1
|
A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature. PLoS One 2016; 11:e0154040. [PMID: 27116354 PMCID: PMC4846089 DOI: 10.1371/journal.pone.0154040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/07/2016] [Indexed: 01/29/2023] Open
Abstract
DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.
Collapse
|
2
|
Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae. mSphere 2016; 1:mSphere00109-15. [PMID: 27303706 PMCID: PMC4863615 DOI: 10.1128/msphere.00109-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62–K70 segment of Rps26 and the 5′ untranslated region of mRNA. The data suggested a specific role of the Y62–K70 motif during translation initiation. Here, we report that single-site substitutions within the Y62–K70 peptide did not affect the growth of engineered yeast strains, arguing against its having a critical role during translation initiation via specific interactions with the 5′ untranslated region of mRNA molecules. Only the simultaneous replacement of five conserved residues within the Y62–K70 fragment or the replacement of the yeast protein with the human homolog resulted in growth defects and caused significant changes in polysome profiles. The results expand our knowledge of ribosomal protein function and suggest a role of Rps26 during ribosome assembly in yeast. The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5′ untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62–K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62–K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62–K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62–K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62–K70 segment of Rps26 and the 5′ untranslated region of mRNA. The data suggested a specific role of the Y62–K70 motif during translation initiation. Here, we report that single-site substitutions within the Y62–K70 peptide did not affect the growth of engineered yeast strains, arguing against its having a critical role during translation initiation via specific interactions with the 5′ untranslated region of mRNA molecules. Only the simultaneous replacement of five conserved residues within the Y62–K70 fragment or the replacement of the yeast protein with the human homolog resulted in growth defects and caused significant changes in polysome profiles. The results expand our knowledge of ribosomal protein function and suggest a role of Rps26 during ribosome assembly in yeast.
Collapse
|
3
|
Rhodin MHJ, Rakauskaitė R, Dinman JD. The central core region of yeast ribosomal protein L11 is important for subunit joining and translational fidelity. Mol Genet Genomics 2011; 285:505-16. [PMID: 21519857 DOI: 10.1007/s00438-011-0623-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/11/2011] [Indexed: 12/11/2022]
Abstract
Yeast ribosomal protein L11 is positioned at the intersubunit cleft of the large subunit central protuberance, forming an intersubunit bridge with the small subunit protein S18. Mutants were engineered in the central core region of L11 which interacts with Helix 84 of the 25S rRNA. Numerous mutants in this region conferred 60S subunit biogenesis defects. Specifically, many mutations of F96 and the A66D mutant promoted formation of halfmers as assayed by sucrose density ultracentrifugation. Halfmer formation was not due to deficiency in 60S subunit production, suggesting that the mutants affected subunit-joining. Chemical modification analyses indicated that the A66D mutant, but not the F96 mutants, promoted changes in 25S rRNA structure, suggesting at least two modalities for subunit joining defects. 25S rRNA structural changes were located both adjacent to A66D (in H84), and more distant (in H96-7). While none of the mutants significantly affected ribosome/tRNA binding constants, they did have strong effects on cellular growth at both high and low temperatures, in the presence of translational inhibitors, and promoted changes in translational fidelity. Two distinct mechanisms are proposed by which L11 mutants may affect subunit joining, and identification of the amino acids associated with each of these processes are presented. These findings may have implications for our understanding of multifaceted diseases such as Diamond--Blackfan anemia which have been linked in part with mutations in L11.
Collapse
Affiliation(s)
- Michael H J Rhodin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
4
|
Rhodin MHJ, Dinman JD. A flexible loop in yeast ribosomal protein L11 coordinates P-site tRNA binding. Nucleic Acids Res 2010; 38:8377-89. [PMID: 20705654 PMCID: PMC3001080 DOI: 10.1093/nar/gkq711] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/12/2022] Open
Abstract
High-resolution structures reveal that yeast ribosomal protein L11 and its bacterial/archael homologs called L5 contain a highly conserved, basically charged internal loop that interacts with the peptidyl-transfer RNA (tRNA) T-loop. We call this the L11 'P-site loop'. Chemical protection of wild-type ribosome shows that that the P-site loop is inherently flexible, i.e. it is extended into the ribosomal P-site when this is unoccupied by tRNA, while it is retracted into the terminal loop of 25S rRNA Helix 84 when the P-site is occupied. To further analyze the function of this structure, a series of mutants within the P-site loop were created and analyzed. A mutant that favors interaction of the P-site loop with the terminal loop of Helix 84 promoted increased affinity for peptidyl-tRNA, while another that favors its extension into the ribosomal P-site had the opposite effect. The two mutants also had opposing effects on binding of aa-tRNA to the ribosomal A-site, and downstream functional effects were observed on translational fidelity, drug resistance/hypersensitivity, virus maintenance and overall cell growth. These analyses suggest that the L11 P-site loop normally helps to optimize ribosome function by monitoring the occupancy status of the ribosomal P-site.
