1
|
Farrell CM, Goldfarb T, Rangwala SH, Astashyn A, Ermolaeva OD, Hem V, Katz KS, Kodali VK, Ludwig F, Wallin CL, Pruitt KD, Murphy TD. RefSeq Functional Elements as experimentally assayed nongenic reference standards and functional interactions in human and mouse. Genome Res 2022; 32:175-188. [PMID: 34876495 PMCID: PMC8744684 DOI: 10.1101/gr.275819.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
Eukaryotic genomes contain many nongenic elements that function in gene regulation, chromosome organization, recombination, repair, or replication, and mutation of those elements can affect genome function and cause disease. Although numerous epigenomic studies provide high coverage of gene regulatory regions, those data are not usually exposed in traditional genome annotation and can be difficult to access and interpret without field-specific expertise. The National Center for Biotechnology Information (NCBI) therefore provides RefSeq Functional Elements (RefSeqFEs), which represent experimentally validated human and mouse nongenic elements derived from the literature. The curated data set is comprised of richly annotated sequence records, descriptive records in the NCBI Gene database, reference genome feature annotation, and activity-based interactions between nongenic regions, target genes, and each other. The data set provides succinct functional details and transparent experimental evidence, leverages data from multiple experimental sources, is readily accessible and adaptable, and uses a flexible data model. The data have multiple uses for basic functional discovery, bioinformatics studies, genetic variant interpretation; as known positive controls for epigenomic data evaluation; and as reference standards for functional interactions. Comparisons to other gene regulatory data sets show that the RefSeqFE data set includes a wider range of feature types representing more areas of biology, but it is comparatively smaller and subject to data selection biases. RefSeqFEs thus provide an alternative and complementary resource for experimentally assayed functional elements, with future data set growth expected.
Collapse
Affiliation(s)
- Catherine M Farrell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Tamara Goldfarb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Sanjida H Rangwala
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Alexander Astashyn
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Olga D Ermolaeva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Vichet Hem
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Kenneth S Katz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Vamsi K Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Frank Ludwig
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Craig L Wallin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
2
|
Ghiglieri V, Napolitano F, Pelosi B, Schepisi C, Migliarini S, Di Maio A, Pendolino V, Mancini M, Sciamanna G, Vitucci D, Maddaloni G, Giampà C, Errico F, Nisticò R, Pasqualetti M, Picconi B, Usiello A. Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion. Sci Rep 2015; 5:10933. [PMID: 26190541 PMCID: PMC4507147 DOI: 10.1038/srep10933] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/07/2015] [Indexed: 11/09/2022] Open
Abstract
Mechanisms of gender-specific synaptic plasticity in the striatum, a brain region that controls motor, cognitive and psychiatric functions, remain unclear. Here we report that Rhes, a GTPase enriched in medium spiny neurons (MSNs) of striatum, alters the striatal cAMP/PKA signaling cascade in a gender-specific manner. While Rhes knockout (KO) male mice, compared to wild-type (WT) mice, had a significant basal increase of cAMP/PKA signaling pathway, the Rhes KO females exhibited a much stronger response of this pathway, selectively under the conditions of dopamine/adenosine-related drug challenge. Corticostriatal LTP defects are exclusively found in A2AR/D2R-expressing MSNs of KO females, compared to KO males, an effect that is abolished by PKA inhibitors but not by the removal of circulating estrogens. This suggests that the synaptic alterations found in KO females could be triggered by an aberrant A2AR/cAMP/PKA activity, but not due to estrogen-mediated effect. Consistent with increased cAMP signaling, D1R-mediated motor stimulation, haloperidol-induced catalepsy and caffeine-evoked hyper-activity are robustly enhanced in Rhes KO females compared to mutant males. Thus Rhes, a thyroid hormone-target gene, plays a relevant role in gender-specific synaptic and behavioral responses.
Collapse
Affiliation(s)
- Veronica Ghiglieri
- Department of Philosophy, Human, Social, and Educational Sciences, University of Perugia, Perugia, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Francesco Napolitano
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | | | - Chiara Schepisi
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | | | | | | | | | - Giuseppe Sciamanna
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Daniela Vitucci
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere DiSMeB, University of Naples "Parthenope", Naples, Italy
| | | | | | - Francesco Errico
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Robert Nisticò
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | - Massimo Pasqualetti
- Department of Biology, University of Pisa, Pisa, Italy.,Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | | | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Environmental Sciences, Second University of Naples, Naples, Italy
| |
Collapse
|
3
|
Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons. Neurobiol Dis 2015; 78:146-61. [PMID: 25818655 DOI: 10.1016/j.nbd.2015.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
Ras homolog enriched in striatum (Rhes) is highly expressed in striatal medium spiny neurons (MSNs) of rodents. In the present study, we characterized the expression of Rhes mRNA across species, as well as its functional role in other striatal neuron subtypes. Double in situ hybridization analysis showed that Rhes transcript is selectively localized in striatal cholinergic interneurons (ChIs), but not in GABAergic parvalbumin- or in neuropeptide Y-positive cell populations. Rhes is closely linked to dopamine-dependent signaling. Therefore, we recorded ChIs activity in basal condition and following dopamine receptor activation. Surprisingly, instead of an expected dopamine D2 receptor (D2R)-mediated inhibition, we observed an aberrant excitatory response in ChIs from Rhes knockout mice. Conversely, the effect of D1R agonist on ChIs was less robust in Rhes mutants than in controls. Although Rhes deletion in mutants occurs throughout the striatum, we demonstrate that the D2R response is altered specifically in ChIs, since it was recorded in pharmacological isolation, and prevented either by intrapipette BAPTA or by GDP-β-S. Moreover, we show that blockade of Cav2.2 calcium channels prevented the abnormal D2R response. Finally, we found that the abnormal D2R activation in ChIs was rescued by selective PI3K inhibition thus suggesting that Rhes functionally modulates PI3K/Akt signaling pathway in these neurons. Our findings reveal that, besides its expression in MSNs, Rhes is localized also in striatal ChIs and, most importantly, lack of this G-protein, significantly alters D2R modulation of striatal cholinergic excitability.
