1
|
Reinhardt-Tews A, Krutyhołowa R, Günzel C, Roehl C, Glatt S, Breunig KD. A double role of the Gal80 N terminus in activation of transcription by Gal4p. Life Sci Alliance 2020; 3:3/12/e202000665. [PMID: 33037058 PMCID: PMC7556753 DOI: 10.26508/lsa.202000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
Activation of gene expression by Gal4p in K. lactis requires an element in the N terminus of KlGal80p that mediates nuclear co-import of KlGal1p and galactokinase inhibition to support the co-inducer function of KlGal1p. The yeast galactose switch operated by the Gal4p–Gal80p–Gal3p regulatory module is a textbook model of transcription regulation in eukaryotes. The Gal80 protein inhibits Gal4p-mediated transcription activation by binding to the transcription activation domain. In Saccharomyces cerevisiae, inhibition is relieved by formation of an alternative Gal80–Gal3 complex. In yeasts lacking a Gal3p ortholog, such as Kluyveromyces lactis, the Gal1 protein (KlGal1p) combines regulatory and enzymatic activity. The data presented here reveal a yet unknown role of the KlGal80 N terminus in the mechanism of Gal4p activation. The N terminus contains an NLS, which is responsible for nuclear accumulation of KlGal80p and KlGal1p and for KlGal80p-mediated galactokinase inhibition. Herein, we present a model where the N terminus of KlGal80p reaches the catalytic center of KlGal1p causing enzyme inhibition in the nucleus and stabilization of the KlGal1–KlGal80p complex. We corroborate this model by genetic analyses and structural modelling and provide a rationale for the divergent evolution of the mechanism activating Gal4p.
Collapse
Affiliation(s)
| | - Rościsław Krutyhołowa
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Christian Günzel
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Constance Roehl
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karin D Breunig
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Thieme N, Wu VW, Dietschmann A, Salamov AA, Wang M, Johnson J, Singan VR, Grigoriev IV, Glass NL, Somerville CR, Benz JP. The transcription factor PDR-1 is a multi-functional regulator and key component of pectin deconstruction and catabolism in Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:149. [PMID: 28616073 PMCID: PMC5469009 DOI: 10.1186/s13068-017-0807-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/29/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Pectin is an abundant component in many fruit and vegetable wastes and could therefore be an excellent resource for biorefinery, but is currently underutilized. Fungal pectinases already play a crucial role for industrial purposes, such as for foodstuff processing. However, the regulation of pectinase gene expression is still poorly understood. For an optimal utilization of plant biomass for biorefinery and biofuel production, a detailed analysis of the underlying regulatory mechanisms is warranted. In this study, we applied the genetic resources of the filamentous ascomycete species Neurospora crassa to screen for transcription factors that play a major role in pectinase induction. RESULTS The pectin degradation regulator-1 (PDR-1) was identified through a transcription factor mutant screen in N. crassa. The Δpdr-1 mutant exhibited a severe growth defect on pectin and all tested pectin-related poly- and monosaccharides. Biochemical as well as transcriptional analyses of WT and the Δpdr-1 mutant revealed that while PDR-1-mediated gene induction was dependent on the presence of l-rhamnose, it also strongly affected the degradation of the homogalacturonan backbone. The expression of the endo-polygalacturonase gh28-1 was greatly reduced in the Δpdr-1 mutant, while the expression levels of all pectate lyase genes increased. Moreover, a pdr-1 overexpression strain displayed substantially increased pectinase production. Promoter analysis of the PDR-1 regulon allowed refinement of the putative PDR-1 DNA-binding motif. CONCLUSIONS PDR-1 is highly conserved in filamentous ascomycete fungi and is present in many pathogenic and industrially important fungi. Our data demonstrate that the function of PDR-1 in N. crassa combines features of two recently described transcription factors in Aspergillus niger (RhaR) and Botrytis cinerea (GaaR). The results presented in this study contribute to a broader understanding of how pectin degradation is orchestrated in filamentous fungi and how it could be manipulated for optimized pectinase production.