Collapse
Affiliation(s)
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Rodríguez-Mateos M, García-Gómez JJ, Francisco-Velilla R, Remacha M, de la Cruz J, Ballesta JPG. Role and dynamics of the ribosomal protein P0 and its related trans-acting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2009; 37:7519-32. [PMID: 19789271 PMCID: PMC2794172 DOI: 10.1093/nar/gkp806] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 11/25/2022] Open
Abstract
Mrt4 is a nucleolar component of the ribosome assembly machinery that shares notable similarity and competes for binding to the 25S rRNA GAR domain with the ribosomal protein P0. Here, we show that loss of function of either P0 or Mrt4 results in a deficit in 60S subunits, which is apparently due to impaired rRNA processing of 27S precursors. Mrt4, which shuttles between the nucleus and the cytoplasm, defines medium pre-60S particles. In contrast, P0 is absent from medium but present in late/cytoplasmic pre-60S complexes. The absence of Mrt4 notably increased the amount of P0 in nuclear Nop7-TAP complexes and causes P0 assembly to medium pre-60S particles. Upon P0 depletion, Mrt4 is relocated to the cytoplasm within aberrant 60S subunits. We conclude that Mrt4 controls the position and timing of P0 assembly. In turn, P0 is required for the release of Mrt4 and exchanges with this factor at the cytoplasm. Our results also suggest other P0 assembly alternatives.
Collapse
Affiliation(s)
- María Rodríguez-Mateos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Juan J. García-Gómez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Miguel Remacha
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Jesús de la Cruz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Juan P. G. Ballesta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid and Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| |
Collapse
|
6
|
Oristian DS, Sloofman LG, Zhou X, Wang L, Farach-Carson MC, Kirn-Safran CB. Ribosomal protein L29/HIP deficiency delays osteogenesis and increases fragility of adult bone in mice. J Orthop Res 2009; 27:28-35. [PMID: 18661500 PMCID: PMC2644558 DOI: 10.1002/jor.20706] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mice lacking HIP/RPL29, a ribosomal modulator of protein synthesis rate, display a short stature phenotype. To understand the contribution of HIP/RPL29 to bone formation and adult whole bone mechanical properties, we examined both developing and adult bone in our knockout mice. Results indicated that bone shortening in HIP/RPL29-null mice is due to delayed entry of chondro-osteoprogenitors into the cell cycle. Structural properties of adult null bones were analyzed by micro-computed tomography. Interestingly, partial preservation of cortical thickness was observed in null males indicating a gender-specific effect of the genotype on cortical bone parameters. Null males, and to a lower extent null females, displayed increased bone material toughness to counteract decreased bone size. This elevation in a bone material property was associated with increased bone mineral density only in null males. Neither male nor female null animals could withstand the same maximum load as gender-matched controls in three-point bending tests, and smaller post-yield displacements (and thus increased bone brittleness) were found for null animals. These results suggest that HIP/RPL29-deficient mice exhibit increased bone fragility due to altered matrix protein synthesis rates as a consequence of ribosomal insufficiency. Thus, sub-efficient protein translation increased fracture risk in HIP/RPL29-null animals. Taken together, these studies provide strong genetic evidence that the ability to regulate and amplify protein synthesis rates, including those proteins that regulate the cell cycle entry during skeletal development, are important determinants for establishment of normal bone mass and quality.
Collapse
Affiliation(s)
- Daniel S. Oristian
- University of Delaware, Department of Biological Sciences, Newark, Delaware 19716
| | - Laura G. Sloofman
- University of Delaware, Department of Biological Sciences, Newark, Delaware 19716
| | - Xiaozhou Zhou
- University of Delaware, Department of Mechanical Engineering, Newark, Delaware, 19716
| | - Liyun Wang
- University of Delaware, Department of Mechanical Engineering, Newark, Delaware, 19716
| | - Mary C. Farach-Carson
- University of Delaware, Department of Biological Sciences, Newark, Delaware 19716, University of Delaware, Department of Materials Science and Engineering, Newark, DE 19716
| | - Catherine B. Kirn-Safran
- University of Delaware, Department of Biological Sciences, Newark, Delaware 19716,† author to whom correspondence should be addressed: Catherine Kirn-Safran,University of Delaware,Department of Biological Sciences, 310 Wolf Hall, Newark, DE 19716, Telephone: (302) 831-3249, Telefax: (302) 831-2281,
| |
Collapse
|
7
|
Merrick WC, Hensold JO. Analysis of eukaryotic translation in purified and semipurified systems. ACTA ACUST UNITED AC 2008; Chapter 11:Unit 11.9. [PMID: 18228314 DOI: 10.1002/0471143030.cb1109s08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much of the current understanding of the sequential steps involved in translation initiation has been obtained using sucrose gradients to isolate ribosomes and ribosomal subunits, as described here. These purified components are combined with purified translation factors to analyze the formation of intermediates in translation initiation and the roles of the translation factors in vitro.
