1
|
Chong P, Essoh JN, Arango Isaza RE, Keizer P, Stergiopoulos I, Seidl MF, Guzman M, Sandoval J, Verweij PE, Scalliet G, Sierotzski H, de Lapeyre de Bellaire L, Crous PW, Carlier J, Cros S, Meijer HJG, Peralta EL, Kema GHJ. A world-wide analysis of reduced sensitivity to DMI fungicides in the banana pathogen Pseudocercospora fijiensis. PEST MANAGEMENT SCIENCE 2021; 77:3273-3288. [PMID: 33764651 PMCID: PMC8252799 DOI: 10.1002/ps.6372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pseudocercospora fijiensis is the causal agent of the black leaf streak disease (BLSD) of banana. Bananas are important global export commodities and a major staple food. Their susceptibility to BLSD pushes disease management towards excessive fungicide use, largely relying on multisite inhibitors and sterol demethylation inhibitors (DMIs). These fungicides are ubiquitous in plant disease control, targeting the CYP51 enzyme. We examined sensitivity to DMIs in P. fijiensis field isolates collected from various major banana production zones in Colombia, Costa Rica, Dominican Republic, Ecuador, the Philippines, Guadalupe, Martinique and Cameroon and determined the underlying genetic reasons for the observed phenotypes. RESULTS We observed a continuous range of sensitivity towards the DMI fungicides difenoconazole, epoxiconazole and propiconazole with clear cross-sensitivity. Sequence analyses of PfCYP51 in 266 isolates showed 28 independent amino acid substitutions, nine of which correlated with reduced sensitivity to DMIs. In addition to the mutations, we observed up to six insertions in the Pfcyp51 promoter. Such promoter insertions contain repeated elements with a palindromic core and correlate with the enhanced expression of Pfcyp51 and hence with reduced DMI sensitivity. Wild-type isolates from unsprayed bananas fields did not contain any promoter insertions. CONCLUSION The presented data significantly contribute to understanding of the evolution and global distribution of DMI resistance mechanisms in P. fijiensis field populations and facilitate the prediction of different DMI efficacy. The overall reduced DMI sensitivity calls for the deployment of a wider range of solutions for sustainable control of this major banana disease. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Pablo Chong
- Centro de Investigaciones Biotecnológicas del Ecuador, CIBELaboratorio de FitopatologíaEscuela Superior Politécnica del Litoral, ESPOL.km 30.5 via perimetralGuayaquil090112Ecuador
- Wageningen ResearchWageningen University and ResearchWageningenThe Netherlands
| | - Josué Ngando Essoh
- Unité de Recherches sur les Systèmes de Production Durables (SYSPROD)Laboratoire de PhytopathologieCentre Africain de Recherches sur Bananiers et Plantain, CARBAPDoualaCameroun
- UPR GECOCIRADMontpellierFrance
| | - Rafael E Arango Isaza
- Escuela de BiocienciasUniversidad Nacional de Colombia, Sede Medellín (UNALMED)MedellínColombia
- Corporación para Investigaciones BiológicasUnidad de biotecnología Vegetal (CIB)MedellínColombia
| | - Paul Keizer
- BiometrisWageningen University and ResearchWageningenThe Netherlands
| | | | | | - Mauricio Guzman
- Departamento de FitoprotecciónCorporación Bananera Nacional (CORBANA S.A.)LimónCosta Rica
| | - Jorge Sandoval
- Departamento de FitoprotecciónCorporación Bananera Nacional (CORBANA S.A.)LimónCosta Rica
| | - Paul E Verweij
- Department of Medical MicrobiologyRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
| | - Gabriel Scalliet
- Disease control groupSyngenta Crop Protection AGSteinSwitzerland
| | - Helge Sierotzski
- Disease control groupSyngenta Crop Protection AGSteinSwitzerland
| | | | - Pedro W Crous
- Hugo R. KruytgebouwUtrecht UniversityUtrechtThe Netherlands
- Lab of Evolutionary PhytopahtologyCBS‐KNAW Fungal Biodiversity CenterUtrechtThe Netherlands
| | - Jean Carlier
- UMR BGPICIRADMontpellierFrance
- BGPIMontpellier University, Cirad, Inrae, Montpellier SupAgroMontpellierFrance
| | - Sandrine Cros
- BGPIMontpellier University, Cirad, Inrae, Montpellier SupAgroMontpellierFrance
| | - Harold J G Meijer
- Wageningen ResearchWageningen University and ResearchWageningenThe Netherlands
| | - Esther Lilia Peralta
- Centro de Investigaciones Biotecnológicas del Ecuador, CIBELaboratorio de FitopatologíaEscuela Superior Politécnica del Litoral, ESPOL.km 30.5 via perimetralGuayaquil090112Ecuador
| | - Gert H J Kema
- Wageningen ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of PhytopathologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
2
|
