1
|
Bondra ER, Rine J. Context-dependent function of the transcriptional regulator Rap1 in gene silencing and activation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2023; 120:e2304343120. [PMID: 37769255 PMCID: PMC10556627 DOI: 10.1073/pnas.2304343120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
In Saccharomyces cerevisiae, heterochromatin is formed through interactions between site-specific DNA-binding factors, including the transcriptional activator Repressor Activator Protein (Rap1), and Sir proteins. Despite an understanding of the establishment and maintenance of Sir-silenced chromatin, the mechanism of gene silencing by Sir proteins has remained a mystery. Utilizing high-resolution chromatin immunoprecipitation, we found that Rap1, the native activator of the bidirectional HMLα promoter, bound its recognition sequence in silenced chromatin, and its binding was enhanced by the presence of Sir proteins. In contrast to prior results, various components of transcription machinery were not able to access HMLα in the silenced state. These findings disproved the long-standing model of indiscriminate steric occlusion by Sir proteins and led to investigation of the role of the transcriptional activator Rap1 in Sir-silenced chromatin. Using a highly sensitive assay that monitors loss-of-silencing events, we identified a role for promoter-bound Rap1 in the maintenance of silent chromatin through interactions with the Sir complex. We also found that promoter-bound Rap1 activated HMLα when in an expressed state, and aided in the transition from transcription initiation to elongation. Highlighting the importance of epigenetic context in transcription factor function, these results point toward a model in which the duality of Rap1 function was mediated by local chromatin environment rather than binding-site availability.
Collapse
Affiliation(s)
- Eliana R. Bondra
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
2
|
Harvey ZH, Chakravarty AK, Futia RA, Jarosz DF. A Prion Epigenetic Switch Establishes an Active Chromatin State. Cell 2020; 180:928-940.e14. [PMID: 32109413 PMCID: PMC7195540 DOI: 10.1016/j.cell.2020.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/10/2019] [Accepted: 02/05/2020] [Indexed: 01/24/2023]
Abstract
Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.
Collapse
Affiliation(s)
- Zachary H Harvey
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anupam K Chakravarty
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Raymond A Futia
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Trypanosoma brucei RAP1 Has Essential Functional Domains That Are Required for Different Protein Interactions. mSphere 2020; 5:5/1/e00027-20. [PMID: 32102938 PMCID: PMC7045384 DOI: 10.1128/msphere.00027-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, to evade the host immune response. VSGs are expressed from subtelomeres in a monoallelic fashion. TbRAP1, a telomere protein, is essential for cell viability and VSG monoallelic expression and suppresses VSG switching. Although TbRAP1 has conserved functional domains in common with its orthologs from yeasts to mammals, the domain functions are unknown. RAP1 orthologs have pleiotropic functions, and interaction with different partners is an important means by which RAP1 executes its different roles. We have established a Cre-loxP-mediated conditional knockout system for TbRAP1 and examined the roles of various functional domains in protein expression, nuclear localization, and protein-protein interactions. This system enables further studies of TbRAP1 point mutation phenotypes. We have also determined functional domains of TbRAP1 that are required for several different protein interactions, shedding light on the underlying mechanisms of TbRAP1-mediated VSG silencing. RAP1 is a telomere protein that is well conserved from protozoa to mammals. It plays important roles in chromosome end protection, telomere length control, and gene expression/silencing at both telomeric and nontelomeric loci. Interaction with different partners is an important mechanism by which RAP1 executes its different functions in yeast. The RAP1 ortholog in Trypanosoma brucei is essential for variant surface glycoprotein (VSG) monoallelic expression, an important aspect of antigenic variation, where T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. Like other RAP1 orthologs, T. brucei RAP1 (TbRAP1) has conserved functional domains, including BRCA1 C terminus (BRCT), Myb, MybLike, and RAP1 C terminus (RCT). To study functions of various TbRAP1 domains, we established a strain in which one endogenous allele of TbRAP1 is flanked by loxP repeats, enabling its conditional deletion by Cre-mediated recombination. We replaced the other TbRAP1 allele with various mutant alleles lacking individual functional domains and examined their nuclear localization and protein interaction abilities. The N terminus, BRCT, and RCT of TbRAP1 are required for normal protein levels, while the Myb and MybLike domains are essential for normal cell growth. Additionally, the Myb domain of TbRAP1 is required for its interaction with T. brucei TTAGGG repeat-binding factor (TbTRF), while the BRCT domain is required for its self-interaction. Furthermore, the TbRAP1 MybLike domain contains a bipartite nuclear localization signal that is required for its interaction with importin α and its nuclear localization. Interestingly, RAP1’s self-interaction and the interaction between RAP1 and TRF are conserved from kinetoplastids to mammals. However, details of the interaction interfaces have changed throughout evolution. IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, to evade the host immune response. VSGs are expressed from subtelomeres in a monoallelic fashion. TbRAP1, a telomere protein, is essential for cell viability and VSG monoallelic expression and suppresses VSG switching. Although TbRAP1 has conserved functional domains in common with its orthologs from yeasts to mammals, the domain functions are unknown. RAP1 orthologs have pleiotropic functions, and interaction with different partners is an important means by which RAP1 executes its different roles. We have established a Cre-loxP-mediated conditional knockout system for TbRAP1 and examined the roles of various functional domains in protein expression, nuclear localization, and protein-protein interactions. This system enables further studies of TbRAP1 point mutation phenotypes. We have also determined functional domains of TbRAP1 that are required for several different protein interactions, shedding light on the underlying mechanisms of TbRAP1-mediated VSG silencing.
Collapse
|
4
|
Zampar GG, Kümmel A, Ewald J, Jol S, Niebel B, Picotti P, Aebersold R, Sauer U, Zamboni N, Heinemann M. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Mol Syst Biol 2013; 9:651. [PMID: 23549479 PMCID: PMC3693829 DOI: 10.1038/msb.2013.11] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/21/2013] [Indexed: 01/16/2023] Open
Abstract
The diauxic shift in Saccharomyces cerevisiae is an ideal model to study how eukaryotic cells readjust their metabolism from glycolytic to gluconeogenic operation. In this work, we generated time-resolved physiological data, quantitative metabolome (69 intracellular metabolites) and proteome (72 enzymes) profiles. We found that the diauxic shift is accomplished by three key events that are temporally organized: (i) a reduction in the glycolytic flux and the production of storage compounds before glucose depletion, mediated by downregulation of phosphofructokinase and pyruvate kinase reactions; (ii) upon glucose exhaustion, the reversion of carbon flow through glycolysis and onset of the glyoxylate cycle operation triggered by an increased expression of the enzymes that catalyze the malate synthase and cytosolic citrate synthase reactions; and (iii) in the later stages of the adaptation, the shutting down of the pentose phosphate pathway with a change in NADPH regeneration. Moreover, we identified the transcription factors associated with the observed changes in protein abundances. Taken together, our results represent an important contribution toward a systems-level understanding of how this adaptation is realized.
Collapse
Affiliation(s)
- Guillermo G Zampar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M. Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 2009; 5:e1000612. [PMID: 19816560 PMCID: PMC2749448 DOI: 10.1371/journal.ppat.1000612] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/10/2009] [Indexed: 11/22/2022] Open
Abstract
Glycolysis is a metabolic pathway that is central to the assimilation of carbon for either respiration or fermentation and therefore is critical for the growth of all organisms. Consequently, glycolytic transcriptional regulation is important for the metabolic flexibility of pathogens in their attempts to colonize diverse niches. We investigated the transcriptional control of carbohydrate metabolism in the human fungal pathogen Candida albicans and identified two factors, Tye7p and Gal4p, as key regulators of glycolysis. When respiration was inhibited or oxygen was limited, a gal4tye7 C. albicans strain showed a severe growth defect when cultured on glucose, fructose or mannose as carbon sources. The gal4tye7 strain displayed attenuated virulence in both Galleria and mouse models as well, supporting the connection between pathogenicity and metabolism. Chromatin immunoprecipitation coupled with microarray analysis (ChIP-CHIP) and transcription profiling revealed that Tye7p bound the promoter sequences of the glycolytic genes and activated their expression during growth on either fermentable or non-fermentable carbon sources. Gal4p also bound the glycolytic promoter sequences and activated the genes although to a lesser extent than Tye7p. Intriguingly, binding and activation by Gal4p was carbon source-dependent and much stronger during growth on media containing fermentable sugars than on glycerol. Furthermore, Tye7p and Gal4p were responsible for the complete induction of the glycolytic genes under hypoxic growth conditions. Tye7p and Gal4p also regulated unique sets of carbohydrate metabolic genes; Tye7p bound and activated genes involved in trehalose, glycogen, and glycerol metabolism, while Gal4p regulated the pyruvate dehydrogenase complex. This suggests that Tye7p represents the key transcriptional regulator of carbohydrate metabolism in C. albicans and Gal4p provides a carbon source-dependent fine-tuning of gene expression while regulating the metabolic flux between respiration and fermentation pathways. Pathogens must be able to assimilate the carbon sources in their environment to generate sufficient energy and metabolites to survive. Since glycolysis is a central metabolic pathway, it is important for this metabolic flexibility. The most commonly isolated agent in human fungal infections, Candida albicans, depends upon glycolysis for the progression of systemic disease. We investigated glycolytic transcriptional regulation in C. albicans and defined two key regulators of the pathway, Tye7p and Gal4p. We demonstrated that these factors are important for the fermentative growth of C. albicans both in vitro and in vivo and also regulate the input and output fluxes of glycolysis. The gal4tye7 strain showed attenuated virulence in a Galleria and two mouse models, potentially due to the severe growth defect in oxygen-limiting environments. Gal4p and Tye7p represent fungal specific regulators involved in the pathogenicity of the organism that may be exploited in the development of antifungal treatments. Our study describes a fungal glycolytic transcriptional circuit that is fundamentally different from that of the model yeast Saccharomyces cerevisiae, providing further evidence that the transcriptional networks in S. cerevisiae need not be generally representative of the fungal kingdom.