Collapse
Affiliation(s)
- W C Merrick
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
8
|
Chaudhuri S, Vyas K, Kapasi P, Komar AA, Dinman JD, Barik S, Mazumder B. Human ribosomal protein L13a is dispensable for canonical ribosome function but indispensable for efficient rRNA methylation. RNA (NEW YORK, N.Y.) 2007; 13:2224-37. [PMID: 17921318 PMCID: PMC2080596 DOI: 10.1261/rna.694007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Previously, we demonstrated that treatment of monocytic cells with IFN-gamma causes release of ribosomal protein L13a from the 60S ribosome and subsequent translational silencing of Ceruloplasmin (Cp) mRNA. Here, evidence using cultured cells demonstrates that Cp mRNA silencing is dependent on L13a and that L13a-deficient ribosomes are competent for global translational activity. Human monocytic U937 cells were stably transfected with two different shRNA sequences for L13a and clonally selected for more than 98% abrogation of total L13a expression. Metabolic labeling of these cells showed rescue of Cp translation from the IFN-gamma mediated translational silencing activity. Depletion of L13a caused significant reduction of methylation of ribosomal RNA and of cap-independent translation mediated by Internal Ribosome Entry Site (IRES) elements derived from p27, p53, and SNAT2 mRNAs. However, no significant differences in the ribosomal RNA processing, polysome formation, global translational activity, translational fidelity, and cell proliferation were observed between L13a-deficient and wild-type control cells. These results support the notion that ribosome can serve as a depot for releasable translation-regulatory factors unrelated to its basal polypeptide synthetic function. Unlike mammalian cells, the L13a homolog in yeast is indispensable for growth. Thus, L13a may have evolved from an essential ribosomal protein in lower eukaryotes to having a role as a dispensable extra-ribosomal function in higher eukaryotes.
Collapse
Affiliation(s)
- Sujan Chaudhuri
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Kirn-Safran CB, Oristian DS, Focht RJ, Parker SG, Vivian JL, Carson DD. Global growth deficiencies in mice lacking the ribosomal protein HIP/RPL29. Dev Dyn 2007; 236:447-60. [PMID: 17195189 DOI: 10.1002/dvdy.21046] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Because of their deleterious effects on developing organisms, ribosomal protein (RP) mutations have been poorly described in mammals, and only a few heterozygous mutations have been shown to be viable. This observation is believed to be due to the fact that each RP is an essential component in the assembly of a functional stable ribosome. Here, we created gene targeted mutant mice lacking HIP/RPL29, an RP associated with translationally active ribosomes in eukaryotes. In contrast to other RP mutants, HIP/RPL29 null mice are viable but are up to 50% smaller than their control littermates at weaning age. In null embryos, delayed global growth is first observed around mid-gestation, and postnatal lethality due to low birth weight results in distortion of the Mendelian ratio. Prenatal growth defects are not fully compensated for during adulthood, and null animals display proportionately smaller organs and stature, and reach sexual maturity considerably later when compared with their control siblings. Additionally, HIP/RPL29 null embryonic fibroblasts have decreased rates of proliferation and protein synthesis and exhibit reduced steady state levels of core RPs. Altogether, our findings provide conclusive genetic evidence that HIP/RPL29 functions as an important regulator of global growth by modulating the rate of protein synthesis.
Collapse
|
10
|
Dresios J, Panopoulos P, Synetos D. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol Microbiol 2006; 59:1651-63. [PMID: 16553873 DOI: 10.1111/j.1365-2958.2006.05054.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
11
|
Abstract
Yeast ribosomal protein S14 (rpS14) binds to two different RNA molecules: (1). helix 23 of 18S rRNA during its assembly into 40S ribosomal subunits and (2). a stem-loop structure in RPS14B pre-mRNA to repress expression of the RPS14B gene. We used the three-dimensional structure of Thermus thermophilus ribosomal protein S11, a bacterial homologue of rpS14, as a guide to identify conserved, surface-exposed amino acid residues that are likely to contact RNA. Eight residues that met these criteria were mutated to alanine. Most of these mutations affected interaction of rpS14 with either helix 23 or the RPS14B stem-loop RNA or both. Assembly of 40S ribosomal subunits and repression of RPS14B were also affected. S11 contains an extended carboxy-terminal domain rich in basic amino acids, which interacts with rRNA. We systematically evaluated the importance of each of the last ten amino acid residues in the basic, carboxy-terminal tail of yeast rpS14 for binding to RNA, by mutating each to alanine. Mutations in nine of these residues decreased binding of rpS14 to one or both of its RNA ligands. In addition, we examined the importance of four structural motifs in helix 23 of 18S rRNA for binding to rpS14. Mutations that altered either the terminal loop, the G-U base-pair closing the terminal loop, or the internal loop affected binding of rpS14 to helix 23.
Collapse
Affiliation(s)
- Pamela Antúnez de Mayolo
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
12
|
Miyoshi K, Tsujii R, Yoshida H, Maki Y, Wada A, Matsui Y, Toh-E A, Mizuta K. Normal assembly of 60 S ribosomal subunits is required for the signaling in response to a secretory defect in Saccharomyces cerevisiae. J Biol Chem 2002; 277:18334-9. [PMID: 11893754 DOI: 10.1074/jbc.m201667200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A secretory defect leads to transcriptional repression of both ribosomal protein and rRNA genes in yeast. To elucidate the mechanism of the signaling, we previously isolated rrs mutants that were unable to respond to a secretory defect, and we cloned RRS1 encoding a nuclear protein that was required for ribosome biogenesis (Tsuno, A., Miyoshi, K., Tsujii, R., Miyakawa, T., and Mizuta, K. (2000) Mol. Cell. Biol. 20, 2066-2074). We identified duplicated genes encoding ribosomal protein L11, RPL11B as a wild-type allele complementing the rrs2 mutation, and RPL11A in two-hybrid screening using RRS1 as bait. Rpl11p was copurified with Rrs1p in immunoprecipitation analysis. Ultracentrifugation analysis revealed that Rrs1p associated fairly tightly with 60 S preribosomal subunits. These results suggest that signaling in response to a secretory defect requires the normal assembly of 60 S ribosomal subunits including Rrs1p and Rpl11p.
