpl46). We have found that a significant amount of Pabp in wild-type cells is not associated with polyribosome complexes. The remaining majority, which is found in these complexes, maintains its association even in yeast cells deficient in polyadenylated mRNA and/or Rpl46. These observations suggest that Pabp may not require interaction with poly(A) tails during translation. Further treatment of polyribosome lysates with agents known to differentially disrupt components of polyribosomes indicated that Pabp may require contact with some RNA component of the polyribosome, which could be either non-poly(A)-rich sequences of the translated mRNA or possibly a component of the ribosome. These findings suggest that Pabp may possess the ability to bind to ribosomes independently of its interaction with poly(A). We discuss these conclusions with respect to current models suggesting a multifunctional binding capacity of Pabp.
Collapse
Affiliation(s)
- A Proweller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
13
|
Affiliation(s)
- K A Suprenant
- Department of Physiology and Cell Biology, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
14
|
Gu W, Kwon Y, Oko R, Hermo L, Hecht NB. Poly (A) binding protein is bound to both stored and polysomal mRNAs in the mammalian testis. Mol Reprod Dev 1995; 40:273-85. [PMID: 7772337 DOI: 10.1002/mrd.1080400303] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RNA-binding proteins that bind to the 3' untranslated region of mRNAs play important roles in regulating gene expression. Here we examine the association between the 70 kDa poly (A) binding protein (PABP) and stored (RNP) and polysomal mRNAs during mammalian male germ cell development. PABP mRNA levels increase as germ cells enter meiosis, reaching a maximum in the early postmeiotic stages, and decreasing to a nearly nondetectable level towards the end of spermatogenesis. Most of the PABP mRNA is found in the nonpolysomal fractions of postmitochondrial extracts, suggesting that PABP mRNA is either inefficiently translated or stored as RNPs during spermatogenesis. Virtually all of the testicular PABP is bound to either polysomal or nonpolysomal mRNAs, with little, if any, free PABP detectable. Analysis of several specific mRNAs reveals PABP is bound to both stored (RNP) and translated forms of the mRNAs. Western blot analysis and immunocytochemistry indicate PABP is widespread in the mammalian testis, with maximal amounts detected in postmeiotic round spermatids. The presence of PABP in elongating spermatids, a cell type in which PABP mRNA is nearly absent, suggests that PABP is a stable protein in the later stages of male germ cell development. The high level of testicular PABP in round spermatids and in mRNPs suggests a role for PABP in the storage as well as in the subsequent translation of developmentally regulated mRNAs in the mammalian testis.
Collapse
Affiliation(s)
- W Gu
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | |
Collapse
|
15
|
Kleene KC, Wang MY, Cutler M, Hall C, Shih D. Developmental expression of poly(A) binding protein mRNAs during spermatogenesis in the mouse. Mol Reprod Dev 1994; 39:355-64. [PMID: 7893484 DOI: 10.1002/mrd.1080390403] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The poly(A) binding protein (PABP), a conserved protein that binds to the 3' poly(A) tail on mRNAs in eukaryotic cells, has been implicated in the regulation of mRNA stability and translation. Two PABP cDNAs with different sequences were isolated from mouse testis cDNA libraries. The predicted amino acid sequence of one, PABP1, is nearly identical (98.9%) to human liver PABP, while 80% of the amino acids of the second, PABPt, are identical to mouse and human PABPs. Northern blots reveal that there is one major PABP mRNA species in liver, muscle, kidney, and brain, two in spleen, and at least four in testis. The levels of PABP mRNA in testis are 5-10-fold higher than in these somatic tissues, but surprisingly the vast majority of all PABP mRNA size variants sediment more slowly than single ribosomes, indicating strong translational repression. Reverse transcriptase-polymerase chain reaction assays demonstrate that PABPt mRNAs are abundant only in testis. Northern blots of RNAs purified from highly enriched spermatogenic cells show that the high levels, multiple sizes of PABP mRNAs, and the PABPt mRNA are present in meiotic and early haploid spermatogenic cells, and are sharply reduced in late haploid cells. Comparison of the binding of PABP1 and PABPt to poly(A) Sepharose in vitro revealed subtle differences, even though PABPt contains substitutions for highly conserved aromatic amino acids that are thought to be necessary for binding to poly(A). The existence of two PABP isoforms in mouse spermatogenic cells could influence cytoplasmic gene expression during spermatogenesis.