Collapse
Affiliation(s)
- Christopher Askew
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Ingram PJ, Stumpf MPH, Stark J. Network motifs: structure does not determine function. BMC Genomics 2006; 7:108. [PMID: 16677373 PMCID: PMC1488845 DOI: 10.1186/1471-2164-7-108] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 05/05/2006] [Indexed: 11/22/2022] Open
Abstract
Background A number of publications have recently examined the occurrence and properties of the feed-forward motif in a variety of networks, including those that are of interest in genome biology, such as gene networks. The present work looks in some detail at the dynamics of the bi-fan motif, using systems of ordinary differential equations to model the populations of transcription factors, mRNA and protein, with the aim of extending our understanding of what appear to be important building blocks of gene network structure. Results We develop an ordinary differential equation model of the bi-fan motif and analyse variants of the motif corresponding to its behaviour under various conditions. In particular, we examine the effects of different steady and pulsed inputs to five variants of the bifan motif, based on evidence in the literature of bifan motifs found in Saccharomyces cerevisiae (commonly known as baker's yeast). Using this model, we characterize the dynamical behaviour of the bi-fan motif for a wide range of biologically plausible parameters and configurations. We find that there is no characteristic behaviour for the motif, and with the correct choice of parameters and of internal structure, very different, indeed even opposite behaviours may be obtained. Conclusion Even with this relatively simple model, the bi-fan motif can exhibit a wide range of dynamical responses. This suggests that it is difficult to gain significant insights into biological function simply by considering the connection architecture of a gene network, or its decomposition into simple structural motifs. It is necessary to supplement such structural information by kinetic parameters, or dynamic time series experimental data, both of which are currently difficult to obtain.
Collapse
Affiliation(s)
- Piers J Ingram
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, UK
| | - Michael PH Stumpf
- Centre for Bioinformatics, Division of Molecular Biosciences, Wolfson Building, Imperial College London, South Kensington Campus, London, SW7 2AY, UK
| | - Jaroslav Stark
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Zhang Z, Dietrich FS. Mapping of transcription start sites in Saccharomyces cerevisiae using 5' SAGE. Nucleic Acids Res 2005; 33:2838-51. [PMID: 15905473 PMCID: PMC1131933 DOI: 10.1093/nar/gki583] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 12/02/2022] Open
Abstract
A minimally addressed area in Saccharomyces cerevisiae research is the mapping of transcription start sites (TSS). Mapping of TSS in S.cerevisiae has the potential to contribute to our understanding of gene regulation, transcription, mRNA stability and aspects of RNA biology. Here, we use 5' SAGE to map 5' TSS in S.cerevisiae. Tags identifying the first 15-17 bases of the transcripts are created, ligated to form ditags, amplified, concatemerized and ligated into a vector to create a library. Each clone sequenced from this library identifies 10-20 TSS. We have identified 13,746 unique, unambiguous sequence tags from 2231 S.cerevisiae genes. TSS identified in this study are consistent with published results, with primer extension results described here, and are consistent with expectations based on previous work on transcription initiation. We have aligned the sequence flanking 4637 TSS to identify the consensus sequence A(A(rich))5NPyA(A/T)NN(A(rich))6, which confirms and expands the previous reported PyA(A/T)Pu consensus pattern. The TSS data allowed the identification of a previously unrecognized gene, uncovered errors in previous annotation, and identified potential regulatory RNAs and upstream open reading frames in 5'-untranslated region.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurham, NC 27710, USA
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurham, NC 27710, USA
| |
Collapse
|
8
|
Yu Q, Qiu R, Foland TB, Griesen D, Galloway CS, Chiu YH, Sandmeier J, Broach JR, Bi X. Rap1p and other transcriptional regulators can function in defining distinct domains of gene expression. Nucleic Acids Res 2003; 31:1224-33. [PMID: 12582242 PMCID: PMC150219 DOI: 10.1093/nar/gkg200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Barrier elements that are able to block the propagation of transcriptional silencing in yeast are functionally similar to chromatin boundary/insulator elements in metazoans that delimit functional chromosomal domains. We show that the upstream activating sequences of many highly expressed ribosome protein genes and glycolytic genes exhibit barrier activity. Analyses of these barriers indicate that binding sites for transcriptional regulators Rap1p, Abf1p, Reb1p, Adr1p and Gcn4p may participate in barrier function. We also present evidence suggesting that Rap1p is directly involved in barrier activity, and its barrier function correlates with local changes in chromatin structure. We further demonstrate that tethering the transcriptional activation domain of Rap1p to DNA is sufficient to recapitulate barrier activity. Moreover, targeting the activation domain of Adr1p or Gcn4p also establishes a barrier to silencing. These results support the notion that transcriptional regulators could also participate in delimiting functional domains in the genome.
Collapse
Affiliation(s)
- Qun Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
López MC, Baker HV. Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns. J Bacteriol 2000; 182:4970-8. [PMID: 10940042 PMCID: PMC111378 DOI: 10.1128/jb.182.17.4970-4978.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The phenotype of an organism is the manifestation of its expressed genome. The gcr1 mutant of yeast grows at near wild-type rates on nonfermentable carbon sources but exhibits a severe growth defect when grown in the presence of glucose, even when nonfermentable carbon sources are available. Using DNA microarrays, the genomic expression patterns of wild-type and gcr1 mutant yeast growing on various media, with and without glucose, were compared. A total of 53 open reading frames (ORFs) were identified as GCR1 dependent based on the criterion that their expression was reduced twofold or greater in mutant versus wild-type cultures grown in permissive medium consisting of YP supplemented with glycerol and lactate. The GCR1-dependent genes, so defined, fell into three classes: (i) glycolytic enzyme genes, (ii) ORFs carried by Ty elements, and (iii) genes not previously known to be GCR1 dependent. In wild-type cultures, GCR1-dependent genes accounted for 27% of the total hybridization signal, whereas in mutant cultures, they accounted for 6% of the total. Glucose addition to the growth medium resulted in a reprogramming of gene expression in both wild-type and mutant yeasts. In both strains, glycolytic enzyme gene expression was induced by the addition of glucose, although the expression of these genes was still impaired in the mutant compared to the wild type. By contrast, glucose resulted in a strong induction of Ty-borne genes in the mutant background but did not greatly affect their already high expression in the wild-type background. Both strains responded to glucose by repressing the expression of genes involved in respiration and the metabolism of alternative carbon sources. Thus, the severe growth inhibition observed in gcr1 mutants in the presence of glucose is the result of normal signal transduction pathways and glucose repression mechanisms operating without sufficient glycolytic enzyme gene expression to support growth via glycolysis alone.
Collapse
Affiliation(s)
- M C López
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610-0266, USA
| | | |
Collapse
|
10
|
Graham IR, Haw RA, Spink KG, Halden KA, Chambers A. In vivo analysis of functional regions within yeast Rap1p. Mol Cell Biol 1999; 19:7481-90. [PMID: 10523636 PMCID: PMC84746 DOI: 10.1128/mcb.19.11.7481] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the in vivo importance of different regions of Rap1p, a yeast transcriptional regulator and telomere binding protein. A yeast strain (SCR101) containing a regulatable RAP1 gene was used to test functional complementation by a range of Rap1p derivatives. These experiments demonstrated that the C terminus of the protein, containing the putative transcriptional activation domain and the regions involved in silencing and telomere function, is not absolutely essential for cell growth, a result confirmed by sporulation of a diploid strain containing a C terminal deletion derivative of RAP1. Northern analysis with cells that expressed Rap1p lacking the transcriptional activation domain revealed that this region is important for the expression of only a subset of Rap1p-activated genes. The one essential region within Rap1p is the DNA binding domain. We have investigated the possibility that this region has additional functions. It contains two Myb-like subdomains separated by a linker region. Individual point mutations in the linker region had no effect on Rap1p function, although deletion of the region abolished cell growth. The second Myb-like subdomain contains a large unstructured loop of unknown function. Domain swap experiments with combinations of elements from DNA binding domains of Rap1p homologues from different yeasts revealed that major changes can be made to the amino acid composition of this region without affecting Rap1p function.
Collapse
Affiliation(s)
- I R Graham
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
López MC, Smerage JB, Baker HV. Multiple domains of repressor activator protein 1 contribute to facilitated binding of glycolysis regulatory protein 1. Proc Natl Acad Sci U S A 1998; 95:14112-7. [PMID: 9826662 PMCID: PMC24335 DOI: 10.1073/pnas.95.24.14112] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of repressor activator protein 1 (Rap1p) at glycolytic enzyme gene upstream activating sequence (UAS) elements in Saccharomyces cerevisiae is to facilitate binding of glycolysis regulatory protein 1 (Gcr1p) at adjacent sites. Rap1p has a modular domain structure. In its amino terminus there is an asymmetric DNA-bending domain, which is distinct from its DNA-binding domain, which resides in the middle of the protein. In the carboxyl terminus of Rap1p lie its silencing and putative activation domains. We carried out a molecular dissection of Rap1p to identify domains contributing to its ability to facilitate binding of Gcr1p. We prepared full-length and three truncated versions of Rap1p and tested their ability to facilitate binding of Gcr1p by gel shift assay. The ability to detect ternary complexes containing Rap1p.DNA. Gcr1p depended on the presence of binding sites for both proteins in the probe DNA. The DNA-binding domain of Rap1p, although competent to bind DNA, was unable to facilitate binding of Gcr1p. Full-length Rap1p and the amino- and carboxyl-truncated versions of Rap1p were each able to facilitate binding of Gcr1p at an appropriately spaced binding site. Under these conditions, Gcr1p displayed an approximately 4-fold greater affinity for Rap1p-bound DNA than for otherwise identical free DNA. When spacing between Rap1p- and Gcr1p-binding sites was altered by insertion of five nucleotides, the ability to form ternary Rap1p.DNA.Gcr1p complexes was inhibited by all but the DNA-binding domain of Rap1p itself; however, the ability of each individual protein to bind the DNA probe was unaffected.
