1
|
Mouse model of endemic Burkitt translocations reveals the long-range boundaries of Ig-mediated oncogene deregulation. Proc Natl Acad Sci U S A 2012; 109:10972-7. [PMID: 22711821 DOI: 10.1073/pnas.1200106109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human Burkitt lymphomas are divided into two main clinical variants: the endemic form, affecting African children infected with malaria and the Epstein-Barr virus, and the sporadic form, distributed across the rest of the world. However, whereas sporadic translocations decapitate Myc from 5' proximal regulatory elements, most endemic events occur hundreds of kilobases away from Myc. The origin of these rearrangements and how they deregulate oncogenes at such distances remain unclear. We here recapitulate endemic Burkitt lymphoma-like translocations in plasmacytomas from uracil N-glycosylase and activation-induced cytidine deaminase-deficient mice. Mapping of translocation breakpoints using an acetylated histone H3 lysine 9 chromatin immunoprecipitation sequencing approach reveals Igh fusions up to ∼350 kb upstream of Myc or the related oncogene Mycn. A comprehensive analysis of epigenetic marks, PolII recruitment, and transcription in tumor cells demonstrates that the 3' Igh enhancer (Eα) vastly remodels ∼450 kb of chromatin into translocated sequences, leading to significant polymerase occupancy and constitutive oncogene expression. We show that this long-range epigenetic reprogramming is directly proportional to the physical interaction of Eα with translocated sites. Our studies thus uncover the extent of epigenetic remodeling by Ig 3' enhancers and provide a rationale for the long-range deregulation of translocated oncogenes in endemic Burkitt lymphomas. The data also shed light on the origin of endemic-like chromosomal rearrangements.
Collapse
|
2
|
Rooney S, Sekiguchi J, Whitlow S, Eckersdorff M, Manis JP, Lee C, Ferguson DO, Alt FW. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci U S A 2004; 101:2410-5. [PMID: 14983023 PMCID: PMC356964 DOI: 10.1073/pnas.0308757101] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nonhomologous DNA end-joining (NHEJ) pathway contains six known components, including Artemis, a nuclease mutated in a subset of human severe combined immunodeficient patients. Mice doubly deficient for the five previously analyzed NHEJ factors and p53 inevitably develop progenitor B lymphomas harboring der(12)t(12;15) translocations and immunoglobin heavy chain (IgH)/c-myc coamplification mediated by a breakage-fusion-bridge mechanism. In this report, we show that Artemis/p53-deficient mice also succumb reproducibly to progenitor B cell tumors, demonstrating that Artemis is a tumor suppressor in mice. However, the majority of Artemis/p53-deficient tumors lacked der(12)t(12;15) translocations and c-myc amplification and instead coamplified IgH and N-myc through an intra- or interchromosome 12 breakage-fusion-bridge mechanism. We discuss this finding in the context of potential implications for mechanisms that may target IgH locus translocations to particular oncogenes.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/physiology
- Base Sequence
- Chromosome Mapping
- DNA Repair
- Endonucleases
- Genes, myc
- Genes, p53
- Immunoglobulin Heavy Chains/genetics
- Leukemia, B-Cell/genetics
- Lymphoma, B-Cell/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Neoplasms, Experimental/genetics
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Suppression, Genetic/genetics
- Survival Rate
- Translocation, Genetic
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Sean Rooney