Ergün BG, Demir İ, Özdamar TH, Gasser B, Mattanovich D, Çalık P. Engineered Deregulation of Expression in Yeast with Designed Hybrid-Promoter Architectures in Coordination with Discovered Master Regulator Transcription Factor. ACTA ACUST UNITED AC 2020; 4:e1900172. [PMID: 32293158 DOI: 10.1002/adbi.201900172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/05/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Engineered promoters are key components in the cell-factory design, allowing precise and enhanced expression of genes. Promoters having exceptional strength are attractive candidates for designing metabolic engineering strategies for tailoring de novo production strategies that require directed evolution methods by engineering with de novo synthetic biology tools. Here, the custom-designed AOX1 hybrid-promoter architectures in coordination with targeted transcription factors are shown, transcriptionally rewired the expression over methanol-free substrate-utilization pathway(s) and converted methanol-dependent Pichia pastoris alcohol oxidase 1(AOX1) promoter (PAOX1 ) expression into a non-toxic carbon-source-regulated system. AOX1 promoter variants are engineered by replacing specified cis-regulatory DNA elements with synthetic Adr1, Cat8, and Aca2 cis-acting DNA elements for Mxr1, Cat8, and Aca1 binding, respectively. Applications of the engineered-promoters are validated for eGFP expression and extracellular human serum albumin production. The hybrid-promoter architecture designed with single Cat8 cis-acting DNA element deregulates the expression on ethanol. Compared with PAOX1 on methanol, the expression on ethanol is increased with i) PAOX1/Cat8-L3 (designed with single Cat8 cis-acting element) to 74%, ii) PAOX1/Adr1-L3/Cat8-L3 (designed with single- Cat8 and Adr1 cis-acting elements) to 85%, and for further consolidation of deregulated expression iii) PeAOX1 (designed with triplet- Cat8 and Adr1 cis-acting elements) 1.30-fold, at t = 20 h of batch cultivations.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Department of Chemical Engineering, Biochemical Reaction Engineering Laboratory, Middle East Technical University, Ankara, 06800, Turkey.,Department of Biotechnology, Industrial Biotechnology and Metabolic Engineering Laboratory, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - İrem Demir
- Department of Chemical Engineering, Biochemical Reaction Engineering Laboratory, Middle East Technical University, Ankara, 06800, Turkey.,Department of Biotechnology, Industrial Biotechnology and Metabolic Engineering Laboratory, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Tunçer H Özdamar
- Biochemical Reaction Engineering Laboratory, Chemical Engineering Department, Ankara University, Tandoğan, Ankara, 06100, Turkey
| | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
| | - Pınar Çalık
- Department of Chemical Engineering, Biochemical Reaction Engineering Laboratory, Middle East Technical University, Ankara, 06800, Turkey.,Department of Biotechnology, Industrial Biotechnology and Metabolic Engineering Laboratory, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
3
|
Buttinelli M, Panetta G, Bucci A, Frascaria D, Morea V, Miele AE. Protein Engineering of Multi-Modular Transcription Factor Alcohol Dehydrogenase Repressor 1 (Adr1p), a Tool for Dissecting In Vitro Transcription Activation. Biomolecules 2019; 9:biom9090497. [PMID: 31533362 PMCID: PMC6769490 DOI: 10.3390/biom9090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Studying transcription machinery assembly in vitro is challenging because of long intrinsically disordered regions present within the multi-modular transcription factors. One example is alcohol dehydrogenase repressor 1 (Adr1p) from fermenting yeast, responsible for the metabolic switch from glucose to ethanol. The role of each individual transcription activation domain (TAD) has been previously studied, but their interplay and their roles in enhancing the stability of the protein is not known. In this work, we designed five unique miniAdr1 constructs containing either TADs I-II-III or TAD I and III, connected by linkers of different sizes and compositions. We demonstrated that miniAdr1-BL, containing only PAR-TAD I+III with a basic linker (BL), binds the cognate DNA sequence, located in the promoter of the ADH2 (alcohol dehydrogenase 2) gene, and is necessary to stabilize the heterologous expression. In fact, we found that the sequence of the linker between TAD I and III affected the solubility of free miniAdr1 proteins, as well as the stability of their complexes with DNA. miniAdr1-BL is the stable unit able to recognize ADH2 in vitro, and hence it is a promising tool for future studies on nucleosomal DNA binding and transcription machinery assembly in vitro.