Collapse
Affiliation(s)
- M C López
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Box 100266, JHMHC, Gainesville, FL 32610-0266, USA
| | | | | |
Collapse
|
12
|
Velmurugan S, Lobo Z, Maitra PK. Suppression of pdc2 regulating pyruvate decarboxylase synthesis in yeast. Genetics 1997; 145:587-94. [PMID: 9055069 PMCID: PMC1207844 DOI: 10.1093/genetics/145.3.587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutants lacking pyruvate decarboxylase cannot grow on glucose. We have isolated three different complementation groups of extragenic suppressors that suppress mutations in pdc2, a regulatory locus required for the synthesis of the glycolytic enzyme pyruvate decarboxylase. The most frequent of these is a recessive mutation in the structural gene PFK1 of the soluble phosphofructokinase. The other class XSP18 (extragenic suppressor of pdc2) is a dominant temperature-sensitive suppressor that allows the cells to grow on glucose only at 30 degrees but not at 36 degrees. It also affects the normal induction of the glucose-inducible enolase 2, which can be rescued by providing a copy of wild-type xsp18 in trans-heterozygotes. The pyruvate decarboxylase activity in the triple mutant pdc2 pfk1 XSP18 is nearly equal to the sum of the activities in the two double mutants pdc2 pfk1 and pdc2 XSP18, respectively. This implies that the two suppressors act through independent pathways or that there is no cooperativity between them. In the pdc2 pfk1 XSP18, strain, pfk1 suppresses the loss of induction of glucose-inducible enolase 2 brought about by XSP18 but fails to rescue temperature sensitivity. The third class (xsp37) supports the growth of the pdc2 mutant on glucose but fails to support growth on gluconeogenic carbon sources. All the three suppressors suppress pdc2 delta as well and act on PDC1 at the level of transcription.
Collapse
Affiliation(s)
- S Velmurugan
- Molecular Biology Unit, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|
13
|
Jansma DB, Archambault J, Mostachfi O, Friesen JD. Similar upstream regulatory elements of genes that encode the two largest subunits of RNA polymerase II in Saccharomyces cerevisiae. Nucleic Acids Res 1996; 24:4543-51. [PMID: 8948647 PMCID: PMC146278 DOI: 10.1093/nar/24.22.4543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have determined the location of cis-acting elements that are important for the expression of RPO21 and RPO22, genes that encode the two largest subunits of RNA polymerase II (RNAPII) in Saccharomyces cerevisiae. A series of 5'-end deletions and nucleotide substitutions in the upstream regions of RPO21 and RPO22 were tested for their effect on the expression of lacZ fusions of these genes. Deletion of sequences from -723 to -693 in RPO21, which disrupted two Reb1p-binding sites and an Abf1p-binding site, resulted in a 10-fold decrease in expression. A T-rich region downstream of these sites was also important for expression. Deletion of sequences from -437 to -392 in the RPO22-upstream, which resulted in a 30-fold decrease in expression, indicated that the Reb1p- and Abf1p-binding sites in this region were important for RPO22 expression, as was a T-rich sequence immediately downstream of these sites. The RPO21 and RPO22 upstream regions were capable of interacting in vitro (gel-mobility-shift assays) with Reb1p and Abf1p. The similarities in the type and organization of elements in the upstream regions of RPO21 and RPO22 suggest that expression of these genes may be regulated coordinately.
Collapse
Affiliation(s)
- D B Jansma
- Department of Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Smart WC, Coffman JA, Cooper TG. Combinatorial regulation of the Saccharomyces cerevisiae CAR1 (arginase) promoter in response to multiple environmental signals. Mol Cell Biol 1996; 16:5876-87. [PMID: 8816501 PMCID: PMC231589 DOI: 10.1128/mcb.16.10.5876] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CAR1 (arginase) gene expression responds to multiple environmental signals; expression is induced in response to the intracellular accumulation of arginine and repressed when readily transported and catabolized nitrogen sources are available in the environment. Up to 14 cis-acting sites and 9 trans-acting factors have been implicated in regulated CAR1 transcription. In all but one case, the sites are redundant. To test whether these sites actually participate in CAR1 expression, each class of sites was inactivated by substitution mutations that retained the native spacing of the CAR1 cis-acting elements. Three types of sites function independently of the nitrogen source: two clusters of Abflp- and Rap1p-binding sites, and a GC-rich sequence. Two different sets of nitrogen source-dependent sites are also required: the first consists of two GATAA-containing UASNTR sites that mediate nitrogen catabolite repression-sensitive transcription, and the second is arginine dependent and consists of three UAS1 elements that activate transcription only when arginine is present. A single URS1 site mediates repression of CAR1 arginine-independent upstream activator site (UAS) activity in the absence of arginine and the presence of a poor nitrogen source (a condition under which the inducer-independent Gln3p can function in association with the UASNTR sites). When arginine is present, the combined activity of the UAS elements overcomes the negative effects mediated by URS1. Mutation of the classes of sites either singly or in combination markedly alters CAR1 promoter operation and control, supporting the idea that they function synergistically to regulate expression of the gene.
Collapse
Affiliation(s)
- W C Smart
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
15
|
Gailus-Durner V, Xie J, Chintamaneni C, Vershon AK. Participation of the yeast activator Abf1 in meiosis-specific expression of the HOP1 gene. Mol Cell Biol 1996; 16:2777-86. [PMID: 8649386 PMCID: PMC231269 DOI: 10.1128/mcb.16.6.2777] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The meiosis-specific gene HOP1, which encodes a component of the synaptonemal complex, is controlled through two regulatory elements, UASH and URS1H. Sites similar to URS1H have been identified in the promoter region of virtually every early meiosis-specific gene, as well as in many promoters of nonmeiotic genes, and it has been shown that the proteins that bind to this site function to regulate meiotic and nonmeiotic transcription. Sites similar to the UASH site have been found in a number of meiotic and nonmeiotic genes as well. Since it has been shown that UASH functions as an activator site in vegetative haploid cells, it seemed likely that the factors binding to this site regulate both meiotic and nonmeiotic transcription. We purified the factor binding to the UASH element of the HOP1 promoter. Sequence analysis identified the protein as Abf1 (autonomously replicating sequence-binding factor 1), a multifunctional protein involved in DNA replication, silencing, and transcriptional regulation. We show by mutational analysis of the UASH site, that positions outside of the proposed UASH consensus sequence (TNTGN[A/T]GT) are required for DNA binding in vitro and transcriptional activation in vivo. A new UASH consensus sequence derived from this mutational analysis closely matches a consensus Abf1 binding site. We also show that an Abf1 site from a nonmeiotic gene can replace the function of the UASH site in the HOP1 promoter. Taken together, these results show that Abf1 functions to regulate meiotic gene expression.
Collapse
Affiliation(s)
- V Gailus-Durner
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08855-0759, USA
| | | | | | | |
Collapse
|
16
|
Drazinic CM, Smerage JB, López MC, Baker HV. Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p). Mol Cell Biol 1996; 16:3187-96. [PMID: 8649429 PMCID: PMC231312 DOI: 10.1128/mcb.16.6.3187] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcriptional activation in eukaryotic organisms normally requires combinatorial interactions of multiple transcription factors. In most cases, the precise role played by each transcription factor is not known. The upstream activating sequence (UAS) elements of glycolytic enzyme genes in Saccharomyces cerevisiae are excellent model systems for the study of combinatorial interactions. The yeast protein known as Rap1p acts as both a transcriptional repressor and an activator, depending on sequence context. Rap1p-binding sites are found adjacent to Gcr1p-binding sites in the UAS elements of glycolytic enzyme genes. These UAS elements constitute some of the strongest activating sequences known in S. cerevisiae. In this study, we have investigated the relationship between Rap1p- and Gcr1p-binding sites and the proteins that bind them. In vivo DNA-binding studies with rap1ts mutant strains demonstrated that the inability of Rap1p to bind at its site resulted in the inability of Gcr1p to bind at adjacent binding sites. Synthetic oligonucleotides, modeled on the UAS element of PYK1, in which the relative positions of the Rap1p- and Gcr1p-binding sites were varied prepared and tested for their ability to function as UAS elements. The ability of the oligonucleotides to function as UAS elements was dependent not only on the presence of both binding sites but also on the relative distance between the binding sites. In vivo DNA-binding studies showed that the ability of Rap1p bind its site was independent of Gcr1p but that the ability of Gcr1p to bind its site was dependent on the presence of an appropriately spaced and bound Rap1p-binding site. In vitro binding studies showed Rap1p-enhanced binding of Gcr1p on oligonucleotides modeled after the native PYK1 UAS element but not when the Rap1p- and Gcr1p-binding sites were displaced by 5 nucleotides. This work demonstrates that the role of the Rap1p in the activation of glycolytic enzyme genes is to bind in their UAS elements and to facilitate the binding of Gcr1p at adjacent binding sites.
Collapse
Affiliation(s)
- C M Drazinic
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville 32610-0266, USA
| | | | | | | |
Collapse
|
17
|
Duffy M, Chambers A. DNA-protein interactions at the telomeric repeats of Schizosaccharomyces pombe. Nucleic Acids Res 1996; 24:1412-9. [PMID: 8628672 PMCID: PMC145816 DOI: 10.1093/nar/24.8.1412] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gel retardation assays using a probe containing the repeat region of a Schizosaccharomyces pombe chromosomal telomere identified four specific DNA- protein complexes in S. pombe total protein extracts (I, I', IIa and IIb). The proteins responsible for these complexes bound to the telomeric repeat region irrespective of whether or not the repeats were in close proximity to the end of a DNA molecule, and none of them bound strongly to single-stranded DNA. The protein responsible for complex I (TeRF I) was separated from the activity responsible for complexes IIa and IIb (TeRF II) using heparin-Sepharose chromatography. Both factors were efficiently cross-competed by an oligonucleotide containing the 18 bp sequence 5'-GGTTACAGGTTACAGGTT-3', which corresponds to two complete telomeric repeat units. Mutation of the T residues at positions 4 and 11 in the oligonucleotide dramatically reduced binding by TeRF II, but had no affect on binding by TeRF I. The protein responsible for complex I' did not bind strongly to either the wild-type or mutant oligonucleotide.