- Howard Hughes Medical Institute, Children's Hospital, Department of Genetics, Harvard Medical School, and Center for Blood Research, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Nutt SL, Morrison AM, Dörfler P, Rolink A, Busslinger M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J 1998; 17:2319-33. [PMID: 9545244 PMCID: PMC1170575 DOI: 10.1093/emboj/17.8.2319] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Pax-5 gene codes for the transcription factor BSAP which is essential for the progression of adult B lymphopoiesis beyond an early progenitor (pre-BI) cell stage. Although several genes have been proposed to be regulated by BSAP, CD19 is to date the only target gene which has been genetically confirmed to depend on this transcription factor for its expression. We have now taken advantage of cultured pre-BI cells of wild-type and Pax-5 mutant bone marrow to screen a large panel of B lymphoid genes for additional BSAP target genes. Four differentially expressed genes were shown to be under the direct control of BSAP, as their expression was rapidly regulated in Pax-5-deficient pre-BI cells by a hormone-inducible BSAP-estrogen receptor fusion protein. The genes coding for the B-cell receptor component Ig-alpha (mb-1) and the transcription factors N-myc and LEF-1 are positively regulated by BSAP, while the gene coding for the cell surface protein PD-1 is efficiently repressed. Distinct regulatory mechanisms of BSAP were revealed by reconstituting Pax-5-deficient pre-BI cells with full-length BSAP or a truncated form containing only the paired domain. IL-7 signalling was able to efficiently induce the N-myc gene only in the presence of full-length BSAP, while complete restoration of CD19 synthesis was critically dependent on the BSAP protein concentration. In contrast, the expression of the mb-1 and LEF-1 genes was already reconstituted by the paired domain polypeptide lacking any transactivation function, suggesting that the DNA-binding domain of BSAP is sufficient to recruit other transcription factors to the regulatory regions of these two genes. In conclusion, these loss- and gain-of-function experiments demonstrate that BSAP regulates four newly identified target genes as a transcriptional activator, repressor or docking protein depending on the specific regulatory sequence context.
Collapse
Affiliation(s)
- S L Nutt
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
4
|
Skoda RC, Tsai SF, Orkin SH, Leder P. Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice. J Exp Med 1995; 181:1603-13. [PMID: 7722440 PMCID: PMC2191979 DOI: 10.1084/jem.181.5.1603] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To study oncogenesis in the erythroid lineage, we have generated transgenic mice carrying the human c-MYC proto-oncogene under the control of mouse GATA-1 regulatory sequences. Six transgenic lines expressed the transgene and displayed a clear oncogenic phenotype. Of these, five developed an early onset, rapidly progressive erythroleukemia that resulted in death of the founder animals 30-50 d after birth. Transgenic progeny of the sixth founder, while also expressing the transgene, remained asymptomatic for more than 8 mo, whereupon members of this line began to develop late onset erythroleukemia. The primary leukemic cells were transplantable into nude mice and syngeneic hosts. Cell lines were established from five of the six leukemic animals and these lines, designated erythroleukemia/c-MYC (EMY), displayed proerythroblast morphology and expressed markers characteristic of the erythroid lineage, including the erythropoietin receptor and beta-globin. Moreover, they also manifested a limited potential to differentiate in response to erythropoietin. Studies in the surviving transgenic line indicated that, contrary to our expectations, the transgene was not expressed in the mast cell lineage. That, coupled with the exclusive occurrence of erythroleukemia in all the transgenic lines, suggests that the GATA-1 promoter construct we have used includes regulatory sequences necessary for in vivo erythroid expression only. Additional sequences would appear to be required for expression in mast cells. Further, our results show that c-MYC can efficiently transform erythroid precursors if expressed at a vulnerable stage of their development.