Collapse
|
4
|
Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A 2010; 152A:674-86. [PMID: 20186815 DOI: 10.1002/ajmg.a.33323] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CHARGE syndrome [coloboma of the eye, heart defects, atresia of the choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities (including deafness)] is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. Here, we review the clinical features of 379 CHARGE patients who tested positive or negative for mutations in CHD7. We found that CHARGE individuals with CHD7 mutations more commonly have ocular colobomas, temporal bone anomalies (semicircular canal hypoplasia/dysplasia), and facial nerve paralysis compared with mutation negative individuals. We also highlight recent genetic and genomic studies that have provided functional insights into CHD7 and the pathogenesis of CHARGE syndrome.
Collapse
Affiliation(s)
- Gabriel E Zentner
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
5
|
Kim A, Song SH, Brand M, Dean A. Nucleosome and transcription activator antagonism at human beta-globin locus control region DNase I hypersensitive sites. Nucleic Acids Res 2007; 35:5831-8. [PMID: 17720709 PMCID: PMC2034456 DOI: 10.1093/nar/gkm620] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Locus control regions are regulatory elements that activate distant genes and typically consist of several DNase I hypersensitive sites coincident with clusters of transcription activator binding sites. To what extent nucleosomes and activators occupy these sites together or exclusively has not been extensively studied in vivo. We analyzed the chromatin structure of human β-globin locus control region hypersensitive sites in erythroid cells expressing embryonic and fetal globin genes. Nucleosomes were variably depleted at hypersensitive sites HS1-HS4 and at HS5 which flanks the 5′ of the locus. In lieu of nucleosomes, activators were differentially associated with these sites. Erythroid–specific GATA-1 resided at HS1, HS2 and HS4 but the NF-E2 hetero-dimer was limited to HS2 where nucleosomes were most severely depleted. Histones H3 and H4 were hyperacetylated and H3 was di-methylated at K4 across the LCR, however, the H3 K4 MLL methyltransferase component Ash2L and histone acetyltransferases CBP and p300 occupied essentially only HS2 and the NF-E2 motif in HS2 was required for Ash2L recruitment. Our results indicate that each hypersensitive site in the human β-globin LCR has distinct structural features and suggest that HS2 plays a pivotal role in LCR organization at embryonic and fetal stages of globin gene expression.
Collapse
Affiliation(s)
- AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Korea.
| | | | | | | |
Collapse
|
6
|
Layon ME, Ackley CJ, West RJ, Lowrey CH. Expression of GATA-1 in a non-hematopoietic cell line induces beta-globin locus control region chromatin structure remodeling and an erythroid pattern of gene expression. J Mol Biol 2006; 366:737-44. [PMID: 17196618 PMCID: PMC1839823 DOI: 10.1016/j.jmb.2006.11.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 11/19/2022]
Abstract
GATA-1 is a hematopoietic transcription factor expressed in erythroid, megakaryocytic, mast cell and eosinophil lineages. It is required for normal erythroid differentiation, the expression of erythroid-specific genes and for the establishment of an active chromatin structure throughout the beta-globin gene locus. GATA-1 is also necessary for the formation and function of the locus control region DNase I hypersensitive site (HS) core elements. To determine whether GATA-1 was sufficient to direct formation of the locus control region (LCR) and an erythroid pattern of gene expression, we expressed GATA-1 in the non-hematopoietic HeLa cell line that does not express other hematopoietic transcription factors but does express GATA-2, GATA-3, and GATA-6. We found that production of the GATA-1 protein resulted in the formation of LCR DNase I HSs 1-4 in their normal locations, and that histones became hyperacetylated within these regulatory elements. Transcription of several erythroid-specific genes was activated in HeLa cells expressing GATA-1, including those coding for alpha-globin, beta-globin, the erythropoietin receptor, the erythroid krüpple-like factor and p45 NF-E2. Despite increased expression of these genes at the mRNA level, their protein products were not detected. These results imply that GATA-1 is sufficient to direct chromatin structure reorganization within the beta-globin LCR and an erythroid pattern of gene expression in the absence of other hematopoietic transcription factors.
Collapse
Affiliation(s)
- Michael E Layon
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03756, USA
| | | | | | | |
Collapse
|
7
|
Bender MA, Byron R, Ragoczy T, Telling A, Bulger M, Groudine M. Flanking HS-62.5 and 3' HS1, and regions upstream of the LCR, are not required for beta-globin transcription. Blood 2006; 108:1395-401. [PMID: 16645164 PMCID: PMC1895883 DOI: 10.1182/blood-2006-04-014431] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The locus control region (LCR) was thought to be necessary and sufficient for establishing and maintaining an open beta-globin locus chromatin domain in the repressive environment of the developing erythrocyte. However, deletion of the LCR from the endogenous locus had no significant effect on chromatin structure and did not silence transcription. Thus, the cis-regulatory elements that confer the open domain remain unidentified. The conserved DNaseI hypersensitivity sites (HSs) HS-62.5 and 3'HS1 that flank the locus, and the region upstream of the LCR have been implicated in globin gene regulation. The flanking HSs bind CCCTC binding factor (CTCF) and are thought to interact with the LCR to form a "chromatin hub" involved in beta-globin gene activation. Hispanic thalassemia, a deletion of the LCR and 27 kb upstream, leads to heterochromatinization and silencing of the locus. Thus, the region upstream of the LCR deleted in Hispanic thalassemia (upstream Hispanic region [UHR]) may be required for expression. To determine the importance of the UHR and flanking HSs for beta-globin expression, we generated and analyzed mice with targeted deletions of these elements. We demonstrate deletion of these regions alone, and in combination, do not affect transcription, bringing into question current models for the regulation of the beta-globin locus.