Collapse
Affiliation(s)
- M Duffy
- Department of Genetics, University of Nottingham, Queen's Medical Centre, UK
| | | |
Collapse
|
18
|
Stanbrough M, Magasanik B. Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae. J Bacteriol 1996; 178:2465-8. [PMID: 8636059 PMCID: PMC177966 DOI: 10.1128/jb.178.8.2465-2468.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We present an analysis of the DNA region located upstream of GAP1, the structural gene for the general amino acid permease, which contains the sites required for activation of transcription of this gene in response to the nitrogen source of the growth medium. This gene is not expressed in media containing glutamine, and its transcription is activated in response to Gln3p in cells using glutamate as the source of nitrogen and by Nil1p in cells using urea as the source of nitrogen. We show that full response to both activators requires the presence of two GATAAG sites, as well as the presence of auxiliary sites located in the interval between 602 and 453 bp from the translational start site. The fact that both Gln3p and Nil1p utilize GATAAG sites to activate transcription is reflected in the high homology of the zinc finger regions of the two proteins.
Collapse
Affiliation(s)
- M Stanbrough
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
19
|
Quandt K, Frech K, Karas H, Wingender E, Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23:4878-84. [PMID: 8532532 PMCID: PMC307478 DOI: 10.1093/nar/23.23.4878] [Citation(s) in RCA: 2111] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The identification of potential regulatory motifs in new sequence data is increasingly important for experimental design. Those motifs are commonly located by matches to IUPAC strings derived from consensus sequences. Although this method is simple and widely used, a major drawback of IUPAC strings is that they necessarily remove much of the information originally present in the set of sequences. Nucleotide distribution matrices retain most of the information and are thus better suited to evaluate new potential sites. However, sufficiently large libraries of pre-compiled matrices are a prerequisite for practical application of any matrix-based approach and are just beginning to emerge. Here we present a set of tools for molecular biologists that allows generation of new matrices and detection of potential sequence matches by automatic searches with a library of pre-compiled matrices. We also supply a large library (> 200) of transcription factor binding site matrices that has been compiled on the basis of published matrices as well as entries from the TRANSFAC database, with emphasis on sequences with experimentally verified binding capacity. Our search method includes position weighting of the matrices based on the information content of individual positions and calculates a relative matrix similarity. We show several examples suggesting that this matrix similarity is useful in estimating the functional potential of matrix matches and thus provides a valuable basis for designing appropriate experiments.
Collapse
Affiliation(s)
- K Quandt
- Institut für Säugetiergenetik, GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Chambers A, Packham EA, Graham IR. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Curr Genet 1995; 29:1-9. [PMID: 8595651 DOI: 10.1007/bf00313187] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A Chambers
- Department of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
21
|
Shei GJ, Broach JR. Yeast silencers can act as orientation-dependent gene inactivation centers that respond to environmental signals. Mol Cell Biol 1995; 15:3496-506. [PMID: 7791756 PMCID: PMC230586 DOI: 10.1128/mcb.15.7.3496] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mating-type loci located at the ends of chromosome III in Saccharomyces cerevisiae are transcriptionally repressed by a region-specific but sequence-nonspecific silencing apparatus, mediated by cis-acting silencer sequences. Previous deletion analyses have defined the locations and organizations of the silencers in their normal context and have shown that they are composed of various combinations of replication origins and binding sites for specific DNA-binding proteins. We have evaluated what organization of silencer sequences is sufficient for establishing silencing at a novel location, by inserting individual silencers next to the MAT locus and then assessing expression of MAT. The results of this analysis indicate that efficient silencing can be achieved by inserting either a single copy of the E silencer from HMR or multiple, tandem copies of either the E or I silencer from HML. These results indicate that while all silencers are functionally equivalent, they have different efficiencies; HMR E is more active than HML E, which itself is more active than HML I. Both HMR E and HML E exhibit orientation-dependent silencing, and the particular organization of binding elements within the silencer domain is critical for function. In some situations, silencing of MAT is conditional: complete silencing is obtained when cells are grown on glucose, and complete derepression occurs when cells are shifted to a nonfermentable carbon source, a process mediated in part by the RAS/cyclic AMP signaling pathway. Finally, the E silencer from HMR is able to reestablish repression immediately upon a shift back to glucose, while the silencers from HML exhibit a long lag in reestablishing repression, thus indicating distinctions between the two silencers in their reestablishment capacities. These results demonstrate that silencers can serve as nonspecific gene inactivation centers and that the attendant silencing can be rendered responsive to potential developmental cues.
Collapse
Affiliation(s)
- G J Shei
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
22
|
Einerhand AW, Kos W, Smart WC, Kal AJ, Tabak HF, Cooper TG. The upstream region of the FOX3 gene encoding peroxisomal 3-oxoacyl-coenzyme A thiolase in Saccharomyces cerevisiae contains ABF1- and replication protein A-binding sites that participate in its regulation by glucose repression. Mol Cell Biol 1995; 15:3405-14. [PMID: 7760837 PMCID: PMC230575 DOI: 10.1128/mcb.15.6.3405] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the FOX3 gene, which encodes yeast peroxisomal 3-oxoacyl-coenzyme A thiolase, can be induced by oleate and repressed by glucose. Previously, we have shown that induction was mediated by an oleate response element. Just upstream of this element a negatively acting control region that mediated glucose repression was found. In order to study this negative control region, we carried out DNA-binding assays and analyzed phenotypes of mutations in this region and in the trans-acting factor CAR80, which is identical to UME6. DNA-binding assays showed that two multifunctional yeast proteins, ABF1 and RP-A, interacted with the negative control element independently of the transcriptional activity of the FOX3 gene. ABF1 and RP-A, the latter being identical to BUF, were able to bind to DNA independently of one another but also simultaneously. The phenotypes of mutations in either DNA-binding sites of ABF1, RP-A, or both, which affected the DNA binding of these factors in vitro, indicated that these sites and the proteins that interact with them participate in glucose repression. The involvement of the RP-A site in glucose repression was further supported by our observation that the CAR80 gene product, which is required for repression mediated by the RP-A site, was essential for maintenance of glucose repression. In addition to the RP-A site in the FOX3 promoter, similar sequences were observed in other genes involved in peroxisomal function. RP-A proved to bind to all of these sequences, albeit with various affinities. From these results it is concluded that the ABF1 and RP-A sites are being required in concert to mediate glucose repression of the FOX3 gene. In addition, coordinated regulation of expression of genes involved in peroxisomal function in response to glucose is mediated by proteins associated with the RP-A site, probably RP-A and CAR80.
Collapse
Affiliation(s)
- A W Einerhand
- Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Nishi K, Park CS, Pepper AE, Eichinger G, Innis MA, Holland MJ. The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which encodes a novel basic-helix-loop-helix protein. Mol Cell Biol 1995; 15:2646-53. [PMID: 7739544 PMCID: PMC230494 DOI: 10.1128/mcb.15.5.2646] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The GCR1 gene product is required for maximal transcription of yeast glycolytic genes and for growth of yeast strains in media containing glucose as a carbon source. Dominant mutations in two genes, SGC1 and SGC2, as well as recessive mutations in the SGC5 gene were identified as suppressors of the growth and transcriptional defects caused by a gcr1 null mutation. The wild-type and mutant alleles of SGC1 were cloned and sequenced. The predicted amino acid sequence of the SGC1 gene product includes a region with substantial similarity to the basic-helix-loop-helix domain of the Myc family of DNA-binding proteins. The SGC1-1 dominant mutant allele contained a substitution of glutamine for a highly conserved glutamic acid residue within the putative basic DNA binding domain. A second dominant mutant, SGC1-2, contained a valine-for-isoleucine substitution within the putative loop region. The SGC1-1 dominant mutant suppressed the GCR1 requirement for enolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase gene expression. Expression of the yeast enolase genes was reduced three- to fivefold in strains carrying an sgc1 null mutation, demonstrating that SGC1 is required for maximal enolase gene expression. Expression of the enolase genes in strains carrying gcr1 and sgc1 double null mutations was substantially less than observed for strains carrying either null mutation alone, suggesting that GCR1 and SGC1 function on parallel pathways to activate yeast glycolytic gene expression.
Collapse
Affiliation(s)
- K Nishi
- Department of Biological Chemistry, School of Medicine, University of California, Davis 95616-8635, USA
| | | | | | | | | | | |
Collapse
|
24
|
Postlethwait P, Sundstrom P. Genetic organization and mRNA expression of enolase genes of Candida albicans. J Bacteriol 1995; 177:1772-9. [PMID: 7896700 PMCID: PMC176805 DOI: 10.1128/jb.177.7.1772-1779.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In previous work, we cloned a Candida albicans cDNA for the glycolytic enzyme enolase and found a single, abundant enolase transcript on Northern (RNA) blots and a single protein on immunoblots, using antiserum raised against a recombinant enolase fusion protein. Because C. albicans enolase is abundantly produced during infection and elicits strong host immune responses, the mechanisms regulating enolase production are important for understanding the growth of C. albicans in vivo. To obtain more information on enolase gene expression by C. albicans, we used the enolase cDNA clone to investigate the genetic organization of enolase genes and the steady-state levels of enolase mRNA under several growth conditions. Gene disruption techniques in combination with Southern blot analyses of genomic DNA showed the presence of two enolase gene loci that could be distinguished by the locations of ClaI and Mn/I sites in their 3' flanking regions. Enolase steady-state mRNA levels were greatest during the middle phase of the logarithmic growth curve and were low during stationary phase. Minimal differences in enolase mRNA levels between yeast cells and hyphae were found. Propagation of C. albicans in glucose did not cause increased enolase mRNA levels compared with growth in a nonfermentable carbon source (pyruvate). It was concluded that two gene loci exist for C. albicans enolase and that enolase mRNA is constitutively produced at high levels during active metabolism.