Collapse
Affiliation(s)
- Keita Miyoshi
- Department of Biological Sciences, Graduate School of Biosphere Sciences, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Moy TI, Boettner D, Rhodes JC, Silver PA, Askew DS. Identification of a role for Saccharomyces cerevisiae Cgr1p in pre-rRNA processing and 60S ribosome subunit synthesis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1081-1090. [PMID: 11932453 DOI: 10.1099/00221287-148-4-1081] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Saccharomyces cerevisiae CGR1 encodes a conserved fungal protein that localizes to the nucleolus. To determine if this localization reflects a role for Cgr1p in ribosome biogenesis two yeast cgr1 mutants were examined for defects in ribosome synthesis: a conditional depletion strain in which CGR1 is under the control of a tetracycline-repressible promoter and a mutant strain in which a C-terminal truncated Cgr1p is expressed. Both strains had impaired growth rates and were hypersensitive to the aminoglycosides paromomycin and hygromycin. Polysome analyses of the mutants revealed increased levels of free 40S subunits relative to 60S subunits, a decrease in 80S monosomes and accumulation of half-mer polysomes. Pulse-chase labelling demonstrated that pre-rRNA processing was defective in the mutants, resulting in accumulation of the 35S, 27S and 7S pre-rRNAs and delayed production of the mature 25S and 5 small middle dot8S rRNAs. The synthesis of the 18S and 5S rRNAs was unaffected. Loss of Cgr1 function also caused a partial delocalization of the 5'-ITS1 RNA and the nucleolar protein Nop1p into the nucleoplasm, suggesting that Cgr1p contributes to compartmentalization of nucleolar constituents. Together these findings establish a role for Cgr1p in ribosome biogenesis.
Collapse
Affiliation(s)
- Terence I Moy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA2
| | - Douglas Boettner
- University of Cincinnati College of Medicine, Department of Pathology & Laboratory Medicine, Cincinnati, OH 45267-0529, USA1
| | - Judith C Rhodes
- University of Cincinnati College of Medicine, Department of Pathology & Laboratory Medicine, Cincinnati, OH 45267-0529, USA1
| | - Pamela A Silver
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA2
| | - David S Askew
- University of Cincinnati College of Medicine, Department of Pathology & Laboratory Medicine, Cincinnati, OH 45267-0529, USA1
| |
Collapse
|
14
|
Adams CC, Jakovljevic J, Roman J, Harnpicharnchai P, Woolford JL. Saccharomyces cerevisiae nucleolar protein Nop7p is necessary for biogenesis of 60S ribosomal subunits. RNA (NEW YORK, N.Y.) 2002; 8:150-65. [PMID: 11911362 PMCID: PMC1370239 DOI: 10.1017/s1355838202010026] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To identify new gene products that participate in ribosome biogenesis, we carried out a screen for mutations that result in lethality in combination with mutations in DRS1, a Saccharomyces cerevisiae nucleolar DEAD-box protein required for synthesis of 60S ribosomal subunits. We identified the gene NOP7that encodes an essential protein. The temperature-sensitive nop7-1 mutation or metabolic depletion of Nop7p results in a deficiency of 60S ribosomal subunits and accumulation of halfmer polyribosomes. Analysis of pre-rRNA processing indicates that nop7 mutants exhibit a delay in processing of 27S pre-rRNA to mature 25S rRNA and decreased accumulation of 25S rRNA. Thus Nop7p, like Drs1p, is required for essential steps leading to synthesis of 60S ribosomal subunits. In addition, inactivation or depletion of Nop7p also affects processing at the A0, A1, and A2 sites, which may result from the association of Nop7p with 35S pre-rRNA in 90S pre-rRNPs. Nop7p is localized primarily in the nucleolus, where most steps in ribosome assembly occur. Nop7p is homologous to the zebrafish pescadillo protein necessary for embryonic development. The Nop7 protein contains the BRCT motif, a protein-protein interaction domain through which, for example, the human BRCA1 protein interacts with RNA helicase A.
Collapse
Affiliation(s)
- Cynthia C Adams
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
15
|
Belk JP, He F, Jacobson A. Overexpression of truncated Nmd3p inhibits protein synthesis in yeast. RNA (NEW YORK, N.Y.) 1999; 5:1055-70. [PMID: 10445880 PMCID: PMC1369829 DOI: 10.1017/s1355838299990027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The yeast NMD3 gene was identified in a two-hybrid screen using the nonsense-mediated mRNA decay factor, Upf1p, as bait. NMD3 was shown to encode an essential, highly conserved protein that associated principally with free 60S ribosomal subunits. Overexpression of a truncated form of Nmd3p, lacking 100 C-terminal amino acids and most of its Upf1p-interacting domain, had dominant-negative effects on both cell growth and protein synthesis and promoted the formation of polyribosome half-mers. These effects were eliminated by truncation of an additional 100 amino acids from Nmd3p. Overexpression of the nmd3delta100 allele also led to increased synthesis and destabilization of some ribosomal protein mRNAs, and increased synthesis and altered processing of 35S pre-rRNA. Our data suggest that Nmd3p has a role in the formation, function, or maintenance of the 60S ribosomal subunit and may provide a link for Upf1p to 80S monosomes.
