1
|
Baron MH. Developmental regulation of the vertebrate globin multigene family. Gene Expr 2018; 6:129-37. [PMID: 9041120 PMCID: PMC6148311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
"Hemoglobin switching," or the sequential expression of globin genes in erythroid cells during development, has provided an important paradigm for tissue- and stage-specific gene regulation. Over the past decade, regulatory DNA sequences and transcription factors involved in controlling the expression of individual globin genes in erythroid cells have been identified. The picture that has emerged indicates that gene proximal control elements collaborate with a "locus control region" located far upstream - probably via a DNA looping mechanism - to ensure that each gene is turned on only in erythroid cells and at the appropriate time during development. Interactions among the various regulatory sequences are thought to be mediated and stabilized by an array of tissue-specific and ubiquitous proteins. Chromatin structure plays a critical but still poorly understood role in this process.
Collapse
Affiliation(s)
- M H Baron
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Beauchemin H, Blouin MJ, Trudel M. Differential Regulatory and Compensatory Responses in Hematopoiesis/Erythropoiesis in α- and β-Globin Hemizygous Mice. J Biol Chem 2004; 279:19471-80. [PMID: 15004025 DOI: 10.1074/jbc.m309989200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Characterization of hematopoiesis/erythropoiesis in thalassemias from multipotent primitive cells to mature erythrocytes is of fundamental importance and clinical relevance. We investigated this process in alpha- and beta-globin hemizygous mice, lacking the two adult tandemly organized genes from either the alpha- or beta-globin locus. Although both mice backcrossed on a homogeneous background exhibited similar reduced red blood cell (RBC) survival, beta-globin hemizygous mice had less severe reticulocyte loss and globin chain imbalance, suggesting an apparently milder thalassemia than for alpha-globin hemizygous mice. In contrast, however, beta-globin hemizygous mice displayed a more marked perturbation of hematologic parameters. Quantification of erythroid precursor subpopulations in marrow and spleen of beta-globin hemizygous mice showed more severely impaired maturation from the basophilic to orthochromatophilic erythroblasts and substantial loss of these late precursors probably as a consequence of a greater susceptibility to an excess of free alpha-chain than beta-chain. Hence, only erythroid precursors exhibiting stochastically moderate chain imbalance would escape death and mature to reticulocyte/RBC stage, leading to survival and minimal loss of reticulocytes in the beta-globin hemizygous mice. Furthermore, in response to the ineffective erythropoiesis in beta-globin hemizygous mice, a dynamic compensatory hematopoiesis was observed at earlier differentiation stage as evidenced by a significant increase of erythroid progenitors (erythroid colony-forming units approximately 100-fold) as well as of multipotent primitive cells (day 12 spleen colony-forming units approximately 7-fold). This early compensatory mechanism was less pronounced in alpha-globin hemizygous mice. The expansion of multipotent primitive and potentially stem cell populations, taken together with ineffective erythropoiesis and increased reticulocyte/RBC destruction could confer major cumulative advantage for gene targeting/bone marrow transplantation. Therefore, this study not only corroborated the strong potential effectiveness of transplantation for thalassemic hematopoietic therapy but also demonstrated the existence of a differential regulatory response for alpha- and beta-thalassemia.
Collapse
Affiliation(s)
- Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculte de Medecine de L'Universite de Montréal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
3
|
Kikyo N, Wolffe AP. Reprogramming nuclei: insights from cloning, nuclear transfer and heterokaryons. J Cell Sci 2000; 113 ( Pt 1):11-20. [PMID: 10591621 DOI: 10.1242/jcs.113.1.11] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mammals and amphibians can be cloned following the transfer of embryonic nuclei into enucleated eggs or oocytes. As nuclear functions become more specialized in the differentiated cells of an adult, successful cloning using these nuclei as donors becomes more difficult. Differentiation involves the assembly of specialized forms of repressive chromatin including linker histones, Polycomb group proteins and methyl-CpG-binding proteins. These structures compartmentalize chromatin into functional domains and maintain the stability of the differentiated state through successive cell divisions. Efficient cloning requires the erasure of these structures. The erasure can be accomplished through use of molecular chaperones and enzymatic activities present in the oocyte, egg or zygote. We discuss the mechanisms involved in reprogramming nuclei after nuclear transfer and compare them with those that occur during remodeling of somatic nuclei after heterokaryon formation. Finally we discuss how one might alter the properties of adult nuclei to improve the efficiency of cloning.
