1
|
Tan BJY, Sugata K, Ono M, Satou Y. HTLV-1 persistence and leukemogenesis: A game of hide-and-seek with the host immune system. Front Immunol 2022; 13:991928. [PMID: 36300109 PMCID: PMC9591123 DOI: 10.3389/fimmu.2022.991928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus which mainly infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATL), is primarily transmitted via direct cell-to-cell transmission. This feature generates a wide variety of infected clones in hosts, which are maintained via clonal proliferation, resulting in the persistence and survival of the virus. The maintenance of the pool of infected cells is achieved by sculpting the immunophenotype of infected cells and modulating host immune responses to avoid immune surveillance. Here, we review the processes undertaken by HTLV-1 to modulate and subvert host immune responses which contributes to viral persistence and development of ATL.
Collapse
Affiliation(s)
- Benjy J. Y. Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- *Correspondence: Benjy J. Y. Tan, ; Yorifumi Satou,
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- *Correspondence: Benjy J. Y. Tan, ; Yorifumi Satou,
| |
Collapse
|
2
|
Fu N, Xie F, Sun Z, Wang Q. The OX40/OX40L Axis Regulates T Follicular Helper Cell Differentiation: Implications for Autoimmune Diseases. Front Immunol 2021; 12:670637. [PMID: 34234777 PMCID: PMC8256170 DOI: 10.3389/fimmu.2021.670637] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
T Follicular helper (Tfh) cells, a unique subset of CD4+ T cells, play an essential role in B cell development and the formation of germinal centers (GCs). Tfh differentiation depends on various factors including cytokines, transcription factors and multiple costimulatory molecules. Given that OX40 signaling is critical for costimulating T cell activation and function, its roles in regulating Tfh cells have attracted widespread attention. Recent data have shown that OX40/OX40L signaling can not only promote Tfh cell differentiation and maintain cell survival, but also enhance the helper function of Tfh for B cells. Moreover, upregulated OX40 signaling is related to abnormal Tfh activity that causes autoimmune diseases. This review describes the roles of OX40/OX40L in Tfh biology, including the mechanisms by which OX40 signaling regulates Tfh cell differentiation and functions, and their close relationship with autoimmune diseases.
Collapse
Affiliation(s)
- NanNan Fu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Fang Xie
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - ZhongWen Sun
- Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Qin Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:459-469. [PMID: 33718594 PMCID: PMC7917457 DOI: 10.1016/j.omto.2021.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Oncolytic viruses (OVs) have been shown to induce anti-cancer immunity and enhance cancer immunotherapies, such as immune checkpoint inhibitor therapies. OV therapies can be further improved by arming OVs with immunostimulatory molecules, including various cytokines or chemokines. Here, we have developed a novel adenovirus encoding two immunostimulatory molecules: cluster of differentiation 40 ligand (CD40L) and tumor necrosis factor receptor superfamily member 4 ligand (OX40L). This novel virus, designated VALO-D102, is designed to activate both innate and adaptive immune responses against tumors. CD40L affects the innate side by licensing antigen-presenting cells to drive CD8+ T cell responses, and OX40L increases clonal expansion and survival of CD8+ T cells and formation of a larger pool of memory T cells. VALO-D102 and its murine surrogate VALO-mD901, expressing murine OX40L and CD40L, were used in our previously developed PeptiCRAd cancer vaccine platform. Intratumoral administration of PeptiCRAd significantly increased tumor-specific T cell responses, reduced tumor growth, and induced systemic anti-cancer immunity in two mouse models of melanoma. In addition, PeptiCRAd therapy, in combination with anti-PD-1 immune checkpoint inhibitor therapy, significantly improved tumor growth control as compared to either monotherapy alone.
Collapse
|
4
|
Lei W, Zeng D, Liu G, Zhu Y, Wang J, Wu H, Jiang J, Huang J. Crucial role of OX40/OX40L signaling in a murine model of asthma. Mol Med Rep 2018; 17:4213-4220. [PMID: 29344664 PMCID: PMC5802192 DOI: 10.3892/mmr.2018.8453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to explore the roles of OX40/OX40 ligand (OX40L) signaling and OX40+ T cells in ovalbumin (OVA)-induced mouse asthma model. Asthma was induced by OVA exposure and subsequent co-treatment with OX40L protein, neutralizing anti-OX40L blocking antibody, OX40+ T cells or PBS. The protein expression levels of interleukin (IL)-4, IL-6, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in bronchoalveolar lavage fluid (BALF) were examined using murine cytokine-specific ELISA. Eosinophil accumulation as well as proliferation and apoptosis of T cells in BALF were detected by Cell Counting kit-8 and flow cytometric assays. Expression of the apoptosis-related protein cleaved caspase-3 was examined in OX40+ T cells using western blot assay. Flow cytometric analysis revealed that OVA-treated mice that were co-treated with OX40L or OX40+ T cells exhibited higher eosinophil infiltration compared with control mice treated only with OVA, whereas neutralizing anti-OX40L blocking antibody inhibited eosinophil infiltration. ELISA assays demonstrated that the expression of IL-4, IL-6, IL-13, IL-17, TNF-α and IFN-γ in BALF in OX40L-treated and OX40+ T cell-treated mice was increased compared with expression levels in control mice. Treatment with OX40L protein effectively reduced apoptosis of T cells and the expression of cleaved caspase-3 in T cells. OX40L-treated and OX40+ T cell-treated mice exhibited increased asthma through OX40/OX40L signaling, which probably promoted inflammatory factor expression, eosinophil infiltration and T cell proliferation.