Collapse
Affiliation(s)
- R C Skoda
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
5
|
Overproduction of v-Myc in the nucleus and its excess over Max are not required for avian fibroblast transformation. Mol Cell Biol 1993. [PMID: 8497274 DOI: 10.1128/mcb.13.6.3623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular proto-oncogene c-myc can acquire transforming potential by a number of different means, including retroviral transduction. The transduced allele generally contains point mutations relative to c-myc and is overexpressed in infected cells, usually as a v-Gag-Myc fusion protein. Upon synthesis, v-Gag-Myc enters the nucleus, forms complexes with its heterodimeric partner Max, and in this complex binds to DNA in a sequence-specific manner. To delineate the role for each of these events in fibroblast transformation, we introduced several mutations into the myc gene of the avian retrovirus MC29. We observed that Gag-Myc with a mutated nuclear localization signal is confined predominantly in the cytoplasm and only about 5% of the protein could be detected in the nucleus (less than the amount of endogenous c-Myc). Consequently, only a small fraction of Max is associated with Myc. However, cells infected with this mutant exhibit a completely transformed phenotype in vitro, suggesting that production of enough v-Gag-Myc to tie up all cellular Max is not needed for transformation. While the nuclear localization signal is dispensable for transformation, minimal changes in the v-Gag-Myc DNA-binding domain completely abolish its transforming potential, consistent with a role of Myc as a transcriptional regulator. One of its potential targets might be the endogenous c-myc, which is repressed in wild-type MC29-infected cells. Our experiments with MC29 mutants demonstrate that c-myc down-regulation depends on the integrity of the v-Myc DNA-binding domain and occurs at the RNA level. Hence, it is conceivable that v-Gag-Myc, either directly or circuitously, regulates c-myc transcription.
Collapse
|
6
|
Tikhonenko AT, Hartman AR, Linial ML. Overproduction of v-Myc in the nucleus and its excess over Max are not required for avian fibroblast transformation. Mol Cell Biol 1993; 13:3623-31. [PMID: 8497274 PMCID: PMC359831 DOI: 10.1128/mcb.13.6.3623-3631.1993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cellular proto-oncogene c-myc can acquire transforming potential by a number of different means, including retroviral transduction. The transduced allele generally contains point mutations relative to c-myc and is overexpressed in infected cells, usually as a v-Gag-Myc fusion protein. Upon synthesis, v-Gag-Myc enters the nucleus, forms complexes with its heterodimeric partner Max, and in this complex binds to DNA in a sequence-specific manner. To delineate the role for each of these events in fibroblast transformation, we introduced several mutations into the myc gene of the avian retrovirus MC29. We observed that Gag-Myc with a mutated nuclear localization signal is confined predominantly in the cytoplasm and only about 5% of the protein could be detected in the nucleus (less than the amount of endogenous c-Myc). Consequently, only a small fraction of Max is associated with Myc. However, cells infected with this mutant exhibit a completely transformed phenotype in vitro, suggesting that production of enough v-Gag-Myc to tie up all cellular Max is not needed for transformation. While the nuclear localization signal is dispensable for transformation, minimal changes in the v-Gag-Myc DNA-binding domain completely abolish its transforming potential, consistent with a role of Myc as a transcriptional regulator. One of its potential targets might be the endogenous c-myc, which is repressed in wild-type MC29-infected cells. Our experiments with MC29 mutants demonstrate that c-myc down-regulation depends on the integrity of the v-Myc DNA-binding domain and occurs at the RNA level. Hence, it is conceivable that v-Gag-Myc, either directly or circuitously, regulates c-myc transcription.
Collapse
Affiliation(s)
- A T Tikhonenko
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | |
Collapse
|
7
|
Addition of constitutive c-myc expression to Abelson murine leukemia virus changes the phenotype of the cells transformed by the virus from pre-B-cell lymphomas to plasmacytomas. Mol Cell Biol 1993. [PMID: 8455630 DOI: 10.1128/mcb.13.4.2578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abelson murine leukemia virus (A-MuLV), a retrovirus that expresses the v-abl oncogene, characteristically induces pre-B-cell lymphomas following in vivo infection of BALB/c mice or in vitro infection of suspensions of fetal liver or bone marrow cells. ABL-MYC, a retrovirus that expresses both v-abl and c-myc, induces solely plasmacytomas in BALB/c mice. To investigate how the addition of overexpression of c-myc to that of v-abl accomplishes this dramatic change in the phenotype of the cells transformed by these closely related retroviruses, we utilized helper-free A-MuLV (psi 2) and ABL-MYC (psi 2) in vitro to infect suspensions of cells from different lymphoid tissues and purified immature and purified mature B cells. As expected, A-MuLV(psi 2) induced only pre-B-cell lymphomas in vivo and in vitro when immature B cells were present. ABL-MYC(psi 2), on the other hand, produced only plasmacytomas, even when purified immature B lymphocytes were infected in vitro. Although the A-MuLV(psi 2)-induced pre-B-cell lymphomas express easily detectable levels of c-myc mRNA, maturation into more-mature forms of B lymphocytes is blocked. The constitutively overexpressed c-myc in the ABL-MYC retrovirus abrogates this block, permits maturation of infected immature B cells, and yields transformed plasma cells.