Collapse
Affiliation(s)
- Memmo Buttinelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Gianna Panetta
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ambra Bucci
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Daniele Frascaria
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Veronica Morea
- National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Erica Miele
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS–UCBL-Université de Lyon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
- Correspondence: ; Tel.: +39-06-4991-0556
| |
Collapse
|
4
|
Ergün BG, Gasser B, Mattanovich D, Çalık P. Engineering of
alcohol dehydrogenase 2
hybrid‐promoter architectures in
Pichia pastoris
to enhance recombinant protein expression on ethanol. Biotechnol Bioeng 2019; 116:2674-2686. [DOI: 10.1002/bit.27095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical University Ankara Turkey
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical University Ankara Turkey
| | - Brigitte Gasser
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB) Vienna Austria
| | - Diethard Mattanovich
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB) Vienna Austria
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical University Ankara Turkey
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical University Ankara Turkey
| |
Collapse
|
5
|
Špoljarić D, Ugrina I. Limiting distribution of the number of clumps of palindromes in DNA. COMMUN STAT-THEOR M 2017. [DOI: 10.1080/03610926.2016.1189573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Drago Špoljarić
- Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia
| | - Ivo Ugrina
- Faculty of Science, Department of Mathematics, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island. PLoS One 2016; 11:e0158793. [PMID: 27388898 PMCID: PMC4936726 DOI: 10.1371/journal.pone.0158793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/22/2016] [Indexed: 12/27/2022] Open
Abstract
The regulation model of the Staphylococcus aureus pathogenicity island SaPIbov1 transfer was recently reported. The repressor protein Stl obstructs the expression of SaPI proteins Str and Xis, latter which is responsible for mobilization initiation. Upon Φ11 phage infection of S. aureus. phage dUTPase activates the SaPI transfer via Stl-dUTPase complex formation. Our aim was to predict the binding sites for the Stl repressor within the S. aureus pathogenicity island DNA sequence. We found that Stl was capable to bind to three 23-mer oligonucleotides, two of those constituting sequence segments in the stl-str, while the other corresponding to sequence segment within the str-xis intergenic region. Within these oligonucleotides, mutational analysis revealed that the predicted binding site for the Stl protein exists as a palindromic segment in both intergenic locations. The palindromes are built as 6-mer repeat sequences involved in Stl binding. The 6-mer repeats are separated by a 5 oligonucleotides long, nonspecific sequence. Future examination of the interaction between Stl and its binding sites in vivo will provide a molecular explanation for the mechanisms of gene repression and gene activation exerted simultaneously by the Stl protein in regulating transfer of the SaPIbov1 pathogenicity island in S. aureus.
Collapse
|
7
|
Evolutionary direction of processed pseudogenes. SCIENCE CHINA-LIFE SCIENCES 2016; 59:839-49. [PMID: 27333782 DOI: 10.1007/s11427-016-5074-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/08/2016] [Indexed: 10/21/2022]
Abstract
While some pseudogenes have been reported to play important roles in gene regulation, little is known about the possible relationship between pseudogene functions and evolutionary process of pseudogenes, or about the forces responsible for the pseudogene evolution. In this study, we characterized human processed pseudogenes in terms of evolutionary dynamics. Our results show that pseudogenes tend to evolve toward: lower GC content, strong dinucleotide bias, reduced abundance of transcription factor binding motifs and short palindromes, and decreased ability to form nucleosomes. We explored possible evolutionary forces that shaped the evolution pattern of pseudogenes, and concluded that mutations in pseudogenes are likely determined, at least partially, by neighbor-dependent mutational bias and recombination-associated selection.
Collapse
|
8
|
Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Appl Microbiol Biotechnol 2016; 100:3219-31. [PMID: 26743658 PMCID: PMC4786601 DOI: 10.1007/s00253-015-7266-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the “Custer effect”. Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.