Collapse
Affiliation(s)
- M A Bender
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Nemeth MJ, Lowrey CH. An Erythroid-Specific Chromatin Opening Element Increases β-Globin Gene Expression from Integrated Retroviral Gene Transfer Vectors. GENE THERAPY & MOLECULAR BIOLOGY 2004; 8:475-486. [PMID: 16670777 PMCID: PMC1456070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gene therapy strategies requiring long-term high-level expression from integrated genes are currently limited by inconsistent levels of expression. This may be observed as variegated, silenced or position-dependent gene expression. Each of these phenomena involve suppressive chromatin structures. We hypothesized that by actively conferring an open chromatin structure on integrated vectors would increase transgene expression. To test this idea we used a 100bp element from the β-globin locus control region (LCR) which is able to independently open local chromatin structure in erythroid tissues. This element includes binding sites for GATA-1, NF-E2, EKLF and Sp-1 and is evolutionarily conserved. We constructed a series of MSCV-based vectors containing the β-globin gene driven by a minimal β-globin promoter with combinations of the HSFE and LCR derived enhancer elements. Pools of MEL clones containing integrated vectors were analyzed for chromatin structure and β-globin gene expression. The HSFE increased the extent of nuclease sensitive chromatin over the promoters of the constructs. The most effective vector included tandem copies of the HSFE and produced a 5-fold increase in expression compared to the promoter alone. These results indicate that the HSFE is able to augment the opening of β-globin promoter chromatin structure and significantly increase gene expression in the context of an integrated retroviral vector.
Collapse
Affiliation(s)
- Michael J. Nemeth
- Hematopoiesis Section, Genetics & Molecular Biology Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Christopher H. Lowrey
- Departments of Medicine and
- Pharmacology/Toxicology and
- The Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
9
|
Jia CP, Huang SZ, Yan JB, Xiao YP, Ren ZR, Zeng YT. Effects of human locus control region elements HS2 and HS3 on human β-globin gene expression in transgenic mouse. Blood Cells Mol Dis 2003; 31:360-9. [PMID: 14636653 DOI: 10.1016/j.bcmd.2003.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The locus control region (LCR) is the most important cis-element in the regulation of beta-globin gene expression. DNaseI-hypersensitive site (HS) 2 and HS3 are two significant components of beta-LCR. To examine the effect of HS2, HS3, and HS2-HS3 (combination of HS2 and HS3) on the spatial and temporal expression of the human beta-globin gene, we have produced transgenic mice with constructs, in which the gene encoding enhanced green fluorescent protein (EGFP) is driven by beta-globin promoter and under the control of HS2, HS3, and HS2-HS3, respectively. The results showed that HS2 and HS3 each had the same enhancement activity in regulation of beta-globin gene expression in transgenic mice. When HS2 and HS3 were in combination (HS2-HS3), the two cis-elements showed a marked synergy in regulating beta-globin gene spatial and temporal expression as well as its expression level in transgenic mice although the EGFP expression varied largely among different transgenic mouse litters. The results also showed that HS2 was able to confer beta-globin gene expression in embryonic yolk sac, fetal liver, and adult bone marrow, which was not developmentally stage-specific, while HS3 could confer the same beta-globin gene expression in the adult. Thus, HS3 was different from HS2, the former being more important for specific expression of beta-globin gene in the developmental stages and the switch of gamma-->beta-globin genes. Our results indicate that the mechanism of gamma-->beta switch could be best explained by the "divided model."
Collapse
Affiliation(s)
- Chun-Ping Jia
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Elnitski L, Riemer C, Petrykowska H, Florea L, Schwartz S, Miller W, Hardison R. PipTools: a computational toolkit to annotate and analyze pairwise comparisons of genomic sequences. Genomics 2002; 80:681-90. [PMID: 12504859 DOI: 10.1006/geno.2002.7018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequence conservation between species is useful both for locating coding regions of genes and for identifying functional noncoding segments. Hence interspecies alignment of genomic sequences is an important computational technique. However, its utility is limited without extensive annotation. We describe a suite of software tools, PipTools, and related programs that facilitate the annotation of genes and putative regulatory elements in pairwise alignments. The alignment server PipMaker uses the output of these tools to display detailed information needed to interpret alignments. These programs are provided in a portable format for use on common desktop computers and both the toolkit and the PipMaker server can be found at our Web site (http://bio.cse.psu.edu/). We illustrate the utility of the toolkit using annotation of a pairwise comparison of the mouse MHC class II and class III regions with orthologous human sequences and subsequently identify conserved, noncoding sequences that are DNase I hypersensitive sites in chromatin of mouse cells.
Collapse
Affiliation(s)
- Laura Elnitski
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Routledge SJE, Proudfoot NJ. Definition of transcriptional promoters in the human beta globin locus control region. J Mol Biol 2002; 323:601-11. [PMID: 12419253 DOI: 10.1016/s0022-2836(02)01011-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our previous studies on the human beta globin gene cluster revealed the presence of intergenic transcripts throughout the locus, and demonstrated that transcription of the locus control region (LCR) initiates within an ERV9 endogenous retroviral long-terminal repeat (LTR) upstream of DNase I hypersensitive site 5. We show, using a combination of assays, that there are additional sites of transcription initiation within the LCR at hypersensitive sites 2 and 3. We have defined sites of transcription initiation, which occurs at discrete positions in a direction towards the globin genes. In addition, we show that mutation of specific transcription factor binding sites within HS2 leads to a reduction in transcription levels from within this site. We propose that these initiation events within the LCR can account for the observed orientation dependence of LCR function, and contribute to the open chromatin configuration of the beta globin locus. In addition, transcription from within the LCR hypersensitive sites could compensate for the absence of the ERV9 LTR in many transgenic mice lines, which nevertheless regulate their globin clusters correctly.