Collapse
Affiliation(s)
- J P Belk
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655-0122, USA
| | | | | |
Collapse
|
16
|
Dechampesme AM, Koroleva O, Leger-Silvestre I, Gas N, Camier S. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J Cell Biol 1999; 145:1369-80. [PMID: 10385518 PMCID: PMC2133170 DOI: 10.1083/jcb.145.7.1369] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A collection of yeast strains surviving with mutant 5S RNA has been constructed. The mutant strains presented alterations of the nucleolar structure, with less granular component, and a delocalization of the 25S rRNA throughout the nucleoplasm. The 5S RNA mutations affected helix I and resulted in decreased amounts of stable 5S RNA and of the ribosomal 60S subunits. The shortage of 60S subunits was due to a specific defect in the processing of the 27SB precursor RNA that gives rise to the mature 25S and 5.8S rRNA. The processing rate of the 27SB pre-rRNA was specifically delayed, whereas the 27SA and 20S pre-rRNA were processed at a normal rate. The defect was partially corrected by increasing the amount of mutant 5S RNA. We propose that the 5S RNA is recruited by the pre-60S particle and that its recruitment is necessary for the efficient processing of the 27SB RNA precursor. Such a mechanism could ensure that all newly formed mature 60S subunits contain stoichiometric amounts of the three rRNA components.
Collapse
MESH Headings
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression
- Genes, Fungal
- Kinetics
- Molecular Weight
- Mutation
- Nucleic Acid Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
Collapse
Affiliation(s)
- A M Dechampesme
- Service de Biochimie et de Génétique Moléculaire, Commissariat á L'Energie Atomique (CEA)/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
17
|
Daugeron MC, Linder P. Dbp7p, a putative ATP-dependent RNA helicase from Saccharomyces cerevisiae, is required for 60S ribosomal subunit assembly. RNA (NEW YORK, N.Y.) 1998; 4:566-581. [PMID: 9582098 PMCID: PMC1369640 DOI: 10.1017/s1355838298980190] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Putative ATP-dependent RNA helicases are ubiquitous, highly conserved proteins that are found in most organisms and they are implicated in all aspects of cellular RNA metabolism. Here we present the functional characterization of the Dbp7 protein, a putative ATP-dependent RNA helicase of the DEAD-box protein family from Saccharomyces cerevisiae. The complete deletion of the DBP7 ORF causes a severe slow-growth phenotype. In addition, the absence of Dbp7p results in a reduced amount of 60S ribosomal subunits and an accumulation of halfmer polysomes. Subsequent analysis of pre-rRNA processing indicates that this 60S ribosomal subunit deficit is due to a strong decrease in the production of 27S and 7S precursor rRNAs, which leads to reduced levels of the mature 25S and 5.8S rRNAs. Noticeably, the overall decrease of the 27S pre-rRNA species is neither associated with the accumulation of preceding precursors nor with the emergence of abnormal processing intermediates, suggesting that these 27S pre-rRNA species are degraded rapidly in the absence of Dbp7p. Finally, an HA epitope-tagged Dbp7 protein is localized in the nucleolus. We propose that Dbp7p is involved in the assembly of the pre-ribosomal particle during the biogenesis of the 60S ribosomal subunit.
Collapse
Affiliation(s)
- M C Daugeron
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, Geneva, Switzerland.
| | | |
Collapse
|
18
|
Rosenblum JS, Pemberton LF, Blobel G. A nuclear import pathway for a protein involved in tRNA maturation. J Biophys Biochem Cytol 1997; 139:1655-61. [PMID: 9412461 PMCID: PMC2132634 DOI: 10.1083/jcb.139.7.1655] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A limited number of transport factors, or karyopherins, ferry particular substrates between the cytoplasm and nucleoplasm. We identified the Saccharomyces cerevisiae gene YDR395w/SXM1 as a potential karyopherin on the basis of limited sequence similarity to known karyopherins. From yeast cytosol, we isolated Sxm1p in complex with several potential import substrates. These substrates included Lhp1p, the yeast homologue of the human autoantigen La that has recently been shown to facilitate maturation of pre-tRNA, and three distinct ribosomal proteins, Rpl16p, Rpl25p, and Rpl34p. Further, we demonstrate that Lhp1p is specifically imported by Sxm1p. In the absence of Sxm1p, Lhp1p was mislocalized to the cytoplasm. Sxm1p and Lhp1p represent the karyopherin and a cognate substrate of a unique nuclear import pathway, one that operates upstream of a major pathway of pre-tRNA maturation, which itself is upstream of tRNA export in wild-type cells. In addition, through its association with ribosomal proteins, Sxm1p may have a role in coordinating ribosome biogenesis with tRNA processing.