Collapse
Affiliation(s)
| | - Juozas Siurkus
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dorte Joerck-Ramberg
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhihao Ling
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Nerve Zhou
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - James E Blevins
- Consulting statistician, Pinnmöllevägen 48, SE-24755, Dalby, Sweden
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv, 79005, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowizca 4, Rzeszow, 35-601, Poland
| | - Jure Piškur
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Olena P Ishchuk
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden.
| |
Collapse
|
9
|
Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology 2015; 16:599-620. [PMID: 26105157 DOI: 10.1007/s10522-015-9585-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/13/2015] [Indexed: 12/22/2022]
Abstract
Ageing is accompanied by the accumulation of damaged molecules in cells due to the injury produced by external and internal stressors. Among them, reactive oxygen species produced by cell metabolism, inflammation or other enzymatic processes are considered key factors. However, later research has demonstrated that a general mitochondrial dysfunction affecting electron transport chain activity, mitochondrial biogenesis and turnover, apoptosis, etc., seems to be in a central position to explain ageing. This key role is based on several effects from mitochondrial-derived ROS production to the essential maintenance of balanced metabolic activities in old organisms. Several studies have demonstrated caloric restriction, exercise or bioactive compounds mainly found in plants, are able to affect the activity and turnover of mitochondria by increasing biogenesis and mitophagy, especially in postmitotic tissues. Then, it seems that mitochondria are in the centre of metabolic procedures to be modified to lengthen life- or health-span. In this review we show the importance of mitochondria to explain the ageing process in different models or organisms (e.g. yeast, worm, fruitfly and mice). We discuss if the cause of aging is dependent on mitochondrial dysfunction of if the mitochondrial changes observed with age are a consequence of events taking place outside the mitochondrial compartment.
Collapse
|
10
|
Yao W, Li Y, Li B, Luo H, Xu H, Pan Z, Xie Z, Li Q. Epigenetic regulation of bovine spermatogenic cell-specific gene boule. PLoS One 2015; 10:e0128250. [PMID: 26030766 PMCID: PMC4451259 DOI: 10.1371/journal.pone.0128250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Non-primate mammals have two deleted azoospermia (DAZ) family genes, DAZL and Boule; genes in this family encode RNA-binding proteins essential for male fertility in diverse animals. Testicular DAZL transcription is regulated by epigenetic factors such as DNA methylation. However, nothing is known about the epigenetic regulation of Boule. Here, we explored the role of DNA methylation in the regulation of the bovine Boule (bBoule) gene. We found that a long CpG island (CGI) in the bBoule promoter was hypermethylated in the testes of cattle-yak hybrids with low bBoule expression, whereas cattle had relatively low methylation levels (P < 0.01), and there was no difference in the methylation level in the short CGI of the gene body between cattle and cattle-yak hybrids (P > 0.05). We identified a 107 bp proximal core promoter region of bBoule. Intriguingly, the differences in the methylation level between cattle and cattle-yak hybrids were larger in the core promoter than outside the core promoter. An in vitro methylation assay showed that the core promoter activity of bBoule decreased significantly after M.SssI methylase treatment (P < 0.01). We also observed dramatically increased bBoule transcription in bovine mammary epithelial cells (BMECs) after treatment with the methyltransferase inhibitor 5-Aza-dC. Taken together, our results establish that methylation status of the core promoter might be involved in testicular bBoule transcription, and may provide new insight into the epigenetic regulation of DAZ family genes and clinical insights regarding male infertility.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongtao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- * E-mail:
| |
Collapse
|
11
|
Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet 2014; 46:1160-5. [PMID: 25261935 PMCID: PMC4217527 DOI: 10.1038/ng.3101] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/03/2014] [Indexed: 01/05/2023]
Abstract
Cancer primarily develops due to somatic alterations in the genome. Advances in sequencing have enabled large-scale sequencing studies across many tumor types, emphasizing discovery of alterations in protein-coding genes. However, the protein-coding exome comprises less than 2% of the human genome. Here, we analyze complete genome sequences of 863 human tumors from The Cancer Genome Atlas and other sources to systematically identify non-coding regions that are recurrently mutated in cancer. We utilize novel frequency and sequence-based approaches to comprehensively scan the genome for non-coding mutations with potential regulatory impact. We identified recurrent mutations in regulatory elements upstream of PLEKHS1, WDR74, and SDHD, as well as previously identified mutations in the TERT promoter. SDHD promoter mutations are frequent in melanoma and associated with reduced gene expression and poor patient prognosis. The non-protein-coding cancer genome remains widely unexplored and our findings represent a step towards targeting the entire genome for clinical purposes.