Collapse
Affiliation(s)
- Nils Thieme
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Vincent W. Wu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
| | - Axel Dietschmann
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department of Infection Biology, Institute for Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität, Erlangen-Nuremberg, Germany
| | - Asaf A. Salamov
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Jenifer Johnson
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Igor V. Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
- Environmental Genomics and System Biology, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Chris R. Somerville
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
| | - J. Philipp Benz
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Steakley DL, Rine J. On the Mechanism of Gene Silencing in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2015; 5:1751-63. [PMID: 26082137 PMCID: PMC4528331 DOI: 10.1534/g3.115.018515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/15/2015] [Indexed: 11/18/2022]
Abstract
Multiple mechanisms have been proposed for gene silencing in Saccharomyces cerevisiae, ranging from steric occlusion of DNA binding proteins from their recognition sequences in silenced chromatin to a specific block in the formation of the preinitiation complex to a block in transcriptional elongation. This study provided strong support for the steric occlusion mechanism by the discovery that RNA polymerase of bacteriophage T7 could be substantially blocked from transcribing from its cognate promoter when embedded in silenced chromatin. Moreover, unlike previous suggestions, we found no evidence for stalled RNA polymerase II within silenced chromatin. The effectiveness of the Sir protein-based silencing mechanism to block transcription activated by Gal4 at promoters in the domain of silenced chromatin was marginal, yet it improved when tested against mutant forms of the Gal4 protein, highlighting a role for specific activators in their sensitivity to gene silencing.
Collapse
Affiliation(s)
- David Lee Steakley
- Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, Stanley Hall, University of California Berkeley, Berkeley, California 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, Stanley Hall, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
4
|
Rubio-Texeira M. A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. FEMS Yeast Res 2005; 5:1115-28. [PMID: 16014343 DOI: 10.1016/j.femsyr.2005.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/12/2005] [Accepted: 05/18/2005] [Indexed: 11/21/2022] Open
Abstract
Despite their close phylogenetic relationship, Kluyveromyces lactis and Saccharomyces cerevisiae have adapted their carbon utilization systems to different environments. Although they share identities in the arrangement, sequence and functionality of their GAL gene set, both yeasts have evolved important differences in the GAL genetic switch in accordance to their relative preference for the utilization of galactose as a carbon source. This review provides a comparative overview of the GAL-specific regulatory network in S. cerevisiae and K. lactis, discusses the latest models proposed to explain the transduction of the galactose signal, and describes some of the particularities that both microorganisms display in their regulatory response to different carbon sources. Emphasis is placed on the potential for improved strategies in biotechnological applications using yeasts.
Collapse
Affiliation(s)
- Marta Rubio-Texeira
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Abstract
The yeast transcriptional activator Gal4 has served as a paradigm for understanding how eukaryotic cells mount rapid transcriptional responses to environmental changes. In this issue of Cell, Muratani et al. (2005) provide evidence that Gal4 ubiquitylation and destruction are required for activation by Gal4. Surprisingly, this modification is required at a postinitiation step in transcription for the production of mRNAs that are correctly processed and fully functional for translation.
Collapse
Affiliation(s)
- Karen Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
6
|
Muratani M, Kung C, Shokat KM, Tansey WP. The F Box Protein Dsg1/Mdm30 Is a Transcriptional Coactivator that Stimulates Gal4 Turnover and Cotranscriptional mRNA Processing. Cell 2005; 120:887-99. [PMID: 15797387 DOI: 10.1016/j.cell.2004.12.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 10/19/2004] [Accepted: 12/22/2004] [Indexed: 11/25/2022]
Abstract
We report here that the prototypical yeast transcription factor Gal4 undergoes two distinct modes of ubiquitin-mediated proteolysis: one that occurs independent of transcription and restricts Gal4 function, and another that is transcription coupled and essential for productive activation of Gal4 target genes. Destruction of transcriptionally active Gal4 depends on an F box protein called Dsg1/Mdm30. In the absence of Dsg1, Gal4 is stable, nonubiquitylated, and unable to productively stimulate transcription. Analysis of the phenotype of dsg1-null yeast reveals a striking disconnect between GAL gene RNA and protein levels; in the absence of Dsg1, Gal4 target genes are transcribed, but the resulting RNAs are not translated. The translational defects of these RNAs are related to defects in phosphorylation of the RNA polymerase II carboxy-terminal domain, which in turn affects recruitment of RNA processing machinery. We propose that Gal4 ubiquitylation and destruction are required for initiation-competent transcription complexes to transition to fully mature elongating complexes capable of appropriate mRNA processing.