Collapse
Affiliation(s)
- N Kikyo
- Laboratory of Molecular Embryology, Nat'l Inst. of Child Health and Human Development, NIH, Bldg 18T, Rm 106, Bethesda, MD 20892-5431 USA
| | | |
Collapse
|
4
|
Smith ZE, Higgs DR. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression. Hum Mol Genet 1999; 8:1373-86. [PMID: 10400984 DOI: 10.1093/hmg/8.8.1373] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have studied replication throughout 325 kb of the telomeric region of a human chromosome (16p13.3) and related the findings to various aspects of chromosome structure and function (DNA sequence organization, nuclease-hypersensitive sites, nuclear matrix attachment sites, patterns of methylation and gene expression). The GC-rich isochore lying adjacent to the telomere, which contains the alpha-globin locus and many widely expressed genes, replicates early in the cell cycle regardless of the pattern of gene expression. In subtelomeric DNA, replication occurs later in the cell cycle and the most telomeric region (20 kb) is late replicating. Juxtaposition of early replicating DNA next to the telomere causes it to replicate later in S-phase. Analysis of the timing of replication in chromosomes with deletions, or in transgenes containing various segments of this telomeric region, suggests that there are no critical origins or zones that initiate replication, rather the pattern of replication appears to be related to the underlying chromatin structure which may restrict or facilitate access to multiple, redundant origins. These results contrast with the pattern of replication at the human beta-globin locus and this may similarly reflect the different chromosomal environments containing these gene clusters.
Collapse
Affiliation(s)
- Z E Smith
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | | |
Collapse
|
5
|
Abstract
The developmental phenomenon of hemoglobin switching occurs in all classes of vertebrates and is due to differential regulation of divergent globin genes which are arranged in chromosomally clustered families. By fusing erythroid cells of different developmental programs, it has been shown that erythroid nuclei of either early or late developmental stage can be reprogrammed, i.e. the gene switch can be reversed in adult erythroid nuclei and/or prematurely-induced in fetal/embryonic erythroid nuclei. Experiments with heterokaryons demonstrate that the reprogramming is due to trans-acting factors that are developmental-stage-specific. These results suggest the feasibility of using fusisome-carried sets of nuclear factors to reprogram somatic cells.
Collapse
Affiliation(s)
- R H Broyles
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, OK 73190, USA
| |
Collapse
|
6
|
Ni H, Yang XD, Stoeckert CJ. Maturation and developmental stage-related changes in fetal globin gene expression are reproduced in transiently transfected primary adult human erythroblasts. Exp Hematol 1999; 27:46-53. [PMID: 9923443 DOI: 10.1016/s0301-472x(98)00010-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A novel system is described, which uses transfection of primary human erythroblasts for the study of gene regulation in differentiating human red cells. This system includes a protocol for liquid culture of erythroid progenitors, which reproduces developmental differences in globin gene expression found between adult and cord blood as well as the maturation-related changes in fetal globin levels observed in adult cells. Reporter constructs driven by globin gene promoters were electroporated into adult and cord blood-derived erythroblasts at different time points during culture. Both the developmental stage and maturation-related differences in endogenous fetal and adult globin gene expression could be reproduced by the transiently transfected reporter constructs. Transfection of primary human erythroblasts during differentiation provides a previously unavailable opportunity to study dynamic aspects of erythropoiesis.