Collapse
Affiliation(s)
- Wei Lei
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Daxiong Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yehan Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiajia Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongya Wu
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Junhong Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
5
|
Bojadzic D, Buchwald P. Toward Small-Molecule Inhibition of Protein-Protein Interactions: General Aspects and Recent Progress in Targeting Costimulatory and Coinhibitory (Immune Checkpoint) Interactions. Curr Top Med Chem 2018; 18:674-699. [PMID: 29848279 PMCID: PMC6067980 DOI: 10.2174/1568026618666180531092503] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Protein-Protein Interactions (PPIs) that are part of the costimulatory and coinhibitory (immune checkpoint) signaling are critical for adequate T cell response and are important therapeutic targets for immunomodulation. Biologics targeting them have already achieved considerable clinical success in the treatment of autoimmune diseases or transplant recipients (e.g., abatacept, belatacept, and belimumab) as well as cancer (e.g., ipilimumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, and avelumab). In view of such progress, there have been only relatively limited efforts toward developing small-molecule PPI inhibitors (SMPPIIs) targeting these cosignaling interactions, possibly because they, as all other PPIs, are difficult to target by small molecules and were not considered druggable. Nevertheless, substantial progress has been achieved during the last decade. SMPPIIs proving the feasibility of such approaches have been identified through various strategies for a number of cosignaling interactions including CD40-CD40L, OX40-OX40L, BAFFR-BAFF, CD80-CD28, and PD-1-PD-L1s. Here, after an overview of the general aspects and challenges of SMPPII-focused drug discovery, we review them briefly together with relevant structural, immune-signaling, physicochemical, and medicinal chemistry aspects. While so far only a few of these SMPPIIs have shown activity in animal models (DRI-C21045 for CD40-D40L, KR33426 for BAFFR-BAFF) or reached clinical development (RhuDex for CD80-CD28, CA-170 for PD-1-PD-L1), there is proof-of-principle evidence for the feasibility of such approaches in immunomodulation. They can result in products that are easier to develop/ manufacture and are less likely to be immunogenic or encounter postmarket safety events than corresponding biologics, and, contrary to them, can even become orally bioavailable.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
6
|
Motai Y, Takahashi M, Takachi T, Higuchi M, Hara T, Mizuguchi M, Aoyagi Y, Terai S, Tanaka Y, Fujii M. Human T-cell leukemia virus type 1 (HTLV-1) Tax1 oncoprotein but not HTLV-2 Tax2 induces the expression of OX40 ligand by interacting with p52/p100 and RelB. Virus Genes 2016; 52:4-13. [PMID: 26739459 DOI: 10.1007/s11262-015-1277-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a causative retrovirus of adult T-cell leukemia and HTLV-1-associated myelopathy. Unlike HTLV-1, the same group of retrovirus HTLV-2 has not been found to be associated with these diseases. HTLV-1 and HTLV-2 encode transforming proteins Tax1 and Tax2, and a few distinct activities of Tax1 from those of Tax2 have been proposed to contribute to the HTLV-1-specific pathogenesis of disease. One significant difference of Tax1 from Tax2 is the activation of transcription factor NF-κB2/p100/p52. We found that Tax1 but not Tax2 induces the expression of OX40 ligand (OX40L) in a human T-cell line. To induce the OX40L expression, Tax1 but not Tax2 was observed to interact with NF-κB2/p100/p52 and RelB and the distinct interaction activity was mediated by the Tax1 amino acid region of 225-232. In addition, Tax1 but not Tax2 or Tax1/225-232 interacted with p65, p50, and c-Rel; however, the interactions were much less than those noted with NF-κB2/p100/p52 and RelB. OX40L is a T-cell costimulatory molecule of the tumor necrosis factor family, and its signal plays a critical role in establishing adaptive immunity by inducing the polarized differentiation of T-cells to cells such as T helper type 2 and T follicular helper cells. Therefore, the present findings suggest that Tax1 might alter the immune response to HTLV-1 and/or differentiation of HTLV-1-infected T-cells via OX40L induction, thereby acting as a factor mediating the distinct phenotypes and pathogenesis of HTLV-1 from that of HTLV-2.
Collapse
Affiliation(s)
- Yosuke Motai
- Divisions of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, 951-8510, Japan.,Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Takahashi
- Divisions of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, 951-8510, Japan
| | - Takayuki Takachi
- Division of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaya Higuchi
- Divisions of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, 951-8510, Japan
| | - Toshifumi Hara
- Divisions of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, 951-8510, Japan
| | - Mariko Mizuguchi
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Aoyagi
- Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuji Terai
- Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahiro Fujii
- Divisions of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata, 951-8510, Japan.
| |
Collapse
|
7
|
Reuter D, Staege MS, Kühnöl CD, Föll J. Immunostimulation by OX40 Ligand Transgenic Ewing Sarcoma Cells. Front Oncol 2015; 5:242. [PMID: 26579494 PMCID: PMC4621427 DOI: 10.3389/fonc.2015.00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022] Open
Abstract
Interleukin-2 (IL-2) transgenic Ewing sarcoma cells can induce tumor specific T and NK cell responses and reduce tumor growth in vivo and in vitro. Nevertheless, the efficiency of this stimulation is not high enough to inhibit tumor growth completely. In addition to recognition of the cognate antigen, optimal T-cell stimulation requires signals from so-called co-stimulatory molecules. Several members of the tumor necrosis factor superfamily have been identified as co-stimulatory molecules that can augment antitumor immune responses. OX40 (CD134) and OX40 ligand (OX40L = CD252; also known as tumor necrosis factor ligand family member 4) is one example of such receptor/ligand pair with co-stimulatory function. In the present investigation, we generated OX40L transgenic Ewing sarcoma cells and tested their immunostimulatory activity in vitro. OX40L transgenic Ewing sarcoma cells showed preserved expression of Ewing sarcoma-associated (anti)gens including lipase member I, cyclin D1 (CCND1), cytochrome P450 family member 26B1 (CYP26B1), and the Ewing sarcoma breakpoint region 1-friend leukemia virus integration 1 (EWSR1-FLI1) oncogene. OX40L-expressing tumor cells showed a trend for enhanced immune stimulation against Ewing sarcoma cells in combination with IL-2 and stimulation of CD137. Our data suggest that inclusion of the OX40/OX40L pathway of co-stimulation might improve immunotherapy strategies for the treatment of Ewing sarcoma.
Collapse
Affiliation(s)
- Dajana Reuter
- University Clinic and Polyclinic for Child and Adolescent Medicine, Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Martin S Staege
- University Clinic and Polyclinic for Child and Adolescent Medicine, Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Caspar D Kühnöl
- University Clinic and Polyclinic for Child and Adolescent Medicine, Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Jürgen Föll
- University Clinic and Polyclinic for Child and Adolescent Medicine, Martin Luther University Halle-Wittenberg , Halle , Germany ; Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
8
|
Tanaka Y, Mizuguchi M, Takahashi Y, Fujii H, Tanaka R, Fukushima T, Tomoyose T, Ansari AA, Nakamura M. Human T-cell leukemia virus type-I Tax induces the expression of CD83 on T cells. Retrovirology 2015; 12:56. [PMID: 26129803 PMCID: PMC4487981 DOI: 10.1186/s12977-015-0185-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/21/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND CD83, a cell surface glycoprotein that is stably expressed on mature dendritic cells, can be transiently induced on other hematopoietic cell lineages upon cell activation. In contrast to the membrane form of CD83, soluble CD83 appears to be immunosuppressive. In an analysis of the phenotype of leukemic CD4(+) T cells from patients with adult T-cell leukemia (ATL), we found that a number of primary CD4(+) T cells became positive for cell surface CD83 after short-term culture, and that most of these CD83(+) CD4(+) T cells were positive for human T-cell leukemia virus type-I (HTLV-I) Tax (Tax1). We hypothesized that Tax1 is involved in the induction of CD83. RESULT We found that CD83 was expressed selectively on Tax1-expressing human CD4(+) T cells in short-term cultured peripheral blood mononuclear cells (PBMCs) isolated from HTLV-I(+) donors, including ATL patients and HTLV-I carriers. HTLV-I-infected T cell lines expressing Tax1 also expressed cell surface CD83 and released soluble CD83. CD83 can be expressed in the JPX-9 cell line by cadmium-mediated Tax1 induction and in Jurkat cells or PBMCs by Tax1 introduction via infection with a recombinant adenovirus carrying the Tax1 gene. The CD83 promoter was activated by Tax1 in an NF-κB-dependent manner. Based on a previous report showing soluble CD83-mediated prostaglandin E2 (PGE2) production from human monocytes in vitro, we tested if PGE2 affected HTLV-I propagation, and found that PGE2 strongly stimulated expression of Tax1 and viral structural molecules. CONCLUSIONS Our results suggest that HTLV-I induces CD83 expression on T cells via Tax1 -mediated NF-κB activation, which may promote HTLV-I infection in vivo.