Collapse
Affiliation(s)
- P Postlethwait
- Department of Microbiology and Immunology, University of North Texas Health Sciences Center, Fort Worth 76107
| | | |
Collapse
|
25
|
Jung SY, Yoo HY, Kim YH, Kim J, Rho HM. The glucose-dependent transactivation activity of ABF1 on the expression of the TDH3 gene in yeast. Curr Genet 1995; 27:312-7. [PMID: 7614553 DOI: 10.1007/bf00352099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Autonomously replicating sequence binding factor 1 (ABF1) has been implicated in the control of a variety of gene expressions in Saccharomyces cerevisiae. In this paper evidence is presented that ABF1 is involved in the glucose-dependent expression of the TDH3 gene which encodes glyceraldehyde-3-phosphate dehydrogenase. ABF1 binds to consensus sites located between -420 and -250, and between +77 and +200, and acts as a transactivator in an orientation-independent manner on both upstream and downstream sites. TDH3-lacZ fusions having an ABF1 consensus motif showed glucose-dependent expression of TDH3, whereas in the abf1 mutant strain JCA35 glucose-dependent expression disappeared. These findings suggest that ABF1 functions as a glucose-dependent transactivator for the expression of the TDH3 gene.
Collapse
Affiliation(s)
- S Y Jung
- Department of Molecular Biology, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
26
|
Dumitru I, McNeil JB. A simple in vivo footprinting method to examine DNA-protein interactions over the yeast PYK UAS element. Nucleic Acids Res 1994; 22:1450-5. [PMID: 8190636 PMCID: PMC308004 DOI: 10.1093/nar/22.8.1450] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this report a modification to the in vivo footprinting assay is described. The method includes dimethyl sulfate treatment of whole yeast cells, followed by reiterative primer extension of the methylated genomic DNA using Taq DNA polymerase. Under appropriate reaction conditions chain extension terminates opposite a methylated purine when Taq DNA polymerase encounters a modified adenine or guanine. The procedure was used to examine, in vivo DNA-protein contacts over the upstream activation site (UAS) of the Saccharomyces cerevisiae PYK gene. In vivo analysis, using isogenic strains of yeast and Escherichia coli transformed with plasmid DNAs, confirmed the binding of both the trans-acting factor RAP1 and the transcriptional activator GCR1 to cis-acting recognition sites located within the PYK UAS element.
Collapse
Affiliation(s)
- I Dumitru
- Department of Microbiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Yeast intragenic transcriptional control: activation and repression sites within the coding region of the Saccharomyces cerevisiae LPD1 gene. Mol Cell Biol 1994. [PMID: 8264590 DOI: 10.1128/mcb.14.1.214] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Though widely recognized in higher eukaryotes, the regulation of Saccharomyces cerevisiae genes transcribed by RNA polymerase II by proteins that bind within the coding sequence remains largely speculative. We have shown for the LPD1 gene, encoding lipoamide dehydrogenase, that the coding sequence between +13 and +469 activated gene expression of an LPD1::lacZ fusion by up to sixfold in the presence of the upstream promoter. This downstream region, inserted upstream of a promoterless CYC1::lacZ fusion, activated gene expression in a carbon source-dependent manner by a factor of 15 to 111, independent of orientation. Deletion and mutational analysis identified two downstream activation sites (DAS1 and DAS2) and two downstream repressor sites (DRS1 and DRS2) that influence the rate of LPD1 transcription rather than mRNA degradation or translation. Activation from the DAS1 region (positions +137 to +191), encompassing a CDEI-like element, is twofold under derepressive conditions. Activation from DAS2 (+291 to +296), a CRE-like motif, is 12-fold for both repressed and derepressed states. DRS1, a pair of adjacent and opposing ABF1 sites (+288 to +313), is responsible for a 1.3- to 2-fold repression of transcription, depending on the carbon source. DRS1 requires the concerted action of DRS2 (a RAP1 motif at position +406) for repression of transcription only when the gene is induced. Gel mobility shift analysis and in vitro footprinting have shown that proteins bind in vitro to these downstream elements.
Collapse
|
28
|
A regulatory element in the CHA1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae genes. Mol Cell Biol 1994. [PMID: 8246977 DOI: 10.1128/mcb.13.12.7604] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CHA1 of Saccharomyces cerevisiae is the gene for the catabolic L-serine (L-threonine) dehydratase, which is responsible for biodegradation of serine and threonine. We have previously shown that expression of the CHA1 gene is transcriptionally induced by serine and threonine. Northern (RNA) analysis showed that the additional presence of good nitrogen sources affects induction. This may well be due to inducer exclusion. To identify interactions of cis-acting elements with trans activators of the CHA1 promoter, we performed band shift assays of nuclear protein extracts with CHA1 promoter fragments. By this approach, we identified a protein-binding site of the CHA1 promoter. The footprint of this protein contains the ABF1-binding site consensus sequence. This in vitro binding activity is present irrespectively of CHA1 induction. By deletion analysis, two other elements of the CHA1 promoter, UAS1CHA and UAS2CHA, which are needed for induction of the CHA1 gene were identified. Each of the two sequence elements is sufficient to confer serine and threonine induction upon the CYC1 promoter when substituting its upstream activating sequence. Further, in a cha4 mutant strain which is unable to grow with serine or threonine as the sole nitrogen source, the function of UAS1CHA, as well as that of UAS2CHA, is obstructed.
Collapse
|
29
|
Sinclair DA, Kornfeld GD, Dawes IW. Yeast intragenic transcriptional control: activation and repression sites within the coding region of the Saccharomyces cerevisiae LPD1 gene. Mol Cell Biol 1994; 14:214-25. [PMID: 8264590 PMCID: PMC358372 DOI: 10.1128/mcb.14.1.214-225.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Though widely recognized in higher eukaryotes, the regulation of Saccharomyces cerevisiae genes transcribed by RNA polymerase II by proteins that bind within the coding sequence remains largely speculative. We have shown for the LPD1 gene, encoding lipoamide dehydrogenase, that the coding sequence between +13 and +469 activated gene expression of an LPD1::lacZ fusion by up to sixfold in the presence of the upstream promoter. This downstream region, inserted upstream of a promoterless CYC1::lacZ fusion, activated gene expression in a carbon source-dependent manner by a factor of 15 to 111, independent of orientation. Deletion and mutational analysis identified two downstream activation sites (DAS1 and DAS2) and two downstream repressor sites (DRS1 and DRS2) that influence the rate of LPD1 transcription rather than mRNA degradation or translation. Activation from the DAS1 region (positions +137 to +191), encompassing a CDEI-like element, is twofold under derepressive conditions. Activation from DAS2 (+291 to +296), a CRE-like motif, is 12-fold for both repressed and derepressed states. DRS1, a pair of adjacent and opposing ABF1 sites (+288 to +313), is responsible for a 1.3- to 2-fold repression of transcription, depending on the carbon source. DRS1 requires the concerted action of DRS2 (a RAP1 motif at position +406) for repression of transcription only when the gene is induced. Gel mobility shift analysis and in vitro footprinting have shown that proteins bind in vitro to these downstream elements.
Collapse
Affiliation(s)
- D A Sinclair
- School of Biochemistry and Molecular Genetics, University of New South Wales, Kensington, Australia
| | | | | |
Collapse
|
30
|
Bornaes C, Ignjatovic MW, Schjerling P, Kielland-Brandt MC, Holmberg S. A regulatory element in the CHA1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae genes. Mol Cell Biol 1993; 13:7604-11. [PMID: 8246977 PMCID: PMC364832 DOI: 10.1128/mcb.13.12.7604-7611.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CHA1 of Saccharomyces cerevisiae is the gene for the catabolic L-serine (L-threonine) dehydratase, which is responsible for biodegradation of serine and threonine. We have previously shown that expression of the CHA1 gene is transcriptionally induced by serine and threonine. Northern (RNA) analysis showed that the additional presence of good nitrogen sources affects induction. This may well be due to inducer exclusion. To identify interactions of cis-acting elements with trans activators of the CHA1 promoter, we performed band shift assays of nuclear protein extracts with CHA1 promoter fragments. By this approach, we identified a protein-binding site of the CHA1 promoter. The footprint of this protein contains the ABF1-binding site consensus sequence. This in vitro binding activity is present irrespectively of CHA1 induction. By deletion analysis, two other elements of the CHA1 promoter, UAS1CHA and UAS2CHA, which are needed for induction of the CHA1 gene were identified. Each of the two sequence elements is sufficient to confer serine and threonine induction upon the CYC1 promoter when substituting its upstream activating sequence. Further, in a cha4 mutant strain which is unable to grow with serine or threonine as the sole nitrogen source, the function of UAS1CHA, as well as that of UAS2CHA, is obstructed.
Collapse
Affiliation(s)
- C Bornaes
- Department of Genetics, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
31
|
Mason AB, Buckley HR, Gorman JA. Molecular cloning and characterization of the Candida albicans enolase gene. J Bacteriol 1993; 175:2632-9. [PMID: 8478328 PMCID: PMC204565 DOI: 10.1128/jb.175.9.2632-2639.1993] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A DNA clone containing the putative Candida albicans enolase gene (ENO1) was isolated from a genomic DNA library. The sequenced insert contained a continuous open reading frame of 1,320 bp. The predicted 440-amino-acid protein is 78 and 76% identical, respectively, to Saccharomyces cerevisiae enolase proteins 1 and 2. Only one enolase gene could be detected in C. albicans genomic DNA by Southern analysis with a homologous probe. Northern (RNA) analysis detected a single, abundant C. albicans ENO1 transcript of approximately 1,600 nucleotides. When cells were grown on glucose, levels of ENO1 mRNA were markedly increased by comparison with ENO1 mRNA levels in cells grown on ethanol, a gluconeogenic carbon source. In contrast to this glucose-mediated transcriptional induction, the carbon source had no dramatic effect on the levels of enolase protein or enzyme activity in the C. albicans strains tested. These results suggest that posttranscriptional mechanisms are responsible for modulating expression of the C. albicans enolase gene.