Collapse
Affiliation(s)
- Masafumi Muratani
- Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
7
|
Weston AD, Baliga NS, Bonneau R, Hood L. Systems approaches applied to the study of Saccharomyces cerevisiae and Halobacterium sp. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:345-57. [PMID: 15338636 DOI: 10.1101/sqb.2003.68.345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A D Weston
- Institute for Systems Biology, Seattle, Washington 98103-8904, USA
| | | | | | | |
Collapse
|
8
|
Gao C, Wang L, Milgrom E, Shen WCW. On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures. J Biol Chem 2004; 279:42677-86. [PMID: 15294907 DOI: 10.1074/jbc.m406363200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drug resistance as a result of overexpression of drug transporter genes presents a major obstacle in the treatment of cancers and infections. The molecular mechanisms underlying transcriptional up-regulation of drug transporter genes remains elusive. Employing Saccharomyces cerevisiae as a model, we analyzed here transcriptional regulation of the drug transporter gene PDR5 in a drug-resistant pdr1-3 strain. This mutant bears a gain-of-function mutation in PDR1, which encodes a transcriptional activator for PDR5. Similar to the well studied model gene GAL1, we provide evidence showing that PDR5 belongs to a group of genes whose transcription requires the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex. We also show that the drugindependent PDR5 transcription is associated with enhanced promoter occupancy of coactivator complexes, including SAGA, Mediator, chromatin remodeling SWI/SNF complex, and TATA-binding protein. Analyzed by chromatin immunoprecipitations, loss of contacts between histones and DNA occurs at both promoter and coding sequences of PDR5. Consistently, micrococcal nuclease susceptibility analysis revealed altered chromatin structure at the promoter and coding sequences of PDR5. Our data provide molecular description of the changes associated with constitutive PDR5 transcription, and reveal the molecular mechanism underlying drug-independent transcriptional up-regulation of PDR5.
Collapse
Affiliation(s)
- Chen Gao
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
9
|
Li P, Gao XG, Arellano RO, Renugopalakrishnan V. Glycosylated and phosphorylated proteins--expression in yeast and oocytes of Xenopus: prospects and challenges--relevance to expression of thermostable proteins. Protein Expr Purif 2001; 22:369-80. [PMID: 11482998 DOI: 10.1006/prep.2001.1431] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation and glycosylation are important posttranslational events in the biosynthesis of proteins. The different degrees of phosphorylation and glycosylation of proteins have been an intriguing phenomenon. Advances in genetic engineering have made it possible to control the degree of glycosylation and phosphorylation of proteins. Structural biology of phosphorylated and glycosylated proteins has been advancing at a much slower pace due to difficulties in using high-resolution NMR studies in solution phase. Major difficulties have arisen from the inherent mobilities of phosphorylated and glycosylated side chains. This paper reviews molecular and structural biology of phosphorylated and glycosylated proteins expressed in eukaryotic expression systems which are especially suited for large-scale production of these proteins. In our laboratory, we have observed that eukaryotic expression systems are particularly suited for the expression of thermostable light-activated proteins, e.g., bacteriorhodopsins and plastocyanins.
Collapse
Affiliation(s)
- P Li
- Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Des Etages SA, Saxena D, Huang HL, Falvey DA, Barber D, Brandriss MC. Conformational changes play a role in regulating the activity of the proline utilization pathway-specific regulator in Saccharomyces cerevisiae. Mol Microbiol 2001; 40:890-9. [PMID: 11401696 DOI: 10.1046/j.1365-2958.2001.02432.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the ability to use proline as a nitrogen source requires the Put3p transcriptional regulator, which turns on the expression of the proline utilization genes, PUT1 and PUT2, in the presence of the inducer proline and in the absence of preferred nitrogen sources. Changes in target gene expression occur through an alteration in activity of the DNA-bound Put3p, a member of the Zn(II)2Cys6 binuclear cluster family of proteins. Here, we report that the 'on' conformation can be mimicked in the absence of proline by the insertion of an epitope tag in several different places in the protein, as well as by specific amino acid changes that suppress a put3 mutation leading to non-inducibility of the pathway. In addition, the presence of proline causes a conformational change in the Put3 protein detected by increased sensitivity to thrombin or V8 protease. These findings suggest that Put3p shifts from an inactive to an activate state via conformational changes.