Collapse
Affiliation(s)
- Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Mariko Mizuguchi
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Yoshiaki Takahashi
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Hideki Fujii
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Reiko Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takeaki Tomoyose
- Division of Endocrinology, Diabetes and Metabolism, Haematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Aftab A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Song Y, Buchwald P. TNF superfamily protein-protein interactions: feasibility of small- molecule modulation. Curr Drug Targets 2015; 16:393-408. [PMID: 25706111 PMCID: PMC4408546 DOI: 10.2174/1389450116666150223115628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) contains about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Almost all of these cell surface protein-protein interactions (PPIs) represent high-value therapeutic targets for inflammatory or immune modulation in autoimmune diseases, transplant recipients, or cancers, and there are several biologics including antibodies and fusion proteins targeting them that are in various phases of clinical development. Small-molecule inhibitors or activators could represent possible alternatives if the difficulties related to the targeting of protein-protein interactions by small molecules can be addressed. Compounds proving the feasibility of such approaches have been identified through different drug discovery approaches for a number of these TNFSFR-TNFSF type PPIs including CD40-CD40L, BAFFR-BAFF, TRAIL-DR5, and OX40-OX40L. Corresponding structural, signaling, and medicinal chemistry aspects are briefly reviewed here. While none of these small-molecule modulators identified so far seems promising enough to be pursued for clinical development, they provide proof-of-principle evidence that these interactions are susceptible to small-molecule modulation and can serve as starting points toward the identification of more potent and selective candidates.
Collapse
Affiliation(s)
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10 Ave (R-134), Miami, FL 33136, USA.
| |
Collapse
|
10
|
Kinnear G, Wood KJ, Fallah-Arani F, Jones ND. A diametric role for OX40 in the response of effector/memory CD4+ T cells and regulatory T cells to alloantigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1465-75. [PMID: 23817421 PMCID: PMC3721124 DOI: 10.4049/jimmunol.1300553] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OX40 is a member of the TNFR superfamily that has potent costimulatory properties. Although the impact of blockade of the OX40-OX40 ligand (OX40L) pathway has been well documented in models of autoimmune disease, its effect on the rejection of allografts is less well defined. In this article, we show that the alloantigen-mediated activation of naive and memory CD4(+) T cells results in the induction of OX40 expression and that blockade of OX40-OX40L interactions prevents skin allograft rejection mediated by either subset of T cells. Moreover, a blocking anti-OX40 had no effect on the activation and proliferation of T cells; rather, effector T cells failed to accumulate in peripheral lymph nodes and subsequently migrate to skin allografts. This was found to be the result of an enhanced degree of cell death among proliferating effector cells. In clear contrast, blockade of OX40-OX40L interactions at the time of exposure to alloantigen enhanced the ability of regulatory T cells to suppress T cell responses to alloantigen by supporting, rather than diminishing, regulatory T cell survival. These data show that OX40-OX40L signaling contributes to the evolution of the adaptive immune response to an allograft via the differential control of alloreactive effector and regulatory T cell survival. Moreover, these data serve to further highlight OX40 and OX40L as therapeutic targets to assist the induction of tolerance to allografts and self-Ags.
Collapse
Affiliation(s)
- Gillian Kinnear
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences (NDS), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU
| | - Kathryn J. Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences (NDS), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU
| | | | | |
Collapse
|
11
|
Cunningham MA, Li Z, Liu B, Yeh S, Nussenblatt RB. OX40 ligand expression abrogates the immunosuppressive function of retinal pigment epithelium. J Ophthalmic Inflamm Infect 2013; 3:12. [PMID: 23514269 PMCID: PMC3605066 DOI: 10.1186/1869-5760-3-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/01/2012] [Indexed: 02/12/2023] Open
Abstract
Background This study aims to investigate the role of OX40 ligand (OX40L) in ocular inflammation via abrogation of retinal pigment epithelium (RPE)-mediated immunosuppression using an in vitro expression approach. OX40L cDNA was polymerase chain reaction-amplified and cloned into an eYFP fusion vector. Cultured retinal pigment epithelial cells (ARPE-19) were transfected with the vector. Total RNA from unstimulated or inflammatory cytokine-stimulated ARPE cells were isolated and analyzed for OX40L expression by reverse transcription-polymerase chain reaction. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy human donors. Human ARPE cells (±OX40L ± GITR ligand (GITRL) expression) and PBMCs were co-cultured for in vitro proliferation studies. Results Polymerase chain reaction confirmed the insertion of the OX40L gene into the fusion vector. Flow cytometry and fluorescence microscopy further confirmed surface expression of OX40L on ARPE cells after transfection. OX40L expression was induced in the RPE cells stimulated with pro-inflammatory cytokines. In the co-culture studies, there was a significant reversal (20% to 30%) of the RPE-induced suppression of activated PBMCs when the ARPE cells were transfected with OX40L. When both OX40L and GITRL were concomitantly transfected into ARPE cells, there was an additive reversal of RPE-mediated T cell suppression, when compared to the reversal caused by RPE cells expressing either OX40L alone or GITRL alone. Conclusions Using an in vitro approach, we found that OX40L causes an abrogation of the RPE-mediated immunosuppression. OX40L appears to be regulated in the ARPE-19 cell line and may play an important role in the pathogenesis of various ocular inflammatory conditions.
Collapse
Affiliation(s)
- Matthew A Cunningham
- Vitreoretinal Service, Department of Ophthalmology and Visual Sciences, The University of Iowa Hospitals & Clinics, Iowa City, IA, 52242, USA.
| | | | | | | | | |
Collapse
|
12
|
Lei W, Zhu CH, Zeng DX, Wang Q, Zhang XQ, Chen YB, Mu CY, Huang JA. SOX40L: An Important Inflammatory Mediator in Adult Bronchial Asthma. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2012. [DOI: 10.47102/annals-acadmedsg.v41n5p200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: The role of soluble OX40 ligand (sOX40L) in adult bronchial asthma is unclear. This study aims to determine the serum concentrations of sOX40L in adult patients with bronchial asthma, and discussed its relationship with pulmonary function. Materials and Methods: We measured the pulmonary function using the spirometer and detected the serum concentrations of sOX40L by enzyme linked immunosorbent assay (ELISA) in 19 healthy persons in the control group, 58 acute asthmatic adult patients who were grouped according to their disease severity: 18 mild grade, 24 moderate grade, 16 severe grade, and 24 persons in a stable asthmatic group. Results: The serum concentrations of sOX40L in asthmatic adult patients (6.80 ± 4.95 ng/L) were distinctly higher than those in the control group (3.98 ± 2.83 ng/L, P <0.05), and they were negatively correlated with pulmonary function indexes (FEV1%, FVC%, FEV1/FVC) (r = –0.754, P <0.01, r = –0.557, P <0.01, r = –0.457, P <0.01, respectively). Moreover, the serum concentrations of sOX40L showed obvious differences among control, mild, moderate, and severe groups (3.98 ± 2.83, 4.87 ± 1.89, 6.97 ± 5.91, 8.71 ± 5.18 ng/L, respectively; P <0.01). The concentrations of sOX40L decreased to the same extent as the control group after therapeutic treatments were provided to the asthmatic adult patients. Conclusion: The concentrations of sOX40L were found to be high in adult asthmatic patients and were associated with the severity of the disease. Therefore, sOX40L could be a potential inflammatory mediator in the pathogenesis of asthma.