Collapse
Affiliation(s)
- K C Kleene
- Department of Biology, University of Massachusetts, Boston 02125-3393
| | | | | | | | | |
Collapse
|
16
|
Kleene KC, Smith J. Translational activity of mouse protamine 1 messenger ribonucleoprotein particles in the reticulocyte and wheat germ cell-free translation systems. Mol Reprod Dev 1994; 37:12-20. [PMID: 7907489 DOI: 10.1002/mrd.1080370103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protamine 1 mRNAs are inactivated by a block to the initiation of translation in early spermatids and are translationally active in late spermatids in mice. To determine whether translation of protamine 1 mRNAs is inhibited by a protein repressor, the translational activity of ribonucleoprotein particles and deproteinized RNAs were compared in the reticulocyte and wheat germ cell-free translation lysates. To isolate RNPs, cytoplasmic extracts of total testes were fractionated by large-pore gel filtration chromatography. Ribonucleoprotein particles in the excluded fractions stimulated synthesis of radiolabeled translation products for protamine 1 about twofold less effectively than deproteinized RNAs in the reticulocyte lysate, but were inactive in the wheat germ lysate. The ability of translationally repressed protamine 1 ribonucleoprotein particles to form initiation complexes with 80S ribosomes in the reticulocyte lysate was also measured. Protamine 1 ribonucleoprotein particles isolated by gel filtration and in unfractionated cytoplasmic extracts of early spermatids were nearly as active in forming initiation complexes as deproteinized mRNAs. The isolation of ribonucleoprotein particles in buffers of varying ionic strength, protease inhibitors, and several other variables had no major effect on the ability of protamine 1 ribonucleoprotein particles to form initiation complexes in the reticulocyte lysate. These results can be explained by artifacts in the isolation or assay of ribonucleoprotein particles or by postulating that protamine 1 mRNAs are inactivated by a mechanism that does not involve protein repressors, such as sequestration.
Collapse
Affiliation(s)
- K C Kleene
- Department of Biology, University of Massachusetts at Boston 02125-33943
| | | |
Collapse
|
17
|
Baker EJ. Tubulin mRNA instability and stabilization by protein synthesis inhibitors are reproducible in nontranslating extracts from Chlamydomonas. DEVELOPMENTAL GENETICS 1993; 14:460-70. [PMID: 8111974 DOI: 10.1002/dvg.1020140607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Chlamydomonas reinhardtii, flagellar amputation stimulates an induction in the synthesis of flagellar proteins which allows the cells to rapidly regenerate their flagella. The induction involves the coordinate accumulation and rapid degradation of a large number mRNAs, including those encoding the tubulins. The post-induction degradation of induced tubulin mRNAs has been shown to differ from the constitutive turnover pathway in two ways: (1) the rate of degradation is accelerated, and (2) degradation is prevented by inhibition of protein synthesis. In this report, it is shown that the post-induction degradation of all deflagellation-induced mRNAs examined is prevented by cycloheximide (CX), suggesting they all may be degraded via the same pathway. A cell-free decay system has been developed to investigate the degradation pathway. At least two characteristics of tubulin mRNA degradation are reproducible in these extracts: (1) endogenous alpha-tubulin mRNA is less stable than constitutive mRNAs in the same extract and (2) alpha-tubulin mRNA in extracts prepared from CX-treated cells (CX extracts) is significantly more stable than it is in extracts from untreated cells (control extracts). This indicates that the mechanism by which CX blocks rapid degradation of tubulin mRNA in vivo is not simply by preventing its translation and suggests the involvement of an altered trans-factor. The difference in tubulin mRNA stability in the two extracts is maintained when the extracts are prepared under conditions that dissociate ribosomes from mRNPs, indicating intact polysome structure is not necessary. Tubulin mRNA-containing polysomes isolated from control and CX extracts are equally stable when assayed alone. However, the polysomes from control extracts are more sensitive to exogenous RNAse treatment than are those from CX extracts, indicating a structural difference. There are no detectable differences in soluble factors that influence tubulin mRNA degradation rate between control and CX extracts; addition of excess soluble factors to either control or CX extracts does not alter the tubulin mRNA degradation in the extract, nor does a simple one-to-one combination of the two extracts result in stabilization or destabilization of the whole population of tubulin mRNAs in the mixture. The deflagellation-induced mRNAs, as a group, are shown to be particularly susceptible to a nuclease activity in extracts, inhibitable by vanadyl ribonucleoside complexes, which does not appear to attack constitutive mRNAs. It is proposed that a structural difference in the tubulin mRNPs produced in the presence and absence of CX underlies their differences in stabilities, and that a common nuclease targets the induced flagellar protein mRNAs.
Collapse
Affiliation(s)
- E J Baker
- Department of Biology/314, University of Nevada, Reno 89557-0015
| |
Collapse
|
18
|
Yang J, Hunt AG. Purification and Characterization of a 70-Kilodalton Polyadenylate-Binding Protein from Pea (Pisum sativum). PLANT PHYSIOLOGY 1992; 98:1115-20. [PMID: 16668734 PMCID: PMC1080315 DOI: 10.1104/pp.98.3.1115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A polyadenylate-binding protein (PABP) was purified from cell-free extracts prepared from pea seedlings (Pisum sativum) by ammonium sulfate precipitation and Affi-Gel Blue and polyadenylate-Sepharose 4B affinity chromatography. The final preparation from polyadenylate-Sepharose 4B columns contained a single 70-kilodalton polypeptide with high polyadenylate-binding activity. The purified protein was active over a broad range of ionic strengths and showed temperature and pH optima of 37 degrees C and pH 6.5, respectively. Specificity studies indicated that the pea PABP was most active with polyadenylic acids, showed some activity with polyguanylic acid, and did not bind to polycytidylic acid. Moreover, longer polyadenylate molecules were bound more effectively than shorter ones. Because these properties are similar to PABPs isolated from other sources, we conclude that we have identified, purified, and characterized a plant PABP analogous to those described in yeast and animal systems.
Collapse
Affiliation(s)
- J Yang
- Plant Physiology/Biochemistry/Molecular Biology Program, Department of Agronomy, University of Kentucky, Lexington, Kentucky 40546-0091
| | | |
Collapse
|