Collapse
|
12
|
Zeigler RD, Cohen BA. Discrimination between thermodynamic models of cis-regulation using transcription factor occupancy data. Nucleic Acids Res 2013; 42:2224-34. [PMID: 24288374 PMCID: PMC3936720 DOI: 10.1093/nar/gkt1230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies have identified binding preferences for transcription factors (TFs), but few have yielded predictive models of how combinations of transcription factor binding sites generate specific levels of gene expression. Synthetic promoters have emerged as powerful tools for generating quantitative data to parameterize models of combinatorial cis-regulation. We sought to improve the accuracy of such models by quantifying the occupancy of TFs on synthetic promoters in vivo and incorporating these data into statistical thermodynamic models of cis-regulation. Using chromatin immunoprecipitation-seq, we measured the occupancy of Gcn4 and Cbf1 in synthetic promoter libraries composed of binding sites for Gcn4, Cbf1, Met31/Met32 and Nrg1. We measured the occupancy of these two TFs and the expression levels of all promoters in two growth conditions. Models parameterized using only expression data predicted expression but failed to identify several interactions between TFs. In contrast, models parameterized with occupancy and expression data predicted expression data, and also revealed Gcn4 self-cooperativity and a negative interaction between Gcn4 and Nrg1. Occupancy data also allowed us to distinguish between competing regulatory mechanisms for the factor Gcn4. Our framework for combining occupancy and expression data produces predictive models that better reflect the mechanisms underlying combinatorial cis-regulation of gene expression.
Collapse
Affiliation(s)
- Robert D Zeigler
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, MO 63108, USA
| | | |
Collapse
|
13
|
Compositional bias is a major determinant of the distribution pattern and abundance of palindromes in Drosophila melanogaster. J Mol Evol 2012; 75:130-40. [PMID: 23138634 DOI: 10.1007/s00239-012-9527-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Palindromic sequences are important DNA motifs related to gene regulation, DNA replication and recombination, and thus, investigating the evolutionary forces shaping the distribution pattern and abundance of palindromes in the genome is substantially important. In this article, we analyzed the abundance of palindromes in the genome, and then explored the possible effects of several genomic factors on the palindrome distribution and abundance in Drosophila melanogaster. Our results show that the palindrome abundance in D. melanogaster deviates from random expectation and the uneven distribution of palindromes across the genome is associated with local GC content, recombination rate, and coding exon density. Our data suggest that base composition is the major determinant of the distribution pattern and abundance of palindromes and the correlation between palindrome density and recombination is a side-product of the effect of compositional bias on the palindrome abundance.
Collapse
|
14
|
Lassak T, Schneider E, Bussmann M, Kurtz D, Manak JR, Srikantha T, Soll DR, Ernst JF. Target specificity of the Candida albicans Efg1 regulator. Mol Microbiol 2011; 82:602-18. [PMID: 21923768 DOI: 10.1111/j.1365-2958.2011.07837.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efg1 is a central transcriptional regulator of morphogenesis and metabolism in Candida albicans. In vivo genome-wide ChIP chip and in vitro footprint analyses revealed the Efg1 recognition sequence (EGR-box) TATGCATA in the yeast growth form of this human fungal pathogen. Upstream regions of EFG1 and genes encoding transcriptional regulators of hyphal growth including TCC1, CZF1, TEC1, DEF1 and NRG1 contained EGR- and/or EGR-like boxes. Unexpectedly, after brief hyphal induction the genome-wide Efg1 binding pattern was completely altered and new binding sites of yet unknown specificity had appeared. Hyphal induction abolished Efg1 accumulation on EFG1 and TCC1 promoters and led to rapid decline of both transcripts, although the Efg1 protein persisted in cells. While EFG1 promoter activity in the yeast growth form did not depend on bound Efg1, its downregulation under hyphal induction depended on the presence of Efg1 and the protein kinase A isoform Tpk2. Deletion analyses of the EFG1 upstream region revealed that none of its resident EGR-boxes is uniquely responsible for EFG1 promoter downregulation. These results suggest different binding specificities of Efg1 in yeast growth and in hyphal induction and suggest a brief time window following hyphal induction, in which Efg1 exerts its