Collapse
Affiliation(s)
- S J E Routledge
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| | | |
Collapse
|
12
|
Molete JM, Petrykowska H, Sigg M, Miller W, Hardison R. Functional and binding studies of HS3.2 of the beta-globin locus control region. Gene 2002; 283:185-97. [PMID: 11867225 DOI: 10.1016/s0378-1119(01)00858-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distal locus control region (LCR) is required for high-level expression of the complex of genes (HBBC) encoding the beta-like globins of mammals in erythroid cells. Several major DNase hypersensitive sites (HSs 1-5) mark the LCR. Sequence conservation and direct experimental evidence have implicated sequences within and between the HS cores in function of the LCR. In this report we confirm the mapping of a minor HS between HS3 and HS4, called HS3.2, and show that sequences including it increase the number of random integration sites at which a drug resistance gene is expressed. We also show that nuclear proteins including GATA1 and Oct1 bind specifically to sequences within HS3.2. However, the protein Pbx1, whose binding site is the best match to one highly conserved sequence, does not bind strongly. GATA1 and Oct1 also bind in the HS cores of the LCR and to promoters in HBBC. Their binding to this minor HS suggests that they may be used in assembly of a large complex containing multiple regulatory sequences.
Collapse
Affiliation(s)
- Joseph M Molete
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 206 Althouse Laboratory, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
13
|
Zhang SB, He QY, Zhao H, Gui CY, Jiang C, Qian RL. Function of GATA transcription factors in hydroxyurea-induced HEL cells. Cell Res 2001; 11:301-10. [PMID: 11787775 DOI: 10.1038/sj.cr.7290100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
HEL cells, a human erythroleukemia cell line, mainly express the fetal (gamma) globin gene and trace amount of the embryonic (epsilon) globin gene, but not adult (beta) globin gene. Here we show that hydroxyurea (HU) can induce HEL cells to express adult (beta) globin gene and lead these cells to terminal differentiation. Results showed in Gel mobility shift assays that GATA factors could specifically bind to the regulatory elements of human beta-globin gene, including the proximal regulatory element (the beta-promoter) and the distal regulatory elements (the DNase I hypersensitive sites in the LCR, HS2-HS4 core sequences). However, the DNA binding patterns of GATA factors were quite different between HU-induced and uninduced HEL cells. Western-blot analysis of nuclear extracts from both the uninduced and HU-induced HEL cells revealed that the level of GATA-2 transcription factor decreased, whereas the level of GATA-1 transcription factor increased following the time of hydroxyurea induction. Furthermore, using RT-PCR analysis the expression of human beta-globin gene in HU-induced HEL cells could be blocked again when HEL cells were incubated in the presence of antisense oligonucleotides for hGATA-1, suggesting that the upregulation of hGATA-1 transcription factor might be critical for the expression of human beta-globin gene in HU-induced HEL cells.
Collapse
Affiliation(s)
- S B Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
| | | | | | | | | | | |
Collapse
|
14
|
Goodwin AJ, McInerney JM, Glander MA, Pomerantz O, Lowrey CH. In vivo formation of a human beta-globin locus control region core element requires binding sites for multiple factors including GATA-1, NF-E2, erythroid Kruppel-like factor, and Sp1. J Biol Chem 2001; 276:26883-92. [PMID: 11304527 DOI: 10.1074/jbc.m008410200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active elements of the beta-globin locus control region (LCR) are located within domains of unique chromatin structure. These nuclease hypersensitive sites (HSs) are characterized by high DNase I sensitivity, erythroid specificity, similar nucleosomal structure, and evolutionarily conserved clusters of cis-acting elements that are required for the formation and function of the core elements. To determine the requirements for HS core formation in the setting of nuclear chromatin, we constructed a series of artificial HS cores containing binding sites for GATA-1, NF-E2, and Sp1. In contrast to the results of previous in vitro experiments, we found that when constructs were stably integrated in mouse erythroleukemia cells the binding sites for NF-E2, GATA-1, or Sp1 alone or in any combination were unable to form core HS structures. We subsequently identified two new cis-acting elements from the LCR HS4 core that, when combined with the NF-E2, Sp1, and tandem inverted GATA elements, result in core structure formation. Both new cis-acting elements bind Sp1, and one binds erythroid Kruppel-like factor (EKLF). We conclude that in vivo beta-globin LCR HS core formation is more complex than previously thought and that several factors are required for this process to occur.
Collapse
Affiliation(s)
- A J Goodwin
- Departments of Medicine and Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | | | | | | | | |
Collapse
|
15
|
Nemeth MJ, Bodine DM, Garrett LJ, Lowrey CH. An erythroid-specific chromatin opening element reorganizes beta-globin promoter chromatin structure and augments gene expression. Blood Cells Mol Dis 2001; 27:767-80. [PMID: 11778661 DOI: 10.1006/bcmd.2001.0448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In erythroid tissues the chromatin structure of the beta-globin gene locus is extensively remodeled. Changes include the formation of DNase I hypersensitive sites (HSs) over the promoters of actively expressed genes. To test the hypothesis that such "opening" of promoter chromatin structure is important for beta-globin gene expression, we placed a 101-bp erythroid-specific hypersensitive-site forming element (HSFE) from the core of LCR HS4 immediately upstream of a minimal beta-globin gene promoter. We then studied the effects of this element alone and in combination with other cis-acting elements on globin gene chromatin structure and gene expression in MEL cells and transgenic mice. Single or tandem HSFEs increased the size of the portion of the promoter accessible to DNase digestion, increased the proportion of promoters in an accessible conformation, and increased gene expression approximately 5-fold. These were equivalent to expression levels attained using a 2.8-kb microLCR construct. Inclusion of the LCR HS2 enhancer did not increase expression further. In transgenic mouse fetal liver cells the HSFE increased average expression 2.5-fold compared to the minimal promoter alone. These results indicate that a small cis-acting element is capable of remodeling local beta-globin promoter chromatin structure and producing expression similar to that seen with a microLCR construct.