Collapse
|
8
|
Weissinger EM, Mischak H, Goodnight J, Davidson WF, Mushinski JF. Addition of constitutive c-myc expression to Abelson murine leukemia virus changes the phenotype of the cells transformed by the virus from pre-B-cell lymphomas to plasmacytomas. Mol Cell Biol 1993; 13:2578-85. [PMID: 8455630 PMCID: PMC359590 DOI: 10.1128/mcb.13.4.2578-2585.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abelson murine leukemia virus (A-MuLV), a retrovirus that expresses the v-abl oncogene, characteristically induces pre-B-cell lymphomas following in vivo infection of BALB/c mice or in vitro infection of suspensions of fetal liver or bone marrow cells. ABL-MYC, a retrovirus that expresses both v-abl and c-myc, induces solely plasmacytomas in BALB/c mice. To investigate how the addition of overexpression of c-myc to that of v-abl accomplishes this dramatic change in the phenotype of the cells transformed by these closely related retroviruses, we utilized helper-free A-MuLV (psi 2) and ABL-MYC (psi 2) in vitro to infect suspensions of cells from different lymphoid tissues and purified immature and purified mature B cells. As expected, A-MuLV(psi 2) induced only pre-B-cell lymphomas in vivo and in vitro when immature B cells were present. ABL-MYC(psi 2), on the other hand, produced only plasmacytomas, even when purified immature B lymphocytes were infected in vitro. Although the A-MuLV(psi 2)-induced pre-B-cell lymphomas express easily detectable levels of c-myc mRNA, maturation into more-mature forms of B lymphocytes is blocked. The constitutively overexpressed c-myc in the ABL-MYC retrovirus abrogates this block, permits maturation of infected immature B cells, and yields transformed plasma cells.
Collapse
Affiliation(s)
- E M Weissinger
- Molecular Genetics Section, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
9
|
Möröy T, Fisher PE, Lee G, Achacoso P, Wiener F, Alt FW. High frequency of myelomonocytic tumors in aging E mu L-myc transgenic mice. J Exp Med 1992; 175:313-22. [PMID: 1310099 PMCID: PMC2119130 DOI: 10.1084/jem.175.2.313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transgenic mice that contain constructs of the L-myc gene under the transcriptional control of the immunoglobulin heavy chain enhancer (E mu) develop thymic hyperplasia and are predisposed to T cell lymphomas. Here we describe a second form of malignancy that occurs in aging E mu L-myc transgenic mice. The mean latency period for the development of this malignancy is longer compared with the E mu L-myc T cell lymphomas but the overall incidence is increased threefold. The histopathological morphology is that of a highly malignant mesenchymal neoplasm that closely resembles human fibrous histiocytoma. The tumor cells were classified as myelomonocytic on the basis of several lineage-specific markers and the lack of rearrangements of the immunoglobulin heavy chain and the T cell receptor beta loci. Cultured tumor cells produce macrophage colony-stimulating factor (M-CSF) protein and express the M-CSF receptor, suggesting the involvement of an autocrine loop in this malignancy. Similar to the E mu L-myc T cell lymphomas, these tumors show high-level transgene expression but no detectable levels of endogenous c-myc mRNA, directly implicating the deregulated expression of L-myc in the generation of this malignancy. E mu L-myc myelomonocytic tumors show consistent trisomy of chromosome 16, implicating this as a secondary event in the development of this tumor. In the light of recent findings that L-myc is expressed in human myeloid leukemias and in several human myeloid tumor cell lines, the results described here might implicate L-myc in the development of naturally occurring myeloid neoplasias.