Key words: Co-stimulatory, Pulmonary function, ELISA, Soluble OX40 ligand
Collapse
Affiliation(s)
- Wei Lei
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Can Hong Zhu
- Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Da Xiong Zeng
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qin Wang
- Institute of Medical Biotechnology of Soochow University, Suzhou, Jiangsu, China
| | - Xiu Qin Zhang
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Bin Chen
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chuan Yong Mu
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian An Huang
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Cell surface markers in HTLV-1 pathogenesis. Viruses 2011; 3:1439-59. [PMID: 21994790 PMCID: PMC3185802 DOI: 10.3390/v3081439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/25/2011] [Accepted: 08/08/2011] [Indexed: 12/19/2022] Open
Abstract
The phenotype of HTLV-1-transformed CD4+ T lymphocytes largely depends on defined viral effector molecules such as the viral oncoprotein Tax. In this review, we exemplify the expression pattern of characteristic lineage markers, costimulatory receptors and ligands of the tumor necrosis factor superfamily, cytokine receptors, and adhesion molecules on HTLV-1-transformed cells. These molecules may provide survival signals for the transformed cells. Expression of characteristic surface markers might therefore contribute to persistence of HTLV-1-transformed lymphocytes and to the development of HTLV-1-associated disease.
Collapse
|
14
|
Jensen SM, Maston LD, Gough MJ, Ruby CE, Redmond WL, Crittenden M, Li Y, Puri S, Poehlein CH, Morris N, Kovacsovics-Bankowski M, Moudgil T, Twitty C, Walker EB, Hu HM, Urba WJ, Weinberg AD, Curti B, Fox BA. Signaling through OX40 enhances antitumor immunity. Semin Oncol 2010; 37:524-32. [PMID: 21074068 DOI: 10.1053/j.seminoncol.2010.09.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The existence of tumor-specific T cells, as well as their ability to be primed in cancer patients, confirms that the immune response can be deployed to combat cancer. However, there are obstacles that must be overcome to convert the ineffective immune response commonly found in the tumor environment to one that leads to sustained destruction of tumor. Members of the tumor necrosis factor (TNF) superfamily direct diverse immune functions. OX40 and its ligand, OX40L, are key TNF members that augment T-cell expansion, cytokine production, and survival. OX40 signaling also controls regulatory T-cell differentiation and suppressive function. Studies over the past decade have demonstrated that OX40 agonists enhance antitumor immunity in preclinical models using immunogenic tumors; however, treatment of poorly immunogenic tumors has been less successful. Combining strategies that prime tumor-specific T cells together with OX40 signaling could generate and maintain a therapeutic antitumor immune response.
Collapse
Affiliation(s)
- Shawn M Jensen
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|
16
|
Weinberg AD. The role of OX40 (CD134) in T-cell memory generation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:57-68. [PMID: 20795540 PMCID: PMC7123855 DOI: 10.1007/978-1-4419-6451-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Memory T-cell generation is limited by activation-induced cell death during the effector T-cell stage. Cell surface proteins are known to transmit signals that either accentuate or limit T-cell death after activation. This chapter will focus on the TNF-receptor family member OX40, which is expressed on effector T cells and when engaged greatly enhances survival of T cells leading to increased memory T-cell generation. Targeting OX40 in vivo can alter the fate ofT-cell survival. Enhancing OX40 signaling during Ag priming through agonists increases memory T-cell development, while blocking OX40 signaling decreases the memory T-cell pool. These two opposing outcomes provide therapeutic tools for blocking inflammation in autoimmune conditions and enhancing immunity in hosts harboring cancer or chronic pathogens. OX40 agonists and antagonists are in the first stages of human clinical trials and their therapeutic potential will soon be realized.
Collapse
Affiliation(s)
- Andrew D Weinberg
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan Street, 2N35, Portland, Oregon 97213, USA.
| |
Collapse
|
17
|
Abstract
TNFR/TNF superfamily members can control diverse aspects of immune function. Research over the past 10 years has shown that one of the most important and prominent interactions in this family is that between OX40 (CD134) and its partner OX40L (CD252). These molecules strongly regulate conventional CD4 and CD8 T cells, and more recent data are highlighting their ability to modulate NKT cell and NK cell function as well as to mediate cross-talk with professional antigen-presenting cells and diverse cell types such as mast cells, smooth muscle cells, and endothelial cells. Additionally, OX40-OX40L interactions alter the differentiation and activity of regulatory T cells. Blocking OX40L has produced strong therapeutic effects in multiple animal models of autoimmune and inflammatory disease, and, in line with a prospective clinical future, reagents that stimulate OX40 signaling are showing promise as adjuvants for vaccination as well as for treatment of cancer.
Collapse
Affiliation(s)
- Michael Croft
- La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|
18
|
Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology 2009; 6:117. [PMID: 20017952 PMCID: PMC2806368 DOI: 10.1186/1742-4690-6-117] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022] Open
Abstract
While the human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL), to date, its close relative HTLV-2 is not associated with ATL or other types of malignancies. Accumulating evidence shows that HTLV-1 Tax1 and HTLV-2 Tax2 have many shared activities, but the two proteins have a limited number of significantly distinct activities, and these distinctions appear to play key roles in HTLV-1 specific pathogenesis. In this review, we summarize the functions of Tax1 associated with cell survival, cell proliferation, persistent infection as well as pathogenesis. We emphasize special attention to distinctions between Tax1 and Tax2.
Collapse
|
19
|
Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 2009; 229:173-91. [PMID: 19426222 DOI: 10.1111/j.1600-065x.2009.00766.x] [Citation(s) in RCA: 396] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARY OX40 (CD134) and its binding partner, OX40L (CD252), are members of the tumor necrosis factor receptor/tumor necrosis factor superfamily and are expressed on activated CD4(+) and CD8(+) T cells as well as on a number of other lymphoid and non-lymphoid cells. Costimulatory signals from OX40 to a conventional T cell promote division and survival, augmenting the clonal expansion of effector and memory populations as they are being generated to antigen. OX40 additionally suppresses the differentiation and activity of T-regulatory cells, further amplifying this process. OX40 and OX40L also regulate cytokine production from T cells, antigen-presenting cells, natural killer cells, and natural killer T cells, and modulate cytokine receptor signaling. In line with these important modulatory functions, OX40-OX40L interactions have been found to play a central role in the development of multiple inflammatory and autoimmune diseases, making them attractive candidates for intervention in the clinic. Conversely, stimulating OX40 has shown it to be a candidate for therapeutic immunization strategies for cancer and infectious disease. This review provides a broad overview of the biology of OX40 including the intracellular signals from OX40 that impact many aspects of immune function and have promoted OX40 as one of the most prominent costimulatory molecules known to control T cells.
Collapse
Affiliation(s)
- Michael Croft
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
20
|
Serghides L, Vidric M, Watts TH. Approaches to studying costimulation of human antiviral T cell responses: prospects for immunotherapeutic vaccines. Immunol Res 2006; 35:137-50. [PMID: 17003516 DOI: 10.1385/ir:35:1:137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/19/2022]
Abstract
The generation of strong and specific CD8 T cell responses is important in the control of viral infections. Costimulatory molecules provide signals necessary for the development or maintenance of these responses. A major focus of our laboratory is to investigate the role of costimulatory molecules of the TNFR and CD28 families in antiviral responses. Our aim is to translate information obtained using murine models to the study of these molecules using human cells. We have devised an in vitro system using recombinant replication- deficient adenovirus to deliver costimulatory molecules to antigen-presenting cells that are then used to stimulate autologous T cells from both healthy and HIV-infected individuals. Here we describe our findings and discuss the implications of incorporating costimulatory molecules into viral vector vaccine strategies.