Collapse
Affiliation(s)
- M J Nemeth
- Department of Pharmacology & Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
16
|
Elnitski L, Li J, Noguchi CT, Miller W, Hardison R. A negative cis-element regulates the level of enhancement by hypersensitive site 2 of the beta-globin locus control region. J Biol Chem 2001; 276:6289-98. [PMID: 11092897 DOI: 10.1074/jbc.m009624200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The core of DNase hypersensitive site (HS) 2 from the beta-globin locus control region is a potent enhancer of globin gene expression. Although it has been considered to contain only positive cis-regulatory sequences, our study of the enhancement conferred by segments of HS2 in erythroid cells reveals a novel negative element. Individual cis-regulatory elements from HS2 such as E boxes or Maf-response elements produced as great or greater enhancement than the intact core in mouse erythroleukemia (MEL) cells, indicating the presence of negative elements within HS2. A deletion series through HS2 revealed negative elements at the 5' and 3' ends of the core. Analysis of constructs with and without the 5' negative element showed that the effect is exerted on the promoters of globin genes expressed at embryonic, fetal, or adult stages. The negative effect was observed in bipotential human cells (K562 and human erythroleukemia (HEL) cells), proerythroblastic mouse (MEL) cells, and normal adult human erythroid cells. The novel negative element also functions after stable integration into MEL chromosomes. Smaller deletions at the 5' end of the HS2 core map the negative element within a 20-base pair region containing two conserved sequences.
Collapse
Affiliation(s)
- L Elnitski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
17
|
Ramchandran R, Bengra C, Whitney B, Lanclos K, Tuan D. A (GATA)(7) motif located in the 5' boundary area of the human beta-globin locus control region exhibits silencer activity in erythroid cells. Am J Hematol 2000; 65:14-24. [PMID: 10936858 DOI: 10.1002/1096-8652(200009)65:1<14::aid-ajh3>3.0.co;2-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 40-bp DNA, consisting of seven tandem GATA repeats, is located near the HS5 site in the 5' boundary area of the locus control region (LCR) of human beta-globin gene. This (GATA)(7) motif, named 5a, exhibits silencer activity in erythroid cells. In transfected, recombinant plasmids containing the chloramphenicol acetyltransferase (CAT) reporter gene, 5a repressed the activity of the cis-linked housekeeping phosphoglycerate kinase (pgk) promoter; 5a also repressed the activity of the cis-linked HS2 enhancer regardless of whether the CAT gene was driven by the pgk or the epsilon-globin promoter. Repression by 5a was most severe when 5a was spliced upstream of HS2 at a distance of less than 200 bases from the HS2 enhancer core. The silencer activity of 5a was independent of whether the component GATA motifs were in head to tail orientation as in the wild type 5a or in head to head or tail to tail orientation as in a mutant 5a. Band shift experiments show that the GATA-1 protein binds to both 5a and the mutant 5a and forms a large protein complex. Together, the results suggest that GATA-1 bound at 5a is a strong, proximal repressor of HS2 enhancer activity.
Collapse
Affiliation(s)
- R Ramchandran
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
18
|
Li Q, Zhang M, Duan Z, Stamatoyannopoulos G. Structural analysis and mapping of DNase I hypersensitivity of HS5 of the beta-globin locus control region. Genomics 1999; 61:183-93. [PMID: 10534403 DOI: 10.1006/geno.1999.5954] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beta-globin locus control region (LCR) is a cis regulatory element that is located in the 5' part of the locus and confers high-level erythroid lineage-specific and position-independent expression of the globin genes. The LCR is composed of five DNase I hypersensitive sites (HSs), four of which are formed in erythroid cells. The function of the 5'-most site, HS5, remains unknown. To gain insights into its function, mouse HS5 was cloned and sequenced. Comparison of the HS5 sequences of mouse, human, and galago revealed two extensively conserved regions, designated HS5A and HS5B. DNase I hypersensitivity mapping revealed that two hypersensitive sites are located within the HS5A region (designated HS5A(major) and HS5A(minor)), and two are located within the HS5B region (HS5B(major), HS5B(minor)). The positions of each of these HSs colocalize with either GATA-1 or Ap1/NF-E2 motifs, suggesting that these protein binding sites are implicated in the formation of HS5. Gel retardation assays indicated that the Ap1/NF-E2 motifs identified in murine HS5A and HS5B interact with NF-E2 or similar proteins. Studies of primary murine cells showed that HS5 is formed in all hemopoietic tissues tested (fetal liver, adult thymus, and spleen), indicating that this HS is not erythroid lineage specific. HS5 was detected in murine brain but not in murine kidney or adult liver, suggesting that this site is not ubiquitous. The presence of GATA-1 and NF-E2 motifs (which are common features of the DNase I hypersensitive sites of the LCR) suggests that the HS5 is organized in a manner similar to that of the other HSs. Taken together, our results suggest that HS5 is an inherent component of the beta-globin locus control region.
Collapse
Affiliation(s)
- Q Li
- School of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | | | | | | |
Collapse
|
19
|
Strauss EC, Orkin SH. Guanine-adenine ligation-mediated polymerase chain reaction in vivo footprinting. Methods Enzymol 1999; 304:572-84. [PMID: 10372382 DOI: 10.1016/s0076-6879(99)04033-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The analysis of functional DNA regulatory sequences involved in transcriptional control is critical to establishing which proteins mediate cell-specific gene expression. The organization of erythroid LCRs is complex, consisting of multiple, interdigested cis elements. As in situ binding to these sites is determined by the accessibility of these regulatory regions in native chromatin and the availability of relevent cell-specific and ubiquitous factors, in vivo footprinting was used to define protein DNA interactions in human globin LCRs. To further enhance the detection of protein contacts with this technique, we have modified the dimethyl sulfate-based ligation-mediated PCR in vivo footprinting procedure to permit the assessment of protein binding at guanine and adenine resides, rather than exclusively at guanines. This modification, termed GA-LMPCR in vivo footprinting, was essential for the analysis of GATA-1 motifs in the alpha-LCR and HS-3 of the beta-LCR. Moreover, GA-LMPCR in vivo footprinting provided high-resolution analysis of AP-1/NF-E2 elements and revealed protein contacts at sequences that are not coincident with previously described regulatory motifs. A comprehensive discussion of this modification and sample illustrations from our studies have been presented to demonstrate the enhanced detection and resolution obtained with this procedure.