Collapse
Affiliation(s)
- J S Rosenblum
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York 10021, USA
| | | | | |
Collapse
|
19
|
Nika J, Erickson FL, Hannig EM. Ribosomal protein L9 is the product of GRC5, a homolog of the putative tumor suppressor QM in S. cerevisiae. Yeast 1997; 13:1155-66. [PMID: 9301022 DOI: 10.1002/(sici)1097-0061(19970930)13:12<1155::aid-yea166>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genes encoding members of the highly conserved QM family have been identified in eukaryotic organisms from yeast to man. Results of previous studies have suggested roles for QM in control of cell growth and proliferation, perhaps as a tumor suppressor, and in energy metabolism. We identified recessive lethal alleles of the Saccharomyces cerevisiae QM homolog GRC5 that increased GCN4 expression when present in multiple copies. These alleles encode truncated forms of the yeast QM protein Grc5p. Using a functional epitope-tagged GRC5 allele, we localized Grc5p to a 60S fraction that contained the large ribosomal subunit. Two-dimensional gel analysis of highly purified yeast ribosomes indicated that Grc5p corresponds to 60S ribosomal protein L9. This identification is consistent with the predicted physical characteristics of eukaryotic QM proteins, the highly biased codon usage of GRC5, and the presence of putative Rap1p-binding sites in the 5' sequences of the yeast GRC5 gene.
Collapse
Affiliation(s)
- J Nika
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | |
Collapse
|
20
|
van Nues RW, Venema J, Planta RJ, Raué HA. Variable region V1 of Saccharomyces cerevisiae 18S rRNA participates in biogenesis and function of the small ribosomal subunit. Chromosoma 1997; 105:523-31. [PMID: 9211980 DOI: 10.1007/bf02510489] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of helix 6, which forms the major portion of the most 5'-located expansion segment of Saccharomyces cerevisiae 18S rRNA, was studied by in vivo mutational analysis. Mutations that increased the size of the helical part and/or the loop, even to a relatively small extent, abolished 18S rRNA formation almost completely. Concomitantly, 35S pre-rRNA and an abnormal 23S precursor species accumulated. rDNA units containing these mutations did not support cell growth. A deletion removing helix 6 almost completely, on the other hand, had a much less severe effect on the formation of 18S rRNA, and cells expressing only the mutant rRNA remained able to grow, albeit at a much reduced rate. Disruption of the apical A.U base pair by a single point mutation did not cause a noticeable reduction in the level of 18S rRNA but did result in a twofold lower growth rate of the cells. This effect could not be reversed by introduction of a second point mutation that restores base pairing. We conclude that both the primary and the secondary structure of helix 6 play an important role in the formation and the biological function of the 40S subunit.
Collapse
Affiliation(s)
- R W van Nues
- Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, de Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
21
|
Abstract
Previously we described a large collection of cloned human DNAs that encode chemically defined missense mutations within the ribosomal protein S14 sequence. We determined that biologically inactive (i.e. null) alleles resulted primarily from point mutations targeted to two internal segments of the S14-coding sequence and designated these functionally critical regions as domains B and D. Further, we inferred that structural determinants within domains B and D are required for proper incorporation of the S14 protein into nascent 40 S ribosomal particles and/or for the normal function of mature cytoplasmic ribosomes. In this study we have used immunofluorescence to monitor the intracellular trafficking of epitopically labeled human S14 protein isoforms transiently expressed by cultured Chinese hamster cells. Data obtained distinguish null alleles of RPS14 which encode proteins that are not incorporated into pre-ribosomal subunit particles from null alleles whose products are compatible with normal ribosome assembly processes but result in functionally inactive cytoplasmic 40 S ribosomal subunits. Mutations assigned to the first allele class involve amino acid replacements located within S14 domains B and D; whereas mutations assigned to the second class are distributed throughout the S14 protein-coding sequence.
Collapse
Affiliation(s)
- J Martin-Nieto
- Division of Biology and Center for Basic Cancer Research, Kansas State University, Manhattan 66506, USA
| | | |
Collapse
|
22
|
Proweller A, Butler JS. Ribosome concentration contributes to discrimination against poly(A)- mRNA during translation initiation in Saccharomyces cerevisiae. J Biol Chem 1997; 272:6004-10. [PMID: 9038222 DOI: 10.1074/jbc.272.9.6004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inactivation of Saccharomyces cerevisiae poly(A) polymerase in a strain bearing the temperature-sensitive lethal pap1-1 mutation results in the synthesis of poly(A)- mRNAs that initiate translation with surprising efficiency. Translation of poly(A)- mRNAs after polyadenylation shut-off might result from an increase in the ratio of ribosomes and associated translation factors to mRNA, caused by the inability of poly(A)- mRNAs to accumulate to normal levels. To test this hypothesis, we used ribosomal subunit protein gene mutations to decrease either 40 or 60 S ribosomal subunit concentrations in strains carrying the pap1-1 mutation. Polyadenylation shut-off in such cells results in a nearly normal ratio of ribosomes to mRNA as revealed by polyribosome sedimentation analysis. Ribonuclease protection and Northern blot analyses showed that a significant percentage of poly(A)-deficient and poly(A)- mRNA associate with smaller polyribosomes compared with cells with normal ribosome levels. Analysis of the ratio of poly(A)-deficient and poly(A)- forms of a specific mRNA showed relatively more poly(A)- mRNA sedimenting with 20-60 S complexes than do poly(A)+ forms, suggesting a block in an early step of the translation initiation of the poly(A)- transcripts. These findings support models featuring the poly(A) tail as an enhancer of translation and suggest that the full effect of a poly(A) tail on the initiation strength of a mRNA may require competition for a limited number of free ribosomes or translation factors.