Collapse
MESH Headings
- Aging
- Animals
- Blotting, Northern
- Enhancer Elements, Genetic/genetics
- Gene Expression
- Genes, myc/genetics
- Histiocytoma, Benign Fibrous/genetics
- Histiocytoma, Benign Fibrous/pathology
- Immunoglobulin Heavy Chains/genetics
- Lymphoma, T-Cell/pathology
- Macrophage Colony-Stimulating Factor/biosynthesis
- Mesenchymoma/genetics
- Mesenchymoma/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Möröy
- Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | | | | | |
Collapse
|
10
|
Complex transcriptional regulation of myc family gene expression in the developing mouse brain and liver. Mol Cell Biol 1991. [PMID: 1719378 DOI: 10.1128/mcb.11.12.6007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
myc family genes (c-, N-, and L-myc) have been shown to be differentially expressed with respect to tissue type and developmental stage. To define and compare the regulatory mechanisms governing their differential developmental expression, we examined the transcriptional regulation of each myc family member during murine postnatal brain and liver development. Nuclear run-on transcription assays demonstrated that both the rate of transcriptional initiation and the degree of transcriptional blocking contribute in a complex manner to the regulation of all three genes. During postnatal brain development, the relative contribution of each transcriptional control mechanism to the regulation of myc family gene expression was found to be different for each gene. For instance, while modulation of transcriptional attenuation did not appear to contribute to the down-regulation of L-myc expression, attenuation was found to be the dominant mechanism by which steady-state N-myc mRNA levels were down-regulated. Different transcriptional strategies were found to be employed in newborn versus adult developing liver for repression of N- and L-myc expression. Undetectable steady-state N- and L-myc mRNA levels in newborn liver were associated with a very low rate of transcriptional initiation, whereas the lack of N- and L-myc expression at the adult stage was accompanied by a high rate of initiation and a striking degree of transcriptional attenuation. Transcriptional attenuation in the N-myc gene was found to map to a region encoding a potential stem-loop structure followed by a thymine tract within the first exon and was not dependent on the use of a specific transcriptional start site.
Collapse
|
11
|
Xu L, Morgenbesser SD, DePinho RA. Complex transcriptional regulation of myc family gene expression in the developing mouse brain and liver. Mol Cell Biol 1991; 11:6007-15. [PMID: 1719378 PMCID: PMC361765 DOI: 10.1128/mcb.11.12.6007-6015.1991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
myc family genes (c-, N-, and L-myc) have been shown to be differentially expressed with respect to tissue type and developmental stage. To define and compare the regulatory mechanisms governing their differential developmental expression, we examined the transcriptional regulation of each myc family member during murine postnatal brain and liver development. Nuclear run-on transcription assays demonstrated that both the rate of transcriptional initiation and the degree of transcriptional blocking contribute in a complex manner to the regulation of all three genes. During postnatal brain development, the relative contribution of each transcriptional control mechanism to the regulation of myc family gene expression was found to be different for each gene. For instance, while modulation of transcriptional attenuation did not appear to contribute to the down-regulation of L-myc expression, attenuation was found to be the dominant mechanism by which steady-state N-myc mRNA levels were down-regulated. Different transcriptional strategies were found to be employed in newborn versus adult developing liver for repression of N- and L-myc expression. Undetectable steady-state N- and L-myc mRNA levels in newborn liver were associated with a very low rate of transcriptional initiation, whereas the lack of N- and L-myc expression at the adult stage was accompanied by a high rate of initiation and a striking degree of transcriptional attenuation. Transcriptional attenuation in the N-myc gene was found to map to a region encoding a potential stem-loop structure followed by a thymine tract within the first exon and was not dependent on the use of a specific transcriptional start site.
Collapse
Affiliation(s)
- L Xu
- Department of Microbiology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|