Collapse
Affiliation(s)
- S A Des Etages
- Department of Microbiology and Molecular Genetics, Room MSB F-607, UMDNJ - New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
11
|
Bash R, Lohr D. Yeast chromatin structure and regulation of GAL gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:197-259. [PMID: 11008489 DOI: 10.1016/s0079-6603(00)65006-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yeast genomic DNA is covered by nucleosome cores spaced by short, discrete length linkers. The short linkers, reinforced by novel histone properties, create a number of unique and dynamic nucleosome structural features in vivo: permanent unpeeling of DNA from the ends of the core, an inability to bind even full 147 bp core DNA lengths, and facility to undergo a conformational transition that resembles the changes found in active chromatin. These features probably explain how yeast can maintain most of its genome in a transcribable state and avoid large-scale packaging away of inactive genes. The GAL genes provide a closely regulated system in which to study gene-specific chromatin structure. GAL structural genes are inactive without galactose but are highly transcribed in its presence; the expression patterns of the regulatory genes can account for many of the features of GAL structural gene control. In the inactive state, GAL genes demonstrate a characteristic promoter chromosomal organization; the major upstream activation sequence (UASG) elements lie in open, hypersensitive regions, whereas the TATA and transcription start sites are in nucleosomes. This organization helps implement gene regulation in this state and may benefit the organism. Induction of GAL expression triggers Gal4p-dependent upstream nucleosome disruption. Disruption is transient and can readily be reversed by a Gal80p-dependent nucleosome deposition process. Both are sensitive to the metabolic state of the cell. Induction triggers different kinds of nucleosome changes on the coding sequences, perhaps reflecting the differing roles of nucleosomes on coding versus promoter regions. GAL gene activation is a complex process involving multiple Gal4p activities, numerous positive and negative cofactors, and the histone tails. DNA bending and chromosomal architecture of the promoter regions may also play a role in GAL regulation. Regulator-mediated competition between nucleosomes and the TATA binding protein complex for the TATA region is probably a central aspect of GAL regulation and a focal point for the numerous factors and processes that contribute to it.
Collapse
Affiliation(s)
- R Bash
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287, USA
| | | |
Collapse
|
12
|
Klein CJL, Olsson L, Nielsen J. Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 1):13-24. [PMID: 9467897 DOI: 10.1099/00221287-144-1-13] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christopher J L Klein
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Lisbeth Olsson
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jens Nielsen
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
13
|
Bhat R, Weaver JA, Wagner C, Bodwell JE, Bresnick E. ATP depletion affects the phosphorylation state, ligand binding, and nuclear transport of the 4 S polycyclic aromatic hydrocarbon-binding protein in rat hepatoma cells. J Biol Chem 1996; 271:32551-6. [PMID: 8955080 DOI: 10.1074/jbc.271.51.32551] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the rat, cytochrome P4501A1 gene expression is thought to be regulated by several trans-acting factors including the 4 S polycyclic aromatic hydrocarbon (PAH)-binding protein. Phosphorylation and dephosphorylation have been suggested to influence the function of many cytosolic receptors and transcription factors. The ATP level within H4IIE rat hepatoma cells could be depleted by treatment with sodium azide or 2,4-dinitrophenol; restoration of the original ATP levels occurred with addition of glucose to the cell culture. ATP depletion reduced the phosphate content of the 4 S protein by approximately 25-30%, which lowered the binding of benzo[a]pyrene (B[a]P) to the 4 S protein by >60%. This effect could not be reversed by the addition of ATP to the binding reaction mixtures. Alkaline phosphatase treatment of the purified 4 S protein in a cell-free system also reduced the B[a]P binding to the protein. Cells treated with a protein phosphatase inhibitor, okadaic acid, and a protein kinase inhibitor, staurosporin, affected the B[a]P binding of the 4 S protein positively and negatively, respectively. These data suggested that phosphorylation is involved in the interaction of the 4 S protein with the PAH. The nuclear translocation of the predominantly cytosolic binding protein has been investigated after ligand binding. Western blots with the immunopurified 4 S PAH-binding protein from cytosolic and nuclear lysates showed significant differences in the distribution of the 4 S receptor between cytosolic and nuclear compartments in control and ATP-depleted cells. Ligand binding stimulated the movement of the receptor into the nucleus, which was completely blocked by reducing the intracellular ATP concentration. These findings provide new information on the role of ATP and phosphorylation on the interaction of B[a]P with 4 S PAH-binding protein and its nuclear translocation.