Collapse
Affiliation(s)
- A B Mason
- Department of Microbial Molecular Biology, Bristol-Myers, Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000
| | | | | |
Collapse
|
32
|
A complex regulatory element from the yeast gene ENO2 modulates GCR1-dependent transcriptional activation. Mol Cell Biol 1993. [PMID: 8455635 DOI: 10.1128/mcb.13.4.2623] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GCR1 gene product is required for maximal transcription of many yeast genes including genes encoding glycolytic enzymes. Transcription of the yeast enolase gene ENO2 is reduced 50-fold in strains carrying a gcr1 null mutation. cis-acting sequences that are sufficient for GCR1-dependent regulation of ENO2 expression were identified by using an enhancerless CYC1 promoter which is not normally dependent on GCR1 for expression. A 60-bp ENO2 sequence that was sufficient to provide high-level, GCR1-dependent transcriptional activation of the CYC1 promoter was identified. This 60-bp element could be subdivided into a 30-bp sequence containing a novel RAP1-binding site and a GCR1-binding site which did not activate CYC1 transcription and a 30-bp sequence containing a novel enhancer element that conferred moderate levels of GCR1-independent transcriptional activation. The 60-bp CGCR1-dependent upstream activator sequence is located immediately downstream from previously mapped overlapping binding sites for the regulatory proteins ABFI and RAP1. Evidence is presented that the overlapping ABFI- and RAP1-binding sites function together with sequences that bind GCR1 and RAP1 to stage transcriptional activation of ENO2 expression.
Collapse
|
33
|
Willett CE, Gelfman CM, Holland MJ. A complex regulatory element from the yeast gene ENO2 modulates GCR1-dependent transcriptional activation. Mol Cell Biol 1993; 13:2623-33. [PMID: 8455635 PMCID: PMC359601 DOI: 10.1128/mcb.13.4.2623-2633.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The GCR1 gene product is required for maximal transcription of many yeast genes including genes encoding glycolytic enzymes. Transcription of the yeast enolase gene ENO2 is reduced 50-fold in strains carrying a gcr1 null mutation. cis-acting sequences that are sufficient for GCR1-dependent regulation of ENO2 expression were identified by using an enhancerless CYC1 promoter which is not normally dependent on GCR1 for expression. A 60-bp ENO2 sequence that was sufficient to provide high-level, GCR1-dependent transcriptional activation of the CYC1 promoter was identified. This 60-bp element could be subdivided into a 30-bp sequence containing a novel RAP1-binding site and a GCR1-binding site which did not activate CYC1 transcription and a 30-bp sequence containing a novel enhancer element that conferred moderate levels of GCR1-independent transcriptional activation. The 60-bp CGCR1-dependent upstream activator sequence is located immediately downstream from previously mapped overlapping binding sites for the regulatory proteins ABFI and RAP1. Evidence is presented that the overlapping ABFI- and RAP1-binding sites function together with sequences that bind GCR1 and RAP1 to stage transcriptional activation of ENO2 expression.
Collapse
Affiliation(s)
- C E Willett
- Department of Biological Chemistry, School of Medicine, University of California, Davis 95616
| | | | | |
Collapse
|
34
|
Kovari LZ, Kovari I, Cooper TG. Participation of RAP1 protein in expression of the Saccharomyces cerevisiae arginase (CAR1) gene. J Bacteriol 1993; 175:941-51. [PMID: 8432717 PMCID: PMC193005 DOI: 10.1128/jb.175.4.941-951.1993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Regulated expression of the inducible arginase (CAR1) gene of Saccharomyces cerevisiae has been shown to require three upstream activation sequences (UASs) and an upstream repression sequence, URS1. Two of the UAS elements, UASC1 and UASC2, operate in an inducer-independent manner, while the third, UASI, is inducer dependent. UASC1 and UASC2 were previously shown to contain ABF-1 binding sites that were required for normal transcription. In this work, we demonstrate that UASC1 and UASC2 also contain two and three sites, respectively, that are able to bind RAP1 protein. RAP1 binding to these sites, however, is significantly weaker than that to sites in TEF2 and HMRE. The effects of mutating the sites individually or in combination suggest that at least three of them, two in UASC1 and one in UASC2, probably participate in CAR1 expression.
Collapse
Affiliation(s)
- L Z Kovari
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
35
|
Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI. Mol Cell Biol 1993. [PMID: 8417350 DOI: 10.1128/mcb.13.1.543] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the TPI gene product, triosephosphate isomerase, makes up about 2% of the soluble cellular protein. Using in vitro and in vivo footprinting techniques, we have identified four binding sites for three factors in the 5' noncoding region of TPI: a REB1-binding site located at positions -401 to -392, two GCR1-binding sites located at positions -381 to -366 and -341 to -326, and a RAP1-binding site located at positions -358 to -346. We tested the effects of mutations at each of these binding sites on the expression of a TPI::lacZ gene fusion which carried 853 bp of the TPI 5' noncoding region integrated at the URA3 locus. The REB1-binding site is dispensable when material 5' to it is deleted; however, if the sequence 5' to the REB1-binding site is from the TPI locus, expression is reduced fivefold when the site is mutated. Because REB1 blocks nucleosome formation, the most likely function of its binding site in the TPI controlling region is to prevent the formation of nucleosomes over the TPI upstream activation sequence. Mutations in the RAP1-binding site resulted in a 10-fold reduction in expression of the reporter gene. Mutating either GCR1-binding site alone had a modest effect on expression of the fusion. However, mutating both GCR1-binding sites resulted in a 68-fold reduction in the level of expression of the reporter gene. A LexA-GCR1 fusion protein containing the DNA-binding domain of LexA fused to the amino terminus of GCR1 was able to activate expression of a lex operator::GAL1::lacZ reporter gene 116-fold over background levels. From this experiment, we conclude that GCR1 is able to activate gene expression in the absence of REB1 or RAP1 bound at adjacent binding sites. On the basis of these results, we suggest that GCR1 binding is required for activation of TPI and other GCR1-dependent genes and that the primary role of other factors which bind adjacent to GCR1-binding sites is to facilitate of modulate GCR1 binding in vivo.
Collapse
|
36
|
Scott EW, Baker HV. Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI. Mol Cell Biol 1993; 13:543-50. [PMID: 8417350 PMCID: PMC358933 DOI: 10.1128/mcb.13.1.543-550.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In Saccharomyces cerevisiae, the TPI gene product, triosephosphate isomerase, makes up about 2% of the soluble cellular protein. Using in vitro and in vivo footprinting techniques, we have identified four binding sites for three factors in the 5' noncoding region of TPI: a REB1-binding site located at positions -401 to -392, two GCR1-binding sites located at positions -381 to -366 and -341 to -326, and a RAP1-binding site located at positions -358 to -346. We tested the effects of mutations at each of these binding sites on the expression of a TPI::lacZ gene fusion which carried 853 bp of the TPI 5' noncoding region integrated at the URA3 locus. The REB1-binding site is dispensable when material 5' to it is deleted; however, if the sequence 5' to the REB1-binding site is from the TPI locus, expression is reduced fivefold when the site is mutated. Because REB1 blocks nucleosome formation, the most likely function of its binding site in the TPI controlling region is to prevent the formation of nucleosomes over the TPI upstream activation sequence. Mutations in the RAP1-binding site resulted in a 10-fold reduction in expression of the reporter gene. Mutating either GCR1-binding site alone had a modest effect on expression of the fusion. However, mutating both GCR1-binding sites resulted in a 68-fold reduction in the level of expression of the reporter gene. A LexA-GCR1 fusion protein containing the DNA-binding domain of LexA fused to the amino terminus of GCR1 was able to activate expression of a lex operator::GAL1::lacZ reporter gene 116-fold over background levels. From this experiment, we conclude that GCR1 is able to activate gene expression in the absence of REB1 or RAP1 bound at adjacent binding sites. On the basis of these results, we suggest that GCR1 binding is required for activation of TPI and other GCR1-dependent genes and that the primary role of other factors which bind adjacent to GCR1-binding sites is to facilitate of modulate GCR1 binding in vivo.
Collapse
Affiliation(s)
- E W Scott
- Department of Immunology and Medical Microbiology, University of Florida, College of Medicine, Gainesville 32610-0266
| | | |
Collapse
|
37
|
Chirala SS. Coordinated regulation and inositol-mediated and fatty acid-mediated repression of fatty acid synthase genes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1992; 89:10232-6. [PMID: 1359536 PMCID: PMC50312 DOI: 10.1073/pnas.89.21.10232] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, FAS1, FAS2, and FAS3 are the genes involved in saturated fatty acid biosynthesis. The enzymatic activities of both fatty acid synthase (FAS) and acetyl-CoA carboxylase are reduced 2- to 3-fold when yeast cells are grown in the presence of exogenous fatty acids. The mRNA levels of the FAS genes are correspondingly lower under repressive conditions. Expression of the FAS-lacZ reporter gene is also regulated by fatty acids. When a FAS2 multicopy plasmid is present in the cells, expression of both FAS1 and FAS3 increases. Thus, the FAS genes are coordinately regulated. Deletion analyses of the regulatory regions of FAS1 and FAS2 revealed common regulatory sequences. These include the GGCCAAAAAC and AGCCAAGCA sequences that have a common GCCAA core sequence and the UASINO (upstream activation sequence). Derepression of the FAS genes in the absence of exogenous inositol is not observed when UASINO is mutated, indicating that this cis element is a positive regulator of these genes. The GCCAA elements and UASINO act synergistically for optimal expression of the FAS genes.
Collapse
Affiliation(s)
- S S Chirala
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
38
|
Abstract
Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequences flank the silent mating-type loci and mediate repression of HML and HMR. These regulatory sequences are called silencers for their ability to repress the transcription of nearby genes in a distance- and orientation-independent fashion. In addition, a number of proteins, including the four SIR proteins, histone H4, and an alpha-acetyltransferase, are required for the complete repression of HML and HMR. Because alterations in the amino-terminal domain of histone H4 result in the derepression of the silent mating-type loci, the mechanism of repression may involve the assembly of a specific chromatin structure. A number of additional clues permit insight into the nature of repression at HML and HMR. First, an S phase event is required for the establishment of repression. Second, at least one gene appears to play a role in the establishment mechanism yet is not essential for the stable propagation of repression through many rounds of cell division. Third, certain aspects of repression are linked to aspects of replication. The silent mating-type loci share many similarities with heterochromatin. Furthermore, regions of S. cerevisiae chromosomes, such as telomeres, which are known to be heterochromatic in other organisms, require a subset of SIR proteins for repression. Further analysis of the transcriptional repression at the silent mating-type loci may lend insight into heritable repression in other eukaryotes.