Collapse
Affiliation(s)
- Lena Serghides
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
21
|
Abstract
OX40 belongs to the tumor necrosis factor receptor superfamily, and its expression is restricted to activated T-cells. Ligation of OX40 during T-cell-dendritic cell interaction is crucial for clonal expansion of antigen-specific T-cells and generation of T-cell memory. The ligand of OX40 (OX40L) is expressed not only on dendritic cells but also on other cell types, such as B-cells, vascular endothelial cells, natural killer cells, and mast cells. The pathophysiological relevance of this broad distribution needs further investigation. In particular, OX40L on vascular endothelial cells may play a role in inflammatory vasculitis as well as in atherosclerotic change. Recent studies with animal models have indicated the critical involvement of OX40 in the pathogenesis of a variety of immunologic abnormalities of inflammatory, autoimmune, infectious, allergic, and allotransplantation-related diseases. Blockade of OX40-OX40L interaction has been shown to prevent, cure, or ameliorate these diseases. In contrast, activation of OX40 is known to break an existing state of tolerance in malignancies, leading to a reactivation of antitumor immunity. These findings clearly suggest that the OX40/OX40L system is one of the most promising targets of immune intervention for treatment of these diseases.
Collapse
Affiliation(s)
- Toshiyuki Hori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
22
|
Abstract
Adult T-cell leukemia (ATL) is one of the most aggressive hematologic malignancies and is caused by human T-cell leukemia virus type I (HTLV-I). Tax, encoded by the HTLV-I pX region, has been recognized by its pleiotropic actions as a critical accessory protein playing a central role in leukemogenesis. However, fresh ATL cells frequently lose Tax protein expression via several mechanisms, such as genetic and epigenetic changes in the provirus. Furthermore, there is a long latency period before the onset of ATL, indicating the multistep mechanisms of leukemogenesis. Therefore, additional factors, including other viral proteins, genetic and epigenetic changes of the host genome, and alterations in the gene expression and immune systems of the host cells, may be implicated in ATL leukemogenesis. This review summarizes recent advances in the understanding of ATL leukemogenesis.
Collapse
|
23
|
Takahashi Y, Tanaka Y, Yamashita A, Koyanagi Y, Nakamura M, Yamamoto N. OX40 stimulation by gp34/OX40 ligand enhances productive human immunodeficiency virus type 1 infection. J Virol 2001; 75:6748-57. [PMID: 11435553 PMCID: PMC114401 DOI: 10.1128/jvi.75.15.6748-6757.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2000] [Accepted: 04/20/2001] [Indexed: 12/11/2022] Open
Abstract
OX40 is a member of the tumor necrosis factor (TNF) receptor superfamily and known to be an important costimulatory molecule expressed on activated T cells. To investigate the role of costimulation of OX40 in human immunodeficiency virus type 1 (HIV-1) infection by its natural ligand, gp34, the OX40-transfected ACH-2 cell line, ACH-2/OX40, chronically infected with HIV-1, was cocultured with paraformaldehyde (PFA)-fixed gp34-transfected mouse cell line, SV-T2/gp34. The results showed that HIV-1 production was strongly induced. This was followed by apparent apoptosis, and both processes were specifically inhibited by the gp34-specific neutralizing monoclonal antibody 5A8. Endogenous TNF alpha (TNF-alpha) and TNF-beta production were not involved in the enhanced HIV-1 production. Furthermore, enhanced HIV-1 transcription in gp34-stimulated ACH-2/OX40 cells was dependent on the kappa B site of the HIV-1 long terminal repeat, and the OX40-gp34 interaction activated NF-kappa B consisting of p50 and p65 subunits. When primary activated CD4(+) T cells acutely infected with HIV-1(NL4-3) (CXCR4-using T-cell-line-tropic) were cocultured with PFA-fixed gp34(+) human T-cell leukemia virus type 1-bearing MT-2 cells or SV-T2/gp34 cells, HIV-1 production was also markedly enhanced. The enhancement was again significantly inhibited by 5A8. The present study first shows that OX40-gp34 interaction stimulates HIV-1 expression and suggests that OX40 triggering by gp34 may play an important role in enhancing HIV-1 production in both acutely and latently infected CD4(+) T cells in vivo.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Microbiology, School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Takasawa N, Ishii N, Higashimura N, Murata K, Tanaka Y, Nakamura M, Sasaki T, Sugamura K. Expression of gp34 (OX40 ligand) and OX40 on human T cell clones. Jpn J Cancer Res 2001; 92:377-82. [PMID: 11346458 PMCID: PMC5926725 DOI: 10.1111/j.1349-7006.2001.tb01105.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
gp34, which we previously cloned, is a ligand of OX40 (CD134), a costimulatory molecule involved in T cell activation. To elucidate the role of human OX40 / OX40L interaction, we examined the expression of gp34 (OX40L) and OX40 in normal human hematopoietic cells by using flow cytometry. OX40 expression is observed on activated T cells, while OX40L is expressed in antigen-presenting cells. However, cytotoxic T lymphocyte (CTL) clones specific for Epstein-Barr virus (EBV)-transformed autologous lymphoblastic cell lines (LCLs) induced both OX40 and OX40L expression after antigen or T cell receptor (TCR) stimulation. This study suggests a possible function of OX40L / OX40, through T cell-T cell interaction, in the reactivation of memory T cells in an autocrine manner, with implications for the pathogenesis of viral infections and neoplasms.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- CD3 Complex/immunology
- Cell Communication/immunology
- Cell Line, Transformed
- Cell Transformation, Viral
- Cells, Cultured
- Clone Cells
- DNA/biosynthesis
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Herpesvirus 4, Human
- Humans
- Interleukin-2/biosynthesis
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/immunology
- Lymphocytes/immunology
- Membrane Glycoproteins
- OX40 Ligand
- Receptors, Antigen, T-Cell/immunology
- Receptors, OX40
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 7/biosynthesis
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
Collapse
Affiliation(s)
- N Takasawa
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kohno T, Moriuchi R, Katamine S, Yamada Y, Tomonaga M, Matsuyama T. Identification of genes associated with the progression of adult T cell leukemia (ATL). Jpn J Cancer Res 2000; 91:1103-10. [PMID: 11092974 PMCID: PMC5926287 DOI: 10.1111/j.1349-7006.2000.tb00892.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Patients with adult T-cell leukemia/lymphoma (ATL) exhibit a variety of clinical features, and this disease is therefore clinically subclassified into acute, lymphomatous, chronic, and smoldering types. Acute ATL is a typical leukemic form of ATL with rapid progression, and chronic ATL is a less aggressive clinical form allowing long-term survival even without chemotherapy. In the present study, we used fresh peripheral blood mononuclear cells (PBMC) from both types of ATL patients to identify molecules that may contribute to the difference between acute and chronic ATL. Isolated mRNAs expressed differentially between the two types of ATL include a T-cell differentiation antigen (MAL), a lymphoid-specific member of the G-protein-coupled receptor family (EBI-1 / CCR7), a novel human homologue to a subunit (MNLL) of the bovine ubiquinone oxidoreductase complex, and a human fibrinogen-like protein (hpT49). We found that the former three are upregulated in acute ATL and the last is down-regulated in both chronic and acute ATL. We speculate that dysregulation of the genes may account for the malignant features of ATL cells, in terms of growth, energy metabolism, and motility.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cattle