Collapse
Affiliation(s)
- R Bhat
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | | | | | |
Collapse
|
14
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
15
|
Long RM, Hopper JE. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae. Yeast 1995; 11:233-46. [PMID: 7785324 DOI: 10.1002/yea.320110306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The SIP1 gene of Saccharomyces cerevisiae is a carbon-catabolite-specific negative regulator of GAL gene transcription and acts as a multicopy suppressor of growth defects associated with impaired Snf1p protein kinase activity. The Sip1 protein is known to undergo phosphorylation when associated in vitro with the Snf1 protein kinase. We have carried out in vivo studies of the genetic and carbon control of Sip1p phosphorylation. Metabolic labeling reveals phosphorylation of Sip1p under both carbon catabolite-repressing and non-repressing conditions and in both SNF1 wild-type and snf1-deletion cells. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis immunoblot assay, we detect apparent changes in Sip1p phosphorylation states in response to changes in carbon source. At least one dephosphorylation of Sip1p occurs with a shift from non-repressing carbon source to repressing carbon source. The MIG1 gene, acting through SNF1-dependent and SNF1-independent pathways, is required for some Sip1p phosphorylations. REG1 appears to be required for at least one dephosphorylation of Sip1p, whereas SSN6 appears to be required for at least one phosphorylation of Sip1p. These results reveal new complexities in carbon response signaling, and may reflect the involvement of the Sip1 protein in the same complex as the Mig1 and Ssn6 proteins.
Collapse
Affiliation(s)
- R M Long
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | |
Collapse
|
16
|
Hawkins AR, Lamb HK, Moore JD, Roberts CF. Genesis of eukaryotic transcriptional activator and repressor proteins by splitting a multidomain anabolic enzyme. Gene 1993; 136:49-54. [PMID: 8294040 DOI: 10.1016/0378-1119(93)90446-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genes necessary for the correctly regulated catabolism of quinate in Aspergillus nidulans and Neurospora crassa are controlled at the level of transcription by a DNA-binding activator protein and a repressor protein that directly interact with one another. The repressor protein is homologous throughout its length with the three C-terminal domains of a pentafunctional enzyme catalysing five consecutive steps in the related anabolic shikimate pathway. We now report that the activator protein is homologous to the two N-terminal domains of the same pentafunctional enzyme and that this proposed structural similarity suggests a molecular mechanism by which the repressor recognises the activator protein. We believe that this is the first report of the genesis of a pair of interacting eukaryotic regulatory proteins by the splitting of a multidomain anabolic enzyme. The recruitment of preformed enzymatically active domains to a regulatory role may represent a general mechanism for the evolution of pathway-specific regulator proteins in dispensable pathways.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
17
|
Gal4 protein binding is required but not sufficient for derepression and induction of GAL2 expression. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41510-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Abstract
The past year has seen significant advances in our understanding of the structure and function of yeast ARS elements. These elements, some of which function as chromosomal origins of DNA replication, are modular in structure. An essential domain, the ARS consensus sequence, binds a multiprotein complex that might be the long-sought initiator protein. The flanking domain contains a DNA unwinding element and a binding site for a multifunctional protein that acts as a replication enhancer.
Collapse
Affiliation(s)
- C S Newlon
- Department of Microbiology and Molecular Genetics, UMD-New Jersey Medical School, Newark 07103
| | | |
Collapse
|
19
|
Shen W, Selvakumar D, Stanford D, Hopper A. The Saccharomyces cerevisiae LOS1 gene involved in pre-tRNA splicing encodes a nuclear protein that behaves as a component of the nuclear matrix. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36534-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
|
21
|
Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 1993; 72:131-42. [PMID: 8422676 DOI: 10.1016/0092-8674(93)90057-w] [Citation(s) in RCA: 874] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DNA-dependent protein kinase (DNA-PK) phosphorylates Sp1 and several other nuclear proteins. Here, we show that Sp1 and the DNA-PK must be colocalized on the same DNA molecule for efficient phosphorylation to occur. Interestingly, we find that the DNA-PK binds to and is activated by the ends of DNA molecules. Furthermore, we show that the DNA binding properties of the DNA-PK are identical to those of Ku, a well-characterized human autoimmune antigen. We demonstrate that the DNA-PK can be fractionated into two components, one of which is Ku and the other of which is a polypeptide of approximately 350 kd. DNA cross-linking and coimmunoprecipitation studies indicate that the catalytic 350 kd DNA-PK component is directed to DNA by protein-protein interactions with Ku. The implications of the unusual DNA binding mode and multicomponent nature of the DNA-PK are discussed.