Collapse
Affiliation(s)
- P Laurenson
- Division of Genetics, University of California, Berkeley 94720
| | | |
Collapse
|
39
|
Sundstrom P, Aliaga GR. Molecular cloning of cDNA and analysis of protein secondary structure of Candida albicans enolase, an abundant, immunodominant glycolytic enzyme. J Bacteriol 1992; 174:6789-99. [PMID: 1400228 PMCID: PMC207354 DOI: 10.1128/jb.174.21.6789-6799.1992] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We isolated and sequenced a clone for Candida albicans enolase from a C. albicans cDNA library by using molecular genetic techniques. The 1.4-kbp cDNA encoded one long open reading frame of 440 amino acids which was 87 and 75% similar to predicted enolases of Saccharomyces cerevisiae and enolases from other organisms, respectively. The cDNA included the entire coding region and predicted a protein of molecular weight 47,178. The codon usage was highly biased and similar to that found for the highly expressed EF-1 alpha proteins of C. albicans. Northern (RNA) blot analysis showed that the enolase cDNA hybridized to an abundant C. albicans mRNA of 1.5 kb present in both yeast and hyphal growth forms. The polypeptide product of the cloned cDNA, which was purified as a recombinant protein fused to glutathione S-transferase, had enolase enzymatic activity and inhibited radioimmunoprecipitation of a single C. albicans protein of molecular weight 47,000. Analysis of the predicted C. albicans enolase showed strong conservation in regions of alpha helices, beta sheets, and beta turns, as determined by comparison with the crystal structure of apo-enolase A of S. cerevisiae. The lack of cysteine residues and a two-amino-acid insertion in the main domain differentiated C. albicans enolase from S. cerevisiae enolase. Immunofluorescence of whole C. albicans cells by using a mouse antiserum generated against the purified fusion protein showed that enolase is not located on the surface of C. albicans. Recombinant C. albicans enolase will be useful in understanding the pathogenesis and host immune response in disseminated candidiasis, since enolase is an immunodominant antigen which circulates during disseminated infections.
Collapse
Affiliation(s)
- P Sundstrom
- Department of Microbiology and Immunology, Texas College of Osteopathic Medicine, University of North Texas, Fort Worth 76107
| | | |
Collapse
|
40
|
Viljoen M, Kovari LZ, Kovari IA, Park HD, van Vuuren HJ, Cooper TG. Tripartite structure of the Saccharomyces cerevisiae arginase (CAR1) gene inducer-responsive upstream activation sequence. J Bacteriol 1992; 174:6831-9. [PMID: 1400233 PMCID: PMC207359 DOI: 10.1128/jb.174.21.6831-6839.1992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Arginase (CAR1) gene expression in Saccharomyces cerevisiae is induced by arginine. The 5' regulatory region of CAR1 contains four separable regulatory elements--two inducer-independent upstream activation sequences (UASs) (UASC1 and UASC2), an inducer-dependent UAS (UASI), and an upstream repression sequence (URS1) which negatively regulates CAR1 and many other yeast genes. Here we demonstrate that three homologous DNA sequences originally reported to be present in the inducer-responsive UASI are in fact three exchangeable elements (UASI-A, UASI-B, and UASI-C). Although two of these elements, either the same or different ones, are required for transcriptional activation to occur, all three are required for maximal levels of induction. The elements operate in all orientations relative to one another and to the TATA sequence. All three UASI elements bind protein(s); protein binding does not require arginine or overproduction of any of the putative arginine pathway regulatory proteins. The UASI-protein complex was also observed even when extracts were derived from arg80/argRI or arg81/argRII deletion mutants. Similar sequences situated upstream of ARG5,6 and ARG3 and reported to negatively regulate their expression are able to functionally substitute for the CAR1 UASI elements and mediate reporter gene expression.
Collapse
Affiliation(s)
- M Viljoen
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The Saccharomyces cerevisiae GCR2 gene affects expression of most of the glycolytic genes. We report the nucleotide sequence of GCR2, which can potentially encode a 58,061-Da protein. There is a small cluster of asparagines near the center and a C-terminal region that would be highly charged but overall neutral. Fairly homologous regions were found between Gcr2 and Gcr1 proteins. To test potential interactions, the genetic method of S. Fields and O. Song (Nature [London] 340:245-246, 1989), which uses protein fusions of candidate gene products with, respectively, the N-terminal DNA-binding domain of Gal4 and the C-terminal activation domain II, assessing restoration of Gal4 function, was used. In a delta gal4 delta gal80 strain, double transformation by plasmids containing, respectively, a Gal4 (transcription-activating region)/Gcr1 fusion and a Gal4 (DNA-binding domain)/Gcr2 fusion activated lacZ expression from an integrated GAL1/lacZ fusion, indicating reconstitution of functional Gal4 through the interaction of Gcr1 and Gcr2 proteins. The Gal4 (transcription-activating region)/Gcr1 fusion protein alone complemented the defects of both gcr1 and gcr2 strains. Furthermore, a Rap1/Gcr2 fusion protein partially complemented the defects of gcr1 strains. These results suggest that Gcr2 has transcriptional activation activity and that the GCR1 and GCR2 gene products function together.
Collapse
|
42
|
ABF1 is a phosphoprotein and plays a role in carbon source control of COX6 transcription in Saccharomyces cerevisiae. Mol Cell Biol 1992. [PMID: 1324416 DOI: 10.1128/mcb.12.9.4197] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we have shown that the Saccharomyces cerevisiae DNA-binding protein ABF1 exists in at least two different electrophoretic forms (K. S. Sweder, P. R. Rhode, and J. L. Campbell, J. Biol. Chem. 263: 17270-17277, 1988). In this report, we show that these forms represent different states of phosphorylation of ABF1 and that at least four different phosphorylation states can be resolved electrophoretically. The ratios of these states to one another differ according to growth conditions and carbon source. Phosphorylation of ABF1 is therefore a regulated process. In nitrogen-starved cells or in cells grown on nonfermentable carbon sources (e.g., lactate), phosphorylated forms predominate, while in cells grown on fermentable carbon sources (e.g., glucose), dephosphorylated forms are enriched. The phosphorylation pattern is affected by mutations in the SNF1-SSN6 pathway, which is involved in glucose repression-depression. Whereas a functional SNF1 gene, which encodes a protein kinase, is not required for the phosphorylation of ABF1, a functional SSN6 gene is required for itsd ephosphorylation. The phosphorylation patterns that we have observed correlate with the regulation of a specific target gene, COX6, which encodes subunit VI of cytochrome c oxidase. Transcription of COX6 is repressed by growth in medium containing a fermentable carbon source and is derepressed by growth in medium containing a nonfermentable carbon source. COX6 repression-derepression is under the control of the SNF1-SSN6 pathway. This carbon source regulation is exerted through domain 1, a region of the upstream activation sequence UAS6 that binds ABF1 (J. D. Trawick, N. Kraut, F. Simon, and R. O. Poyton, Mol. Cell Biol. 12:2302-2314, 1992). We show that the greater the phosphorylation of ABF1, the greater the transcription of COX6. Furthermore, the ABF1-containing protein-DNA complexes formed at domain 1 differ according to the phosphorylation state of ABF1 and the carbon source on which the cells were grown. From these findings, we propose that the phosphorylation of ABF1 is involved in glucose repression-derepression of COX6 transcription.
Collapse
|
43
|
Silve S, Rhode PR, Coll B, Campbell J, Poyton RO. ABF1 is a phosphoprotein and plays a role in carbon source control of COX6 transcription in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:4197-208. [PMID: 1324416 PMCID: PMC360325 DOI: 10.1128/mcb.12.9.4197-4208.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Previously, we have shown that the Saccharomyces cerevisiae DNA-binding protein ABF1 exists in at least two different electrophoretic forms (K. S. Sweder, P. R. Rhode, and J. L. Campbell, J. Biol. Chem. 263: 17270-17277, 1988). In this report, we show that these forms represent different states of phosphorylation of ABF1 and that at least four different phosphorylation states can be resolved electrophoretically. The ratios of these states to one another differ according to growth conditions and carbon source. Phosphorylation of ABF1 is therefore a regulated process. In nitrogen-starved cells or in cells grown on nonfermentable carbon sources (e.g., lactate), phosphorylated forms predominate, while in cells grown on fermentable carbon sources (e.g., glucose), dephosphorylated forms are enriched. The phosphorylation pattern is affected by mutations in the SNF1-SSN6 pathway, which is involved in glucose repression-depression. Whereas a functional SNF1 gene, which encodes a protein kinase, is not required for the phosphorylation of ABF1, a functional SSN6 gene is required for itsd ephosphorylation. The phosphorylation patterns that we have observed correlate with the regulation of a specific target gene, COX6, which encodes subunit VI of cytochrome c oxidase. Transcription of COX6 is repressed by growth in medium containing a fermentable carbon source and is derepressed by growth in medium containing a nonfermentable carbon source. COX6 repression-derepression is under the control of the SNF1-SSN6 pathway. This carbon source regulation is exerted through domain 1, a region of the upstream activation sequence UAS6 that binds ABF1 (J. D. Trawick, N. Kraut, F. Simon, and R. O. Poyton, Mol. Cell Biol. 12:2302-2314, 1992). We show that the greater the phosphorylation of ABF1, the greater the transcription of COX6. Furthermore, the ABF1-containing protein-DNA complexes formed at domain 1 differ according to the phosphorylation state of ABF1 and the carbon source on which the cells were grown. From these findings, we propose that the phosphorylation of ABF1 is involved in glucose repression-derepression of COX6 transcription.
Collapse
Affiliation(s)
- S Silve
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | | | | | |
Collapse
|
44
|
Abstract
The Saccharomyces cerevisiae GCR2 gene affects expression of most of the glycolytic genes. We report the nucleotide sequence of GCR2, which can potentially encode a 58,061-Da protein. There is a small cluster of asparagines near the center and a C-terminal region that would be highly charged but overall neutral. Fairly homologous regions were found between Gcr2 and Gcr1 proteins. To test potential interactions, the genetic method of S. Fields and O. Song (Nature [London] 340:245-246, 1989), which uses protein fusions of candidate gene products with, respectively, the N-terminal DNA-binding domain of Gal4 and the C-terminal activation domain II, assessing restoration of Gal4 function, was used. In a delta gal4 delta gal80 strain, double transformation by plasmids containing, respectively, a Gal4 (transcription-activating region)/Gcr1 fusion and a Gal4 (DNA-binding domain)/Gcr2 fusion activated lacZ expression from an integrated GAL1/lacZ fusion, indicating reconstitution of functional Gal4 through the interaction of Gcr1 and Gcr2 proteins. The Gal4 (transcription-activating region)/Gcr1 fusion protein alone complemented the defects of both gcr1 and gcr2 strains. Furthermore, a Rap1/Gcr2 fusion protein partially complemented the defects of gcr1 strains. These results suggest that Gcr2 has transcriptional activation activity and that the GCR1 and GCR2 gene products function together.