Collapse
Affiliation(s)
- H Ni
- The Joseph Stokes, Jr. Research Institute, The Children's Hospital of Philadelphia, PA, USA
| | | | | |
Collapse
|
7
|
Zarić J, Lazić D, Glisin V, Stojanović N, Jovcić G, Popović Z. Alpha- and beta-globins of the anemic Belgrade laboratory rat. I. Status of alpha- and beta-globins in bone marrow and spleen. Hemoglobin 1998; 22:217-29. [PMID: 9629497 DOI: 10.3109/03630269809113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study we have demonstrated that the bone marrow of the anemic Belgrade laboratory (b/b) rat, as the primary site of erythropoiesis, has a decreased globin polypeptide synthesis in total protein cell extracts. Therefore, it is the source of red blood cells containing decreased amounts of globin mRNAs and polypeptides. In spite of the fact that the b/b rat shows a splenomegaly, the spleen is not capable of compensating for the anemic state. Spleen erythroid cells are defective in differentiation and contain a decreased share of globin polypeptides in total protein cell extracts compared to the control. Spleen cells are also characterized by a drastic imbalance of alpha- to beta-globin resulting in the beta-globin chains surplus.
Collapse
Affiliation(s)
- J Zarić
- Institute of Molecular Genetics and Genetic Engineering, Belgrade, Yugoslavia
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The vav oncogene is expressed primarily in tissues of hematopoietic origin. While much effort has been focused on determining the role of vav in various signal transduction pathways, little is known about the mechanism by which vav is regulated in a tissue-selective manner. This issue was examined by developing somatic cell hybrids between human U937 cells, which express vav, and mouse Balb/c 3T3 cells, which do not. If vav is primarily regulated by the presence of positive acting transcription factors, then vav expression should be maintained in hybrid cells. In contrast, if the regulation of vav is primarily negative in nature, then vav expression should be extinguished in most of the somatic cell hybrids. Of the hybrid cells that were obtained, 64% were positive by reverse transcriptase-polymerase chain reaction for the expression of the vav oncogene. Differences in the pattern of restriction enzyme cleavage sites between the mouse and human PCR products were used to determine that 6 of 11 of the positive clones expressed the normally dormant mouse gene. The other positive clones were found to express the human vav gene. In all cases, the hybrid cells preferentially retained the chromosomes and the cellular morphological appearance of the mouse Balb/c 3T3 fusion partner, which does not express the vav oncogene. Since vav is able to be transiently expressed by hybrid cells with a predominately mouse phenotype, these results support the hypothesis that vav is regulated primarily by the presence of transactivating factors which stimulate transcription, rather than by a gene silencing mechanism.
Collapse
Affiliation(s)
- D J Denkinger
- Department of Pharmacology, University of Nebraska Medical Center, Omaha 68198-6260, USA
| | | |
Collapse
|
9
|
Abstract
The molecular events which underlie lineage commitment and differentiation in hematopoietic cells are still incompletely understood. Microcell fusion is a versatile technique which has been utilized in characterizing and mapping genes involved in tumor suppression, cell senescence, and certain aspects of differentiation. Microcell fusion has the potential to contribute to the understanding of hematopoietic differentiation; however, application of this technique is limited by the need to use adherent cells as microcell donors, by the need to tag candidate chromosomes with a selectable marker, and by the need for prolonged selection of fused cells prior to characterization of their phenotype. We developed a modified technique of microcell fusion using square wave electroporation, which allows higher efficiency fusion than polyethylene glycol fusion. By using cross-species fusion and species-specific PCR primers, we were able to detect new gene induction events 48 h after microcell fusion. To study erythroid gene expression, we fused microcells from human erythroid K562 cells to murine B-lymphoid SP-2 cells. We found that microcell fusion induced the nonerythroid recipient cells to express alpha-globin mRNA in a dose-dependent manner. They also expressed RNA for beta-globin, GATA-1, and NF-E2. In contrast, there was no expression of heart- or liver-specific genes. We conclude that microcells from erythroid cells contain all the information necessary to induce expression of multiple erythroid genes. Analysis of the components of the microcells responsible for this new gene induction may allow the characterization of cellular factors responsible for erythroid-specific gene expression.