Collapse
|
22
|
Leplatois P, Le Douarin B, Loison G. High-level production of a peroxisomal enzyme: Aspergillus flavus uricase accumulates intracellularly and is active in Saccharomyces cerevisiae. Gene 1992; 122:139-45. [PMID: 1452020 DOI: 10.1016/0378-1119(92)90041-m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Strains of Saccharomyces cerevisiae producing Aspergillus flavus uricase (Uox) have been constructed. An artificial promoter which combined the upstream and downstream sequences of the GAL7 and ADH2 promoters, respectively, was found to be efficient in directing the synthesis of uaZ mRNAs encoding Uox. A good proportionality between the copy number of the uaZ expression cassette and the level of Uox production was found in the range of 1-10 copies. Transformants accumulated active and soluble Uox to a level exceeding 13% of total protein, as deduced from enzymatic assays. This relative level could be improved two- to threefold by using a recipient strain in which the wild-type GAL4 gene had been deleted and which expressed a GAL4 construct placed under the control of the ADH2 promoter.
Collapse
Affiliation(s)
- P Leplatois
- Unité de Microbiologie, Sanofi Elf Bio Recherches, Labège, France
| | | | | |
Collapse
|
23
|
Affiliation(s)
- T Hunter
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92186
| | | |
Collapse
|
24
|
Swaffield JC, Bromberg JF, Johnston SA. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 1992; 357:698-700. [PMID: 1614516 DOI: 10.1038/357698a0] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The acidic transcriptional activation motif functions in all eukaryotes, which suggests that it makes contact with some universal component of the transcriptional apparatus. Transcriptional activation by the yeast regulatory protein GAL4 requires an acidic region at its carboxyl terminus. Here we implement a selection scheme to determine whether GAL4 can still function when this C-terminal domain has been deleted. It can, when accompanied by a mutation in the SUG1 gene which is an essential gene in yeast. Analysis of mutant SUG1 in combination with various alleles of GAL4 indicates that SUG1 acts through a transcriptional pathway that depends on GAL4, but requires a region of GAL4 other than the C-terminal acidic activation domain. The predicted amino-acid sequence of SUG1 closely resembles that of two human proteins, TBP1 and MSS1, which modulate expression mediated by the human immunodeficiency virus tat gene.
Collapse
Affiliation(s)
- J C Swaffield
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573
| | | | | |
Collapse
|
25
|
Sato-Bigbee C, Yu RK. Phosphorylation of nuclear proteins in myelinating oligodendrocytes and its control by cyclic AMP. J Neurochem 1991; 57:1650-5. [PMID: 1717652 DOI: 10.1111/j.1471-4159.1991.tb06364.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oligodendroglial nuclei isolated from rat brains at different stages of myelinogenesis (10, 18, and 30 days of age) were incubated with [gamma-32P]ATP and extracted with 0.75 M perchloric acid to yield a fraction of nonacidic chromatin proteins. The protein extracts were then analyzed by polyacrylamide gel electrophoresis. The phosphorylation pattern of these proteins was found to be different for different age groups. In 10-day-old rat oligodendrocytes the most extensive phosphorylation occurred in low molecular mass species (less than 30 kDa), in contrast to fractions obtained from 18- and 30-day-old rat oligodendrocytes which showed a significantly higher labeling of the proteins with molecular masses greater than 30 kDa. The phosphorylation of the latter species was greatly stimulated by the presence of cyclic AMP in the incubation media. The results suggest that the phosphorylation of specific nuclear proteins, which may play a regulatory role at different stages of oligodendroglial maturation and myelinogenesis, may be at least partially modulated by intracellular cyclic AMP.