- Cloning, Molecular
- Disease Progression
- Down-Regulation
- Electron Transport Complex I
- Fibrinogen/biosynthesis
- Fibrinogen/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Prolymphocytic, T-Cell/blood
- Leukemia, Prolymphocytic, T-Cell/genetics
- Leukemia, Prolymphocytic, T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/blood
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukocytes, Mononuclear/metabolism
- Membrane Transport Proteins
- Molecular Sequence Data
- Myelin Proteins
- Myelin and Lymphocyte-Associated Proteolipid Proteins
- NADH, NADPH Oxidoreductases/biosynthesis
- NADH, NADPH Oxidoreductases/genetics
- Oligonucleotide Array Sequence Analysis
- Proteolipids/biosynthesis
- Proteolipids/genetics
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Receptors, CCR7
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- T Kohno
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Medicine, Nagasaki 852-8523, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Murata K, Ishii N, Takano H, Miura S, Ndhlovu LC, Nose M, Noda T, Sugamura K. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med 2000; 191:365-74. [PMID: 10637280 PMCID: PMC2195745 DOI: 10.1084/jem.191.2.365] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OX40 expressed on activated T cells is known to be an important costimulatory molecule on T cell activation in vitro. However, the in vivo functional significance of the interaction between OX40 and its ligand, OX40L, is still unclear. To investigate the role of OX40L during in vivo immune responses, we generated OX40L-deficient mice and a blocking anti-OX40L monoclonal antibody, MGP34. OX40L expression was demonstrated on splenic B cells after CD40 and anti-immunoglobulin (Ig)M stimulation, while only CD40 ligation was capable of inducing OX40L on dendritic cells. OX40L-deficient and MGP34-treated mice engendered apparent suppression of the recall reaction of T cells primed with both protein antigens and alloantigens and a significant reduction in keyhole limpet hemocyanin-specific IgG production. The impaired T cell priming was also accompanied by a concomitant reduction of both T helper type 1 (Th1) and Th2 cytokines. Furthermore, antigen-presenting cells (APCs) derived from the mutant mice revealed an impaired intrinsic APC function, demonstrating the importance of OX40L in both the priming and effector phases of T cell activation. Collectively, these results provide convincing evidence that OX40L, expressed on APCs, plays a critical role in antigen-specific T cell responses in vivo.
Collapse
Affiliation(s)
- Kazuko Murata
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Hiroshi Takano
- Department of Cell Biology, Cancer Institute, Toshima-ku, Tokyo 170, Japan
| | - Shigeto Miura
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| | - Lishomwa C. Ndhlovu
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Masato Nose
- Second Department of Pathology, Ehime University School of Medicine, Ehime 791-02, Japan
| | - Tetsuo Noda
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
- Department of Cell Biology, Cancer Institute, Toshima-ku, Tokyo 170, Japan
| | - Kazuo Sugamura
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
| |
Collapse
|
27
|
Matsumura Y, Hori T, Kawamata S, Imura A, Uchiyama T. Intracellular Signaling of gp34, the OX40 Ligand: Induction of c- jun and c- fos mRNA Expression Through gp34 upon Binding of Its Receptor, OX40. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We investigated the intracellular signaling events of OX40 ligand (gp34), a member of the TNF family. To elucidate the intracellular signaling via gp34, we prepared a model system in which a human gp34-transfected mouse epithelial cell line was stimulated with a recombinant soluble form of OX40. We demonstrated that OX40 binding resulted in increase in c-jun and c-fos mRNA levels in this transfectant by Northern blot analysis, which was blocked by the pretreatment with anti-gp34 Ab. The studies with various gp34 deletion mutants showed that the cytoplasmic portion including the amino acid sequence 16–21 (RPRFER) was required for the induction of c-jun and c-fos mRNA expression. Furthermore, OX40 binding induced c-jun mRNA expression also in HUVECs, which in our previous study have been shown to express gp34 and interact with activated T cells through the OX40/gp34 pathway. On the other hand, c-fos mRNA was detectable neither in unstimulated HUVECs nor in gp34-stimulated HUVECs. These results indicate that the OX40/gp34 system generates two-way signals and may elicit biological effects on vascular endothelial cells.
Collapse
Affiliation(s)
- Yumi Matsumura
- *Hematology and Oncology and
- †Dermatology, Graduate School of Medicine, and
| | | | - Shin Kawamata
- ‡Laboratory of Virus Immunology, Research Center for Acquired Immunodeficiency Syndrome, The Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Akihiro Imura
- ‡Laboratory of Virus Immunology, Research Center for Acquired Immunodeficiency Syndrome, The Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
28
|
Akiba H, Oshima H, Takeda K, Atsuta M, Nakano H, Nakajima A, Nohara C, Yagita H, Okumura K. CD28-Independent Costimulation of T Cells by OX40 Ligand and CD70 on Activated B Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
OX40 and its ligand (OX40L) have been implicated in T cell-dependent humoral immune responses. To further characterize the role of OX40/OX40L in T-B cell interaction, we newly generated an anti-mouse OX40L mAb (RM134L) that can inhibit the costimulatory activity of OX40L transfectants for anti-CD3-stimulated T cell proliferation. Flow cytometric analyses using RM134L and an anti-mouse OX40 mAb indicated that OX40 was inducible on splenic T cells by stimulation with immobilized anti-CD3 mAb in a CD28-independent manner, while OX40L was not expressed on resting or activated T cells. OX40L was inducible on splenic B cells by stimulation with anti-IgM Ab plus anti-CD40 mAb, but not by either alone. These activated B cells exhibited a potent costimulatory activity for anti-CD3-stimulated T cell proliferation and IL-2 production. Anti-CD80 and anti-CD86 mAbs partially inhibited the costimulatory activity, and further inhibition was obtained by their combination with RM134L and/or anti-CD70 mAb. We also found the anti-IgM Ab- plus anti-CD40 mAb-stimulated B cells exhibited a potent costimulatory activity for proliferation of and IL-2 production by anti-CD3-stimulated CD28− T cells from CD28-deficient mice, which was substantially inhibited by RM134L and/or anti-CD70 mAb. These results indicated that OX40L and CD70 expressed on surface Ig- and CD40-stimulated B cells can provide CD28-independent costimulatory signals to T cells.