Collapse
Affiliation(s)
- H Kanamori
- Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889-5607, USA
| | | |
Collapse
|
10
|
Baron MH. Transcriptional control of globin gene switching during vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1351:51-72. [PMID: 9116045 DOI: 10.1016/s0167-4781(96)00195-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M H Baron
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Stoeckert CJ, Cheng H. Partial repression of human gamma-globin genes by LCR element HS3 when linked to beta-globin genes and LCR element HS2 in MEL cells. Am J Hematol 1996; 51:220-8. [PMID: 8619403 DOI: 10.1002/(sici)1096-8652(199603)51:3<220::aid-ajh7>3.0.co;2-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clues for overcoming fetal (gamma-) globin gene repression in adult human erythroid cells may come from understanding why repression of isolated gamma-globin genes has not previously been achieved in the adult erythroid environment of mouse erythroleukemia cells (MEL). Repression of human gamma-globin genes has been demonstrated in MEL cells when transferred as part of the entire beta-globin gene cluster packaged in chromatin. Major differences in these approaches are prior packaging into chromatin and the presence of additional sequences, notably from the locus control region (LCR). In this report we focus on the contribution to gamma-globin gene repression that multiple elements of the LCR may have. We first show preferential activation of beta-globin genes over gamma-globin genes in MEL cells when linked to each other and to LCR sequences containing the core elements of DNase I hypersensitive sites 4, 3, and 2. Removal of the HS4 element had no effect, however, removal of the 225 bp HS3 core element resulted in a five-fold increase in gamma-globin gene expression. The enhancer 3' to the A gamma-globin gene also had no apparent effect on gamma-globin gene expression. These results provide first evidence of gamma-globin gene repression involving the core region of HS3 in the presence of the core region of HS2 and a beta-globin gene. A mechanism for repression involving sequestration of the gamma-promoter away from the strong enhancer activity of HS2 is proposed.
Collapse
Affiliation(s)
- C J Stoeckert
- Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, PA 19104-4318, USA
| | | |
Collapse
|
12
|
Lister J, Forrester WC, Baron MH. Inhibition of an erythroid differentiation switch by the helix-loop-helix protein Id1. J Biol Chem 1995; 270:17939-46. [PMID: 7629100 DOI: 10.1074/jbc.270.30.17939] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Id proteins function as negative regulators of basic-helix-loop-helix transcription factors, which play important roles in determination of cell lineage and in tissue-specific differentiation. Down-regulation of Id1 mRNA is associated with dimethyl sulfoxide-induced terminal differentiation of mouse erythroleukemia cells. To examine the significance of Id1 down-regulation in erythroid differentiation, we generated stable mouse erythroleukemia cell lines that constitutively express a "marked" form of the murine Id1 gene. Terminal erythroid differentiation was inhibited in these lines, as indicated by a block in activation of the erythroid-specific genes alpha-globin, beta-globin, and band 3 and continued proliferation in the presence of dimethyl sulfoxide. Interestingly, this block occurred even in the presence of normal levels of the lineage-specific transcription factors GATA-1, NF-E2, and EKLF. Constitutive expression of Id1 did not interfere with DNase I hypersensitivity at site HS2 of the locus control region, expression of the erythropoietin receptor gene, or down-regulation of the endogenous Id1 or c-myc genes. The differentiation block is reversible in these lines and can be rescued by fusion with human erythroleukemia cells. These findings suggest that in vivo, Id1 functions as an antagonist of terminal erythroid differentiation.
Collapse
Affiliation(s)
- J Lister
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138-2020, USA
| | | | | |
Collapse
|
13
|
Abstract
Analysis of de novo gene activation in multinucleated heterokaryons has shown that the differentiated state, although stable, is not irreversible, and can be reprogrammed in the presence of appropriate combinations of trans-acting regulatory molecules. These properties have been exploited to design strategies for identifying novel regulators of cellular differentiation.
Collapse
|