Collapse
Affiliation(s)
- C Sato-Bigbee
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298
| | | |
Collapse
|
26
|
Pongratz I, Strömstedt P, Mason G, Poellinger L. Inhibition of the specific DNA binding activity of the dioxin receptor by phosphatase treatment. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55374-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
27
|
Samuel KP, Hodge DR, Chen YM, Papas TS. Nef proteins of the human immunodeficiency viruses (HIV-1 and HIV-2) and simian immunodeficiency virus (SIV) are structurally similar to leucine zipper transcriptional activation factors. AIDS Res Hum Retroviruses 1991; 7:697-706. [PMID: 1931237 DOI: 10.1089/aid.1991.7.697] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Analysis of the predicted amino acid sequences of the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and of the related simian immunodeficiency virus (SIV) nef gene products (Nef) reveals the presence of a conserved leucine zipper-like repeat with the characteristic 4,3 arrangement of mainly hydrophobic amino acids in the middle (core) region of the proteins, but lacking the basic (DNA binding) domain characteristic of DNA-binding leucine zipper (bZIP) proteins. Also, at the C-terminus of the Nef proteins is a highly acidic sequence (net charge of -5 to -8) stretched over about 40 amino acids, and contains two predicted alpha-helices separated by a beta-turn linker sequence with sequence homology to known activation domains of acidic transcriptional activation factors. Moreover, within this acidic region of transcriptional activators and the homologous sequence within the second Nef alpha-helix, is a potential transcriptional activation consensus sequence (TACS) bounded by a pair of acidic amino acids (aspartic or glutamic acids) at the N-terminus and a highly invariant phenylalanine (hydrophobic), often followed by an acidic (aspartic) residue, at the C-terminus of the sequence. These findings strongly implicate Nef proteins as belonging to a class of non-DNA-binding leucine zipper acidic transcription factors, and provide a structural basis for new approaches to studying Nef function.
Collapse
Affiliation(s)
- K P Samuel
- Laboratory of Cellular Biochemistry, Program Resources, Inc./DynCorp, Frederick, MD
| | | | | | | |
Collapse
|
28
|
Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, Hunter T. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 1991; 64:573-84. [PMID: 1846781 DOI: 10.1016/0092-8674(91)90241-p] [Citation(s) in RCA: 849] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In resting human epithelial and fibroblastic cells, c-Jun is phosphorylated on serine and threonine at five sites, three of which are phosphorylated in vitro by glycogen synthase kinase 3 (GSK-3). These three sites are nested within a single tryptic peptide located just upstream of the basic region of the c-Jun DNA-binding domain (residues 227-252). Activation of protein kinase C results in rapid, site-specific dephosphorylation of c-Jun at one or more of these three sites and is coincident with increased AP-1-binding activity. Phosphorylation of recombinant human c-Jun proteins in vitro by GSK-3 decreases their DNA-binding activity. Mutation of serine 243 to phenylalanine blocks phosphorylation of all three sites in vivo and increases the inherent trans-activation ability of c-Jun at least 10-fold. We propose that c-Jun is present in resting cells in a latent, phosphorylated form that can be activated by site-specific dephosphorylation in response to protein kinase C activation.
Collapse
Affiliation(s)
- W J Boyle
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, California 92037
| | | | | | | | | | | | | |
Collapse
|
29
|
The pleiotropic UGA35(DURL) regulatory gene of Saccharomyces cerevisiae: cloning, sequence and identity with the DAL81 gene. Gene X 1991; 97:163-71. [PMID: 1999281 DOI: 10.1016/0378-1119(91)90048-g] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The UGA35 gene of Saccharomyces cerevisiae (also called DURL) encodes a positive regulator of the expression of structural genes involved in 4-aminobutyric acid (GABA) and urea catabolisms. The UGA35 gene has been cloned by complementation of function and identified by chromosomal gene replacement. The sequence of this regulatory gene and its flanking regions has been established. Our data reveal an open reading frame of 2892 nt, corresponding to 964 amino acids (aa). The deduced UGA35 aa sequence shares several similarities with that of other regulatory proteins, suggesting that the UGA35 gene encodes a DNA-binding transcriptional activator. We also show that UGA35 and the DAL81 regulatory gene controlling allantoin and urea catabolisms are one and the same gene. This means that the same factor is required for specific induction of three distinct catabolic pathways, namely those involved in GABA, urea and allantoin utilization as nitrogen sources.
Collapse
|