Collapse
Affiliation(s)
- E C Strauss
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston 02114, USA
| | | |
Collapse
|
20
|
Long Q, Bengra C, Li C, Kutlar F, Tuan D. A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5' boundary area of the human beta-globin locus control region. Genomics 1998; 54:542-55. [PMID: 9878258 DOI: 10.1006/geno.1998.5608] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription of the human beta-like globin genes in erythroid cells is regulated by the far-upstream locus control region (LCR). In an attempt to define the 5' border of the LCR, we have cloned and sequenced 5 kb of new upstream DNA. We found an LTR retrotransposon belonging to the ERV-9 family of human endogenous retroviruses in the apparent 5' boundary area of the LCR. This ERV-9 LTR contains an unusual U3 enhancer region composed of 14 tandem repeats with recurrent GATA, CACCC, and CCAAT motifs. This LTR is conserved in human and gorilla, indicating its evolutionary stability in the genomes of the higher primates. In both recombinant constructs and the endogenous human genome, the LTR enhancer and promoter activate the transcription of cis-linked DNA preferentially in erythroid cells. Our findings suggest the possibility that this LTR retrotransposon may serve a relevant host function in regulating the transcription of the beta-globin LCR.
Collapse
Affiliation(s)
- Q Long
- Department of Medicine, Medical College of Georgia, Augusta, Georgia, 30912, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The most upstream hypersensitive site (HS) of the β-globin locus control region (LCR) in humans (5′ HS 5) and chickens (5′ HS 4) can act as an insulating element in some gain of function assays and may demarcate a β-globin domain. We have mapped the most upstream HSs of the mouse β-globin LCR and sequenced this region. We find that mice have a region homologous to human 5′ HS 5 that is associated with a minor HS. In addition we map a unique HS upstream of 5′ HS 5 and refer to this novel site as mouse 5′ HS 6. We have also generated mice containing a targeted deletion of the region containing 5′ HS 5 and 6. We find that after excision of the selectable marker in vivo, deletion of 5′ HS 5 and 6 has a minimal effect on transcription and does not prevent formation of the remaining LCR HSs. Taken together these findings suggest that the most upstream HSs of the mouse β-globin LCR are not necessary for maintaining the β-globin locus in an active configuration or to protect it from a surrounding repressive chromatin environment.
Collapse
|
22
|
Description and Targeted Deletion of 5′ Hypersensitive Site 5 and 6 of the Mouse β-Globin Locus Control Region. Blood 1998. [DOI: 10.1182/blood.v92.11.4394] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The most upstream hypersensitive site (HS) of the β-globin locus control region (LCR) in humans (5′ HS 5) and chickens (5′ HS 4) can act as an insulating element in some gain of function assays and may demarcate a β-globin domain. We have mapped the most upstream HSs of the mouse β-globin LCR and sequenced this region. We find that mice have a region homologous to human 5′ HS 5 that is associated with a minor HS. In addition we map a unique HS upstream of 5′ HS 5 and refer to this novel site as mouse 5′ HS 6. We have also generated mice containing a targeted deletion of the region containing 5′ HS 5 and 6. We find that after excision of the selectable marker in vivo, deletion of 5′ HS 5 and 6 has a minimal effect on transcription and does not prevent formation of the remaining LCR HSs. Taken together these findings suggest that the most upstream HSs of the mouse β-globin LCR are not necessary for maintaining the β-globin locus in an active configuration or to protect it from a surrounding repressive chromatin environment.
Collapse
|
23
|
Ley TJ, Hug B, Fiering S, Epner E, Bender MA, Groudine M. Reduced beta-globin gene expression in adult mice containing deletions of locus control region 5' HS-2 or 5' HS-3. Ann N Y Acad Sci 1998; 850:45-53. [PMID: 9668526 DOI: 10.1111/j.1749-6632.1998.tb10461.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To gain insights into the functions of individual DNA'se hypersensitive sites within the beta globin locus control region (LCR), we deleted the endogenous 5' HS-2 and HS-3 regions from the mouse germline using homologous recombination techniques. We demonstrated that the deletion of either murine 5' HS-2 or 5' HS-3 reduced the expression of the embryonic epsilon y and beta h1 globin genes minimally in yolk sac-derived erythrocytes, but that both knockouts reduced the output of the adult beta (beta-Major + beta-Minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-Neo cassette was retained within either the HS-2 or HS-3 region, a much more severe reduction in globin gene expression was observed at all developmental stages. PGK-Neo was shown to be expressed in an erythroid-specific fashion when it was retained in the HS-3 position. These results show that neither 5' HS-2 nor HS-3 is required for the activity of embryonic globin genes, nor are these sites required for correct developmental switching. However, each site is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult red blood cells. Each site therefore contains some non-redundant information that contributes to adult globin gene function.
Collapse
Affiliation(s)
- T J Ley
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, Missouri 63110-1093, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Ira G, Svetlova E, Filipski J. Meiotic double-strand breaks in yeast artificial chromosomes containing human DNA. Nucleic Acids Res 1998; 26:2415-9. [PMID: 9580694 PMCID: PMC147548 DOI: 10.1093/nar/26.10.2415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Meiotic recombination in the yeast Saccharomyces cerevisiae is initiated by double-strand breaks (DSB) in chromosomal DNA. These DSB, which can be mapped in the rad 50S mutant yeast strain, are caused by a topoisomerase II-like enzyme, the protein Spo11. Evidence suggests that this protein is located in the axial element of the meiotic chromosome which implies that the DSB are located in these chromosomes in the vicinity of the bases of the DNA loops. We have found that in the yeast artificial chromosomes carrying human DNA, at the level of resolution obtained by pulsed field gel electrophoresis (PFGE), the meiotic DSB in the diploid yeast are co-localized with the DNase I hypersensitive sites (HS) in a haploid strain of yeast. These HS are located close to sequences which, under stress, have the potential to form secondary structures containing unpaired nucleotides. Clusters of such sequences could be a hallmark of the bases of the chromatin loops.