Collapse
Affiliation(s)
- Hisaya Akiba
- *Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
- †CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Tokyo, Japan
| | - Hideo Oshima
- *Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
- ‡Department of Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan; and
| | - Kazuyoshi Takeda
- *Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
- †CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Tokyo, Japan
| | - Machiko Atsuta
- *Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
- †CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Tokyo, Japan
| | - Hiroyasu Nakano
- *Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
- †CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Tokyo, Japan
| | - Atsuo Nakajima
- §Department of Joint Disease and Rheumatism, Nippon Medical School, Tokyo, Japan
| | - Chiyoko Nohara
- *Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideo Yagita
- *Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
- †CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Tokyo, Japan
| | - Ko Okumura
- *Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
- †CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Tokyo, Japan
| |
Collapse
|
29
|
Abstract
The interactions between human T-cell lymphotropic virus type I (HTLV-I) and the cellular immune system can be divided into viral interference with functions of the infected host T cell and the subsequent interactions between the infected T cell and the cellular immune system. HTLV-I-mediated activation of the infected host T cell is induced primarily by the viral protein Tax, which influences transcriptional activation, signal transduction pathways, cell cycle control, and apoptosis. These properties of Tax may well explain the ability of HTLV-I to immortalize T cells. It is not clear, though, how HTLV-I induces T-cell transformation (interleukin-2 [IL-2] independence). Recent evidence suggests that Tax may promote the G1- to S-phase transition, although this may involve additional proteins. A role for other viral proteins that may constitutively activate the IL-2 receptor pathway has also been suggested. By virtue of their activated state, HTLV-I-infected T cells can nonspecifically activate resting, uninfected T cells via virus-mediated upregulation of adhesion molecules. This may favor viral dissemination. Moreover, the induction of a remarkably high frequency of antiviral CD8(+) T cells does not appear to eliminate the infection. Indeed, individuals with a high frequency of virus-specific CD8(+) T cells have a high viral load, indicating a state of chronic immune system stimulation. Thus, while an activated immune system is needed to eradicate the infection, the spread of the HTLV-I is also accelerated under these conditions. A detailed knowledge of the molecular interactions between virus-specific CD8(+) T cells and immunodominant viral epitopes holds promise for the development of specific antiviral therapy.
Collapse
Affiliation(s)
- P Höllsberg
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
30
|
Iwanaga Y, Tsukahara T, Ohashi T, Tanaka Y, Arai M, Nakamura M, Ohtani K, Koya Y, Kannagi M, Yamamoto N, Fujii M. Human T-cell leukemia virus type 1 tax protein abrogates interleukin-2 dependence in a mouse T-cell line. J Virol 1999; 73:1271-7. [PMID: 9882331 PMCID: PMC103950 DOI: 10.1128/jvi.73.2.1271-1277.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia. Tax, the viral protein, is thought to be crucial in the development of the disease, since it transforms healthy T cells in vitro and induces tumors in transgenic animals. We examined the effect of Tax activity on the growth of the interleukin-2 (IL-2)-dependent T-cell line CTLL-2. Stable expression of Tax in CTLL-2 transformed cell growth from being IL-2 dependent to IL-2 independent. Tax stimulated transcription through NF-kappaB and the cyclic AMP-responsive element-like sequence in the HTLV-1 promoter. The finding of Tax mutants segregating these two pathways suggested that the NF-kappaB pathway was essential for IL-2-independent growth of CTLL-2 cells while the CRE pathway was unnecessary. However, both pathways were necessary for another transformation-related activity (colony formation in soft agar) of CTLL-2/Tax. Our results show that Tax has at least two distinct activities on T cells, and suggest that Tax plays a crucial role in IL-2-independent T-cell transformation induced by HTLV-1, in addition to its well-known IL-2-dependent cell transformation.
Collapse
Affiliation(s)
- Y Iwanaga
- Department of Microbiology, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Weinberg AD, Wegmann3 KW, Funatake C, Whitham RH. Blocking OX-40/OX-40 Ligand Interaction In Vitro and In Vivo Leads to Decreased T Cell Function and Amelioration of Experimental Allergic Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The OX-40R is a member of the TNF receptor family and is expressed primarily on activated CD4+ T cells. When the OX-40R is engaged by the OX-40 ligand (OX-40L), a potent costimulatory signal occurs. We have identified a population of CD11b+ cells, isolated from the central nervous system (CNS) of mice with actively induced experimental allergic encephalomyelitis (EAE), that expresses OX-40L. Moreover, the expression of OX-40L was found to be associated with paralytic episodes of EAE and was reduced or absent at disease recovery. These CD11b+ cells also coexpressed B7 and MHC class II. Therefore, to address the relative contributions of OX-40R/OX-40L and CD28/B7 to the costimulation of myelin-specific T cells, blocking studies were performed using soluble OX-40R and/or soluble CTLA-4. CD11b+ cells isolated from the CNS of mice with actively induced EAE were able to present Ag to proteolipid protein 139–151-specific T cell lines in vitro. The addition of soluble OX-40R:Ig to CD11b+ brain microglia/macrophages inhibited T cell proliferation by 50–70%. The addition of CTLA-4:Ig inhibited T cell proliferation by 20–30%, and the combination inhibited T cell proliferation by 95%. In vivo administration of soluble OX-40R at the onset of actively induced or adoptively transferred EAE reduced ongoing signs of disease, and the mice recovered more quickly from acute disease. The data imply that OX-40L, expressed by CNS-derived APC, acts to provide an important costimulatory signal to EAE effector T cells found within the inflammatory lesions. Furthermore, the data suggest that agents designed to inhibit the OX-40L/OX-40R complex may be useful for treating autoimmune disease.
Collapse
Affiliation(s)
- Andrew D. Weinberg
- *Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Medical Center, Portland, OR 97213
| | - Keith W. Wegmann3
- †Department of Neuroimmunology, Veterans Affairs Medical Center, Portland, OR 97201; and
- ‡Department of Neurology, Oregon Health Sciences University, Portland, OR 97201
| | - Castle Funatake
- *Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Medical Center, Portland, OR 97213
| | - Ruth H. Whitham
- †Department of Neuroimmunology, Veterans Affairs Medical Center, Portland, OR 97201; and
- ‡Department of Neurology, Oregon Health Sciences University, Portland, OR 97201
| |
Collapse
|
32
|
Kishi S, Saijyo S, Arai M, Karasawa S, Ueda S, Kannagi M, Iwakura Y, Fujii M, Yonehara S. Resistance to fas-mediated apoptosis of peripheral T cells in human T lymphocyte virus type I (HTLV-I) transgenic mice with autoimmune arthropathy. J Exp Med 1997; 186:57-64. [PMID: 9206997 PMCID: PMC2198961 DOI: 10.1084/jem.186.1.57] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transgenic mice carrying the env-pX region of human T lymphocyte virus type I (HTLV-I) develop autoimmune arthropathy in high incidence. Adopting the approach that Fas-mediated apoptosis has a critical function in the elimination of self-reactive T cells, we examined the involvement of this apoptosis in the induction of autoimmunity in HTLV-I transgenic mice. Splenic T cells derived from the transgenic mice were more resistant to apoptosis induced by anti-Fas mAb than those of the nontransgenic mice, whereas no appreciable difference in apoptosis was detected for thymocytes from either mouse's type. The resistance of transgenic T cells may be due to Tax coded in the pX region, since Tax mediates the inhibition of anti-Fas- induced apoptosis in mature T cell line, Jurkat. Among the transgenic mice, the extent of the resistance to Fas-mediated apoptosis was further enhanced in transgenic T cells with disease. These results suggest that the escape of self-reactive T cells from Fas-mediated apoptosis in the periphery, is critical for the development of autoimmune arthropathy in HTLV-I transgenic mice.