Collapse
Affiliation(s)
- H Uemura
- Division of Biological Chemistry, Tsukuba Research Center (MITI), Ibaraki, Japan
| | | |
Collapse
|
45
|
Abstract
In the yeast Saccharomyces cerevisiae, several abundant, sequence-specific DNA binding proteins are involved in multiple aspects of chromosome function. In addition to functioning as transcriptional activators of a large number of yeast genes, they are also involved in transcriptional silencing, the initiation of DNA replication, centromere function and regulation of telomere length. This review will consider each of these proteins, focusing on what is known about the mechanisms of their multiple functions.
Collapse
Affiliation(s)
- J F Diffley
- Imperial Cancer Research Fund, Clare Hall Laboratories, Herts, England
| |
Collapse
|
46
|
Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol Cell Biol 1992. [PMID: 1588965 DOI: 10.1128/mcb.12.6.2690] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCR1 gene function is required for high-level glycolytic gene expression in Saccharomyces cerevisiae. Recently, we suggested that the CTTCC sequence motif found in front of many genes encoding glycolytic enzymes lay at the core of the GCR1-binding site. Here we mapped the DNA-binding domain of GCR1 to the carboxy-terminal 154 amino acids of the polypeptide. DNase I protection studies showed that a hybrid MBP-GCR1 fusion protein protected a region of the upstream activating sequence of TPI (UASTPI), which harbored the CTTCC sequence motif, and suggested that the fusion protein might also interact with a region of the UAS that contained the related sequence CATCC. A series of in vivo G methylation protection experiments of the native TPI promoter were carried out with wild-type and gcr1 deletion mutant strains. The G doublets that correspond to the C doublets in each site were protected in the wild-type strain but not in the gcr1 mutant strain. These data demonstrate that the UAS of TPI contains two GCR1-binding sites which are occupied in vivo. Furthermore, adjacent RAP1/GRF1/TUF- and REB1/GRF2/QBP/Y-binding sites in UASTPI were occupied in the backgrounds of both strains. In addition, DNA band-shift assays were used to show that the MBP-GCR1 fusion protein was able to form nucleoprotein complexes with oligonucleotides that contained CTTCC sequence elements found in front of other glycolytic genes, namely, PGK, ENO1, PYK, and ADH1, all of which are dependent on GCR1 gene function for full expression. However, we were unable to detect specific interactions with CTTCC sequence elements found in front of the translational component genes TEF1, TEF2, and CRY1. Taken together, these experiments have allowed us to propose a consensus GCR1-binding site which is 5'-(T/A)N(T/C)N(G/A)NC(T/A)TCC(T/A)N(T/A)(T/A)(T/G)-3'.
Collapse
|
47
|
Huie MA, Scott EW, Drazinic CM, Lopez MC, Hornstra IK, Yang TP, Baker HV. Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:2690-700. [PMID: 1588965 PMCID: PMC364463 DOI: 10.1128/mcb.12.6.2690-2700.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
GCR1 gene function is required for high-level glycolytic gene expression in Saccharomyces cerevisiae. Recently, we suggested that the CTTCC sequence motif found in front of many genes encoding glycolytic enzymes lay at the core of the GCR1-binding site. Here we mapped the DNA-binding domain of GCR1 to the carboxy-terminal 154 amino acids of the polypeptide. DNase I protection studies showed that a hybrid MBP-GCR1 fusion protein protected a region of the upstream activating sequence of TPI (UASTPI), which harbored the CTTCC sequence motif, and suggested that the fusion protein might also interact with a region of the UAS that contained the related sequence CATCC. A series of in vivo G methylation protection experiments of the native TPI promoter were carried out with wild-type and gcr1 deletion mutant strains. The G doublets that correspond to the C doublets in each site were protected in the wild-type strain but not in the gcr1 mutant strain. These data demonstrate that the UAS of TPI contains two GCR1-binding sites which are occupied in vivo. Furthermore, adjacent RAP1/GRF1/TUF- and REB1/GRF2/QBP/Y-binding sites in UASTPI were occupied in the backgrounds of both strains. In addition, DNA band-shift assays were used to show that the MBP-GCR1 fusion protein was able to form nucleoprotein complexes with oligonucleotides that contained CTTCC sequence elements found in front of other glycolytic genes, namely, PGK, ENO1, PYK, and ADH1, all of which are dependent on GCR1 gene function for full expression. However, we were unable to detect specific interactions with CTTCC sequence elements found in front of the translational component genes TEF1, TEF2, and CRY1. Taken together, these experiments have allowed us to propose a consensus GCR1-binding site which is 5'-(T/A)N(T/C)N(G/A)NC(T/A)TCC(T/A)N(T/A)(T/A)(T/G)-3'.
Collapse
Affiliation(s)
- M A Huie
- Department of Immunology and Medical Microbiology, University of Florida College of Medicine, Gainesville 32610-0266
| | | | | | | | | | | | | |
Collapse
|
48
|
Role of multifunctional autonomously replicating sequence binding factor 1 in the initiation of DNA replication and transcriptional control in Saccharomyces cerevisiae. Mol Cell Biol 1992. [PMID: 1545789 DOI: 10.1128/mcb.12.3.1064] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autonomously replicating sequence (ARS) binding factor 1 (ABF1) is an abundant DNA-binding protein that specifically recognizes the motif RTCRYN5ACG at many sites in the yeast genome, including promoter elements, mating-type silencers, and ARSs. Mutational analysis of these sites suggests that ABF1 is involved in constitutive and carbon source-regulated transcriptional activation, transcriptional silencing, and ARS activity. To better assess the role of ABF1 in DNA replication and transcriptional control, temperature-sensitive lethal mutations in the ABF1 gene were isolated. Several of the abf1(Ts) strains show rapid growth arrest at the nonpermissive temperature. At the semipermissive temperature, these strains show an ARS-specific defect in the mitotic stability of ARS-CEN plasmids, such that the abf1 mutants show defects in ARS function identical to those of mutants bearing the mutations in the cis-acting ABF1 binding sites analyzed previously by numerous investigators. Flow cytometric analysis and in vivo DNA labeling experiments on an alpha-factor synchronized abf1(Ts) strain showed that at the nonpermissive temperature, these cells fail to progress efficiently from G1 through S phase and synthesize DNA at 25% of the level seen in the isogenic ABF1 strain. RNA synthesis is also reduced in the abf1(Ts) strains. In addition, transcriptional activation by an ABF1 binding site upstream activation sequence is completely defective in an abf1(Ts) strain at the semipermissive temperature. These phenotypes provide evidence that the same protein, ABF1, functions in the initiation of DNA replication and transcriptional activation.
Collapse
|
49
|
Rhode PR, Elsasser S, Campbell JL. Role of multifunctional autonomously replicating sequence binding factor 1 in the initiation of DNA replication and transcriptional control in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:1064-77. [PMID: 1545789 PMCID: PMC369538 DOI: 10.1128/mcb.12.3.1064-1077.1992] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autonomously replicating sequence (ARS) binding factor 1 (ABF1) is an abundant DNA-binding protein that specifically recognizes the motif RTCRYN5ACG at many sites in the yeast genome, including promoter elements, mating-type silencers, and ARSs. Mutational analysis of these sites suggests that ABF1 is involved in constitutive and carbon source-regulated transcriptional activation, transcriptional silencing, and ARS activity. To better assess the role of ABF1 in DNA replication and transcriptional control, temperature-sensitive lethal mutations in the ABF1 gene were isolated. Several of the abf1(Ts) strains show rapid growth arrest at the nonpermissive temperature. At the semipermissive temperature, these strains show an ARS-specific defect in the mitotic stability of ARS-CEN plasmids, such that the abf1 mutants show defects in ARS function identical to those of mutants bearing the mutations in the cis-acting ABF1 binding sites analyzed previously by numerous investigators. Flow cytometric analysis and in vivo DNA labeling experiments on an alpha-factor synchronized abf1(Ts) strain showed that at the nonpermissive temperature, these cells fail to progress efficiently from G1 through S phase and synthesize DNA at 25% of the level seen in the isogenic ABF1 strain. RNA synthesis is also reduced in the abf1(Ts) strains. In addition, transcriptional activation by an ABF1 binding site upstream activation sequence is completely defective in an abf1(Ts) strain at the semipermissive temperature. These phenotypes provide evidence that the same protein, ABF1, functions in the initiation of DNA replication and transcriptional activation.
Collapse
Affiliation(s)
- P R Rhode
- Braun Laboratories 147-75, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
50
|
Lin R, D'Ari R, Newman EB. Lambda placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 1992; 174:1948-55. [PMID: 1532173 PMCID: PMC205801 DOI: 10.1128/jb.174.6.1948-1955.1992] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The leucine regulon coordinates the expression of several Escherichia coli genes according to the presence of exogenous leucine, which interacts with the lrp gene product, Lrp. We isolated and characterized 22 strains with lambda placMu insertions in Lrp-regulated genes. Lrp and leucine influenced gene expression in a surprising variety of ways. We identified two genes that are regulated by Lrp and not affected by L-leucine. We therefore rename this the leucine-lrp regulon. Genes coding for glycine cleavage and leucine biosynthesis enzymes have been identified as members of the leucine-lrp regulon. We suggest that the lrp gene product activates genes needed for growth in minimal medium, and we show that the gene is repressed by its own product and is highly repressed during growth in rich medium.
Collapse
Affiliation(s)
- R Lin
- Department of Biological Sciences, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|