Collapse
Affiliation(s)
- G Ira
- Laboratoire de Mutagénèse. Institut J. Monod. 2, place Jussieu, Tour 43, 75251 Paris, France
| | | | | |
Collapse
|
25
|
Hardison R, Slightom JL, Gumucio DL, Goodman M, Stojanovic N, Miller W. Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. Gene X 1997; 205:73-94. [PMID: 9461381 DOI: 10.1016/s0378-1119(97)00474-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Locus control regions (LCRs) are cis-acting DNA segments needed for activation of an entire locus or gene cluster. They are operationally defined as DNA sequences needed to achieve a high level of gene expression regardless of the position of integration in transgenic mice or stably transfected cells. This review brings together the large amount of DNA sequence data from the beta-globin LCR with the vast amount of functional data obtained through the use of biochemical, cellular and transgenic experimental systems. Alignment of orthologous LCR sequences from five mammalian species locates numerous conserved regions, including previously identified cis-acting elements within the cores of nuclease hypersensitive sites (HSs) as well as conserved regions located between the HS cores. The distribution of these conserved sequences, combined with the effects of LCR fragments utilized in expression studies, shows that important sites are more widely distributed in the LCR than previously anticipated, especially in and around HS2 and HS3. We propose that the HS cores plus HS flanking DNAs comprise a 'unit' to which proteins bind and form an optimally functional structure. Multiple HS units (at least three: HS2, HS3 and HS4 cores plus flanking DNAs) together establish a chromatin structure that allows the proper developmental regulation of genes within the cluster.
Collapse
Affiliation(s)
- R Hardison
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park 16802, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
AbstractHypersensitive site 3 (HS3) of the β-like globin locus control region has been implicated as an important regulator of the β-like globin genes, but the trans factors that bind HS3 have only been partially characterized. Using a five-species alignment (human, galago, rabbit, goat, and mouse) that represents 370 million years of evolution, we have identified 24 phylogenetic footprints in the HS3 core and surrounding regions. Probes corresponding to the human sequence at each footprint have been used in binding studies to identify the nuclear factors that bind within and near these conserved sequence elements. Among the high-affinity interactions observed were several binding sites for proteins with repressor activity, including YY1, CCAAT displacement protein, and G1/G2 complexes (uncharacterized putative repressors) and several binding sites for the stage selector protein. To complement this analysis, orthologous galago sequences were also used to derive probes and the pattern of proteins binding to human and galago probes was compared. Binding interactions differing between these two species could be responsible for the different expression patterns shown by the two γ genes (galago γ is embryonic; human γ is fetal). Alternatively, binding interactions that are conserved in the two species may be important in the regulation of common expression patterns (eg, repression of γ in adult life).
Collapse
|
27
|
Elnitski L, Miller W, Hardison R. Conserved E boxes function as part of the enhancer in hypersensitive site 2 of the beta-globin locus control region. Role of basic helix-loop-helix proteins. J Biol Chem 1997; 272:369-78. [PMID: 8995271 DOI: 10.1074/jbc.272.1.369] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human beta-globin gene cluster is regulated in part by a distal locus control region that is required for opening a chromatin domain in erythroid cells and enhancing expression of the beta-like globin genes at the correct developmental stages. One part of the locus control region, called hypersensitive site 2 (HS2), functions as a strong enhancer. Matches to the consensus binding sites for basic helix-loop-helix (bHLH) proteins (E boxes) are well conserved within the HS2 core. We show that mutations of the HS2 core that alter an invariant E box cause a 3.5-fold reduction in enhancement of expression of an epsilon-globin reporter gene in transiently transfected K562 cells, both before and after induction. Mutations of the HS2 core that alter a less-highly conserved E box cause a more modest reduction in enhancement. Footprint analysis shows binding of erythroid nuclear proteins in vitro to the invariant E box as well as an adjacent CAC/GTG box. Probes containing the E box regions form sequence-specific complexes with proteins from both K562 and MEL nuclear extracts; these are disrupted by the same mutations that decrease enhancement. Some of these latter complexes contain known bHLH proteins, as revealed by specific loss of individual complexes when treated with antibodies against TAL1 and USF. Interaction between the E boxes and the bHLH proteins, as well as other binding proteins, could account for the role of these sites in enhancement by HS2.
Collapse
Affiliation(s)
- L Elnitski
- Department of Biochemistry, The Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
28
|
Cavallesco R, Tuan D. Modulatory subdomains of the HS2 enhancer differentially regulate enhancer activity in erythroid cells at different developmental stages. Blood Cells Mol Dis 1997; 23:8-26. [PMID: 9215747 DOI: 10.1006/bcmd.1997.0115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The HS2 enhancer in the locus control region of human beta-like globin genes displays developmental-stage-independent enhancer function. The mechanism by which it regulates the transcription of the globin genes in erythroid cells throughout development is not fully understood. In this paper we dissect the HS2 enhancer into an enhancer core and five modulatory subdomains M1 to M5. The enhancer core possesses developmental-stage-independent enhancer activity. The modulatory subdomains by themselves do not possess such enhancer activity, but they apparently respond to environmental signals and modulate enhancer core activity in a developmental-stage specific manner. M1 located 5' of the core strongly stimulates core activity in K562 cells at the embryonic stage. M2 and M3 located 3' of the core strongly stimulate core activity in MEL cells at the adult stage. Moreover, M3 suppresses core activity at the embryonic stage and exhibits an adult-stage-selector activity. These findings indicate that the apparent developmental-stage-independence of the HS2 enhancer is a result of multiple interactions between the core and the modulatory subdomains located both near and far from the core.