Collapse
Affiliation(s)
- S Kishi
- Pharmaceutical Basic Research Laboratories JT Inc., Yokohama 236, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsumoto K, Shibata H, Fujisawa JI, Inoue H, Hakura A, Tsukahara T, Fujii M. Human T-cell leukemia virus type 1 Tax protein transforms rat fibroblasts via two distinct pathways. J Virol 1997; 71:4445-51. [PMID: 9151835 PMCID: PMC191663 DOI: 10.1128/jvi.71.6.4445-4451.1997] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates the transcription of several cellular genes. This function is thought to play a critical role in the Tax-dependent transformation step in HTLV-1 leukemogenesis. Tax activates transcription via three enhancers: the cyclic AMP response element (CRE)-like sequence, the kappaB element, and the CArG box. Their involvement in the transformation of rat fibroblasts by Tax was examined by colony formation of Rat-1 cells in soft agar and Ras cooperative focus formation of rat embryo fibroblasts (REF). Among Tax mutants, those retaining activity for the CArG box transformed REF like wild-type Tax, while those inactive for the CArG box did not. Thus, the activation of the CArG box pathway is essential for the transformation of REF by Tax. In contrast, activation of the kappaB element correlated with the transformation of Rat-1 by Tax. These results show that Tax transforms rat fibroblasts via two distinct pathways.
Collapse
Affiliation(s)
- K Matsumoto
- Osaka Red Cross Blood Center, Johtoh-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Imura A, Hori T, Imada K, Ishikawa T, Tanaka Y, Maeda M, Imamura S, Uchiyama T. The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med 1996; 183:2185-95. [PMID: 8642328 PMCID: PMC2192546 DOI: 10.1084/jem.183.5.2185] [Citation(s) in RCA: 242] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fresh leukemic cells from patients with adult T cell leukemia (ATL) and some ATL-derived T cell lines show adhesion to human umbilical vein endothelial cells (HUVECs) mainly through E-selectin, but a proportion of this binding remains unaffected by the addition of combinations of antibodies against known adhesion molecules. By immunizing mice with one of such cell lines, we established monoclonal antibodies (mAbs), termed 131 and 315, that recognize a single cell surface antigen (Ag) and inhibit the remaining pathway of the adhesion. These mAbs did not react with normal resting peripheral blood mononuclear cells (PBMC) or most of the cell lines tested except for two other human T cell leukemia virus type I (HTLV-I)-infected T cell lines. After stimulation with phytohemagglutinin (PHA), PBMC expressed Ag 131/315 transiently, indicating that these mAbs define a T cell activation Ag. Western blotting and immunoprecipitation revealed that Ag 131/315 has an apparent molecular mass of 50 kD. Expression cloning was done by transient expression in COS-7 cells and immunological selection to isolate a cDNA clone encoding Ag 131/315. Sequence analysis of the cDNA indicated that it is identical to human OX40, a member of the tumor necrosis factor/nerve growth factor receptor family. We then found that gp34, the ligand of OX40, was expressed on HUVECs and other types of vascular endothelial cells. Furthermore, it was shown that the adhesion of CD4+ cells of PHA-stimulated PBMC to unstimulated HUVECs was considerably inhibited by either 131 or 315. Finally, OX40 transfectants of Kit 225, a human interleukin 2-dependent T cell line, were bound specifically to gp34 transfectants of MMCE, a mouse epithelial cell line, and this binding was blocked by either 315 or 5A8, an anti-gp34 mAb. These results indicate that the OX40/gp34 system directly mediates adhesion of activated T cells or OX40+-transformed T cells to vascular endothelial cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Base Sequence
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/physiology
- Cell Adhesion/immunology
- Cell Line
- Cells, Cultured
- Chlorocebus aethiops
- Cloning, Molecular
- DNA Primers
- Endothelium, Vascular/immunology
- Female
- Flow Cytometry
- Gene Library
- Human T-lymphotropic virus 1/immunology
- Humans
- Leukemia, T-Cell/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Polymerase Chain Reaction
- Receptors, OX40
- Receptors, Tumor Necrosis Factor
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/immunology
- T-Lymphocytes/physiology
- Transfection
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 7/biosynthesis
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
- Umbilical Veins
Collapse
Affiliation(s)
- A Imura
- Laboratory of AIDS Immunology, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Higashimura N, Takasawa N, Tanaka Y, Nakamura M, Sugamura K. Induction of OX40, a receptor of gp34, on T cells by trans-acting transcriptional activator, Tax, of human T-cell leukemia virus type I. Jpn J Cancer Res 1996; 87:227-31. [PMID: 8613423 PMCID: PMC5921092 DOI: 10.1111/j.1349-7006.1996.tb00210.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
gp34, which we had identified as a target molecule of the trans-activation by Tax of human T-cell leukemia virus type I (HTLV-I), has been found to bind OX40, a member of the tumor necrosis factor receptor family, resulting in growth stimulation of activated T cells. We here demonstrate that not only gp34 (OX40L), but also OX40 can be transcriptionally activated by Tax. Three Tax-producing human T-cell lines carrying the HTLV-I genome expressed OX40 on their surfaces. Furthermore, Tax-induced transcriptional activation of OX40 was shown in Tax-inducible JPX-9 cells. These results demonstrate that both OX40 and its ligand (gp34) are constitutively expressed on the surfaces of Tax-expressing T lymphocytes, suggesting that the OX40L/OX40 system contributes to growth stimulation of the virus-infected T cells.
Collapse
MESH Headings
- Cadmium/pharmacology
- Cadmium Chloride
- Chlorides/pharmacology
- Culture Media, Conditioned/pharmacology
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Viral/drug effects
- Gene Products, tax/physiology
- Human T-lymphotropic virus 1/physiology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Membrane Glycoproteins
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- OX40 Ligand
- Receptors, OX40
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Transcriptional Activation
- Tumor Cells, Cultured/drug effects
- Tumor Necrosis Factor Receptor Superfamily, Member 7/biosynthesis
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
Collapse
Affiliation(s)
- N Higashimura
- Department of Microbiology, Tohoku University School of Medicine, Sendai
| | | | | | | | | |
Collapse
|
36
|
Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J Exp Med 1994; 180:757-62. [PMID: 7913952 PMCID: PMC2191595 DOI: 10.1084/jem.180.2.757] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human OX-40 cell surface antigen is a CD4+ T cell activation marker that acts as a costimulatory receptor and is a member of the nerve growth factor receptor/tumor necrosis factor (TNF) receptor family. Using a soluble form of the receptor, the extracellular region fused with human immunoglobulin Fc, we expression cloned the human OX-40 ligand cDNA from a library derived from an activated B lymphoblastoid cell line MSAB. The encoded protein is identified as gp34, a type II transmembrane antigen previously known to be expressed only by human T cell lymphotropic virus 1-infected cells. We describe gp34 as a new member of the TNF family, and find that the recombinant ligand expressed in COS cells costimulates phorbol myristate acetate, phytohemagglutinin, and anti-CD3-induced CD4+ T cell proliferation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Surface/analysis
- Antigens, Surface/chemistry
- Antigens, Surface/immunology
- Base Sequence
- CD4-Positive T-Lymphocytes/immunology
- Cell Line, Transformed
- Cloning, Molecular
- DNA
- Humans
- Ligands
- Lymphocyte Activation
- Membrane Proteins
- Molecular Sequence Data
- Receptors, Fc/immunology
- Receptors, OX40
- Receptors, Tumor Necrosis Factor
- Sequence Homology, Amino Acid
- Solubility
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Tumor Necrosis Factor-alpha/analysis
- Tumor Necrosis Factor-alpha/chemistry
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- W R Godfrey
- Department of Pathology, Stanford University School of Medicine, California 94305
| | | | | | | | | |
Collapse
|