Collapse
Affiliation(s)
- A Proweller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
23
|
Yeh LC, Deshmukh M, Woolford JL, Lee JC. Involvement of lysine 270 and lysine 271 of yeast 5S rRNA binding protein in RNA binding and ribosome assembly. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1308:133-41. [PMID: 8764831 DOI: 10.1016/0167-4781(96)00085-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Contributions of the highly conserved K270 and its neighboring K271 in the C-terminal region of the yeast ribosomal protein L1 to 5S rRNA binding and ribosome assembly were examined by in vivo and in vitro studies on the consequences of 14 substitution mutations. All mutant proteins with a single amino-acid substitution at either position were able to bind 5S rRNA in vitro to an extent comparable to the wild-type. Yeast cells expressing these mutant proteins, except the K270G mutant, grew at nearly normal rates. Mutations of K270 appeared to produce more demonstrable effects than those of K271. The double mutant K270,271G bound RNA poorly and yeast cells expressing the mutant protein grew 30% slower. Double mutants K270,271E and K270,271R were lethal, although the mutant protein was assembled into the 60S ribosomal subunits. The resultant subunits were not stable leading eventually to cell death. The in vitro RNA binding ability of the respective protein was reduced by 60% and 20%. Taken together, the present data identified K270 and K271 as important amino-acid residues in the function of the yeast ribosomal protein L1.
Collapse
Affiliation(s)
- L C Yeh
- Department of Biochemistry, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | | | |
Collapse
|
24
|
Proweller A, Butler JS. Ribosomal association of poly(A)-binding protein in poly(A)-deficient Saccharomyces cerevisiae. J Biol Chem 1996; 271:10859-65. [PMID: 8631901 DOI: 10.1074/jbc.271.18.10859] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Poly(A)-binding protein, the most abundant eukaryotic mRNP protein, is known primarily for its association with polyadenylate tails of mRNA. In the yeast, Saccharomyces cerevisiae, this protein (Pabp) was found to be essential for viability and has been implicated in models featuring roles in mRNA stability and as an enhancer of translation initiation. Although the mechanism of action is unknown, it is thought to require an activity to bind poly(A) tails and an additional capacity for an interaction with 60 S ribosomal subunits, perhaps via ribosomal protein L46 (Rpl46). We have found that a significant amount of Pabp in wild-type cells is not associated with polyribosome complexes. The remaining majority, which is found in these complexes, maintains its association even in yeast cells deficient in polyadenylated mRNA and/or Rpl46. These observations suggest that Pabp may not require interaction with poly(A) tails during translation. Further treatment of polyribosome lysates with agents known to differentially disrupt components of polyribosomes indicated that Pabp may require contact with some RNA component of the polyribosome, which could be either non-poly(A)-rich sequences of the translated mRNA or possibly a component of the ribosome. These findings suggest that Pabp may possess the ability to bind to ribosomes independently of its interaction with poly(A). We discuss these conclusions with respect to current models suggesting a multifunctional binding capacity of Pabp.
Collapse
Affiliation(s)
- A Proweller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
25
|
Deshmukh M, Stark J, Yeh LC, Lee JC, Woolford JL. Multiple regions of yeast ribosomal protein L1 are important for its interaction with 5 S rRNA and assembly into ribosomes. J Biol Chem 1995; 270:30148-56. [PMID: 8530422 DOI: 10.1074/jbc.270.50.30148] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yeast ribosomal protein L1 binds to 5 S rRNA and can be released from 60 S ribosomal subunits as an intact ribonucleoprotein particle. To identify residues important for binding of Saccharomyces cerevisiae rpL1 to 5 S rRNA and assembly into functional ribosomes, we have isolated mutant alleles of the yeast RPL1 gene by site-directed and random mutagenesis. The rpl1 mutants were assayed for association of rpL1 with 5 S rRNA in vivo and in vitro and assembly of rpL1 into functional 60 S ribosomal subunits. Consistent with previous data implicating the importance of the carboxyl-terminal 47 amino acids of rpL1 for binding to 5 S rRNA in vitro, we find that deletion of the carboxyl-terminal 8, 25, or 44 amino acids of rpL1 confers lethality in vivo. Missense mutations elsewhere in rpL1 also affect its function, indicating that multiple regions of rpL1 are important for its association with 5 S rRNA and assembly into ribosomes.
Collapse
Affiliation(s)
- M Deshmukh
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Post-transcriptional processing of precursor-ribosomal RNA comprises a complex pathway of endonucleolytic cleavages, exonucleolytic digestion and covalent modifications. The general order of the various processing steps is well conserved in eukaryotic cells, but the underlying mechanisms are largely unknown. Recent analysis of pre-rRNA processing, mainly in the yeast Saccharomyces cerevisiae, has significantly improved our understanding of this important cellular activity. Here we will review the data that have led to our current picture of yeast pre-rRNA processing.