Collapse
Affiliation(s)
- R Cavallesco
- Harvard-MIT Division of Health Science and Technology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
29
|
Bode J, Schlake T, Ríos-Ramírez M, Mielke C, Stengert M, Kay V, Klehr-Wirth D. Scaffold/matrix-attached regions: structural properties creating transcriptionally active loci. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:389-454. [PMID: 8575884 DOI: 10.1016/s0074-7696(08)61235-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression characteristics of the human interferon-beta gene, as part of a long stretch of genomic DNA, led to the discovery of the putative domain bordering elements. The chromatin structure of these elements and their surroundings was determined during the process of gene activation and correlated with their postulated functions. It is shown that these "scaffold-attached regions" (S/MAR elements) have some characteristics in common with and others distinct from enhancers with which they cooperate in various ways. Our model of S/MAR function will focus on their properties of mediating topological changes within the respective domain.
Collapse
Affiliation(s)
- J Bode
- Gesellschaft für Biotechnologische Forschung m.b.H., Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Kielman MF, Smits R, Bernini LF. Structure of the mouse 3-methyladenine DNA glycosylase gene and exact localization upstream of the alpha-globin gene cluster on chromosome 11. Mamm Genome 1995; 6:499-504. [PMID: 8589517 DOI: 10.1007/bf00356165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper we describe the genomic organization of the mouse 3-Methyladenine DNA Glycosylase (MPG) gene and localize three putative regulatory elements around this gene. The MPG gene plays a key role in the excision repair of methylated adenine residues and has been localized upstream of the alpha-globin gene cluster in human and mouse. The human MPG gene has been fully characterized, whereas up to now only the cDNA sequence of the mouse MPG gene had been published. Here, we describe a detailed restriction map, the intron/exon structure, the CpG-rich putative promoter sequence, and the exact localization of the mouse MPG gene with respect to the murine alpha-globin gene cluster. Our analysis reveals a remarkable different exon/intron structure of the mouse MPG gene compared with its human homolog. Two prominent DNase hypersensitive sites (HSS) were found 0.1 and 1.5 kb upstream of the coding sequence. In addition to these elements, an erythroid prominent HSS was mapped at the intron/exon boundary of the last exon. The characterization and localization of the MPG gene in mouse makes it now possible to carry out transgenic and gene targeting experiments and are essential to understand the control of gene expression of the MPG gene in particular and of the whole region in general.
Collapse
Affiliation(s)
- M F Kielman
- Department of Human Genetics, State University Leiden, The Netherlands
| | | | | |
Collapse
|
31
|
Kaufman PD, Botchan MR. Assembly of nucleosomes: do multiple assembly factors mean multiple mechanisms? Curr Opin Genet Dev 1994; 4:229-35. [PMID: 8032200 DOI: 10.1016/s0959-437x(05)80049-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In eukaryotic cells, transcription and DNA replication occur on DNA templates associated with chromatin proteins, most notably histone octamers. Protein factors that can assemble these units have been isolated from many sources. In particular, one factor from human cells is associated with ongoing DNA synthesis; other known assembly factors are not obligately coupled to the replication process. The wide variety of histone chaperones suggests that multiple pathways for the remodeling of chromatin structure have evolved.
Collapse
|
32
|
|
33
|
McPherson SM, Longo FJ. Localization of DNase I-hypersensitive regions during rat spermatogenesis: stage-dependent patterns and unique sensitivity of elongating spermatids. Mol Reprod Dev 1992; 31:268-79. [PMID: 1315143 DOI: 10.1002/mrd.1080310408] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNase I-hypersensitivity of rat spermatogenic cells was analyzed 1) to establish overall patterns of hypersensitivity in individual cell types, 2) to correlate these patterns with known changes in chromatin organization and function, and 3) to provide a foundation for further analyses examining DNase I-hypersensitivity and the localization of specific genes during spermatogenesis. Parameters for in situ nick translation, using radioactive and fluorescent probes to visualize DNase I-hypersensitive regions (DHR), were established for fixed and sectioned testicular preparations, permeabilized cells, and isolated germ cell nuclei. As anticipated, the pattern of DHR changed in a cell-type specific manner during the course of spermatogenesis, reflective of known stage-dependent alterations in the composition and structure of both the chromatin and the nuclear lamina/matrix as well as changes in gene expression. DHR in preleptotene spermatocytes were primarily peripheral, while in pachytene spermatocytes they were localized along the condensed chromosomes. The pattern of DHR changed from "checkerboard" in steps 7-8 round spermatid nuclei to "lamellar" in steps 10-11 elongating spermatids. In steps 12-13 elongating spermatids. DHR were localized throughout the nuclei or in a graded manner--increasing from anterior to posterior and mirroring the pattern of chromatin condensation. However, unlike the case in other stages, DNA of steps 12-13 elongating spermatids was exquisitely sensitive to nick translation even in the absence of exogenous DNase I. In contrast to the labeling of earlier stages, steps 16-19 spermatids and mature spermatozoa did not demonstrate DNase I-hypersensitivity under any conditions employed. A variety of agents that interact with topoisomerase II and DNA (teniposide, novobiocin, ethidium bromide, and adenosine triphosphate) were tested to determine the basis for the unique sensitivity to nick translation of steps 12-13 elongating spermatids. None of the agents tested, however, affected this unique labeling. The sensitivity of steps 12-13 elongating spermatids to nick translation in the absence of exogenous nuclease indicators the presence of endogenous nicks, which may relieve torsional stress and aid rearrangement as the chromatin is packaged into a form characteristic of the mature spermatozoon.
Collapse
Affiliation(s)
- S M McPherson
- Department of Anatomy, University of Iowa, Iowa City 52242
| | | |
Collapse
|