Collapse
Affiliation(s)
- J Venema
- European Molecular Biology Laboratory (EMBL), Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|
27
|
Lafontaine D, Tollervey D. Trans-acting factors in yeast pre-rRNA and pre-snoRNA processing. Biochem Cell Biol 1995; 73:803-12. [PMID: 8721996 DOI: 10.1139/o95-088] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major intermediates in the pathway of pre-rRNA processing in yeast and other eukaryotes were originally identified by biochemical analyses. However, as a result of the analysis of the effects of mutations in trans-acting factors, the yeast pre-rRNA processing pathway is now characterized in far more detail than that of other eukaryotes. These analyses have led to the identification of processing sites and intermediates that were either too close in size or too short lived to detected by biochemical analyses alone. In addition, it was generally unclear whether pre-rRNA processing steps were endonucleolytic or exonucleolytic; analyses of trans-acting factors is now revealing a complex mixture of endonucleolytic and exonucleolytic processing steps. Many of the small nucleolar RNAs (snoRNAs) are excised from larger precursors. Analyses of trans-acting factors are also revealing details of pre-snoRNA processing in yeast. Interestingly, factors involved in pre-snoRNA processing turn out to be components that also function in pre-rRNA processing, suggesting a potential mechanism for the coregulation of rRNA and snoRNA synthesis. In general, very little is known about the regulation of pre-rRNA processing steps. The best candidate for a system regulating specific pre-rRNA processing reactions has recently been revealed by the analysis of a yeast pre-RNA methylase. Here we will review recent data on the trans-acting factors involved in yeast ribosome synthesis and discuss how these analyses have contributed to our current view of this complex process.
Collapse
Affiliation(s)
- D Lafontaine
- European Molecular Biology Laboratory (EMBL), Postfach 10 22 09, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
28
|
Roy J, Kim K, Maddock JR, Anthony JG, Woolford JL. The final stages of spliceosome maturation require Spp2p that can interact with the DEAH box protein Prp2p and promote step 1 of splicing. RNA (NEW YORK, N.Y.) 1995; 1:375-390. [PMID: 7493316 PMCID: PMC1482403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pre-mRNA processing occurs by assembly of splicing factors on the substrate to form the spliceosome followed by two consecutive RNA cleavage-ligation reactions. The Prp2 protein hydrolyzes ATP and is required for the first reaction (Yean SL, Lin RJ, 1991, Mol Cell Biol 11:5571-5577; Kim SH, Smith J, Claude A, Lin RJ, 1992, EMBO J 11:2319-2326). The Saccharomyces cerevisiae SPP2 gene was previously identified as a high-copy suppressor of temperature-sensitive prp2 mutants (Last RL, Maddock JR, Woolford JL Jr, 1987, Genetics 117:619-631). We have characterized the function of Spp2p in vivo and in vitro. Spp2p is an essential protein required for the first RNA cleavage reaction in vivo. Depletion of Spp2p from yeast cells results in accumulation of unspliced pre-mRNAs. A temperature-sensitive spp2-1 mutant accumulates pre-mRNAs in vivo and is unable to undergo the first splicing reaction in vitro. However, spliceosomal complexes are assembled in extracts prepared from the mutant. We show that Spp2p function is required after spliceosome assembly but prior to the first reaction. Spp2p associates with the spliceosome before the first RNA cleavage reaction and is likely to be released from the spliceosome following ATP hydrolysis by Prp2p. The Prp2 and Spp2 proteins are capable of physically interacting with each other. These results suggest that Spp2p interacts with Prp2p in the spliceosome prior to the first cleavage-ligation reaction. Spp2p is the first protein that has been found to interact with a DEAD/H box splicing factor.
Collapse
Affiliation(s)
- J Roy
- Department of Biological Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
29
|
Tsay Y, Shankweiler G, Lake J, Woolford J. Localization of Saccharomyces cerevisiae ribosomal protein L16 on the surface of 60 S ribosomal subunits by immunoelectron microscopy. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37326-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Heinemeyer W, Gruhler A, Möhrle V, Mahé Y, Wolf D. PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chrymotryptic activity and degradation of ubiquitinated proteins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53509-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 1993; 72:443-57. [PMID: 8431947 DOI: 10.1016/0092-8674(93)90120-f] [Citation(s) in RCA: 382] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have generated temperature-sensitive lethal point mutations in the small nucleolar RNA-associated protein fibrillarin (encoded by the NOP1 gene in yeast) and analyzed their effects on ribosome synthesis. The five alleles tested all prevent synthesis of normal ribosomes, but in dramatically different ways. At the non-permissive temperature, the nop1.2 and nop1.5 alleles prevent synthesis of both 18S and 25S rRNA and all pre-rRNA species except the 35S primary transcript. In contrast, the nop1.3, nop1.4, and nop1.7 alleles do not strongly impair processing. In nop1.3 strains, nucleolar methylation of pre-rRNA is strongly inhibited; late, cytoplasmic methylation of 18S rRNA and tRNA methylation continue. The nop1.4 and nop1.7 alleles result in the synthesis of cytoplasmic 60S ribosomal subunits with strongly aberrant mobilities on sucrose gradients even at the permissive temperature, owing to the impairment of a late step in ribosome assembly. Thus, all major posttranscriptional activities in ribosome synthesis, pre-rRNA processing, pre-rRNA modification, and ribosome assembly are dependent on fibrillarin.
Collapse
Affiliation(s)
- D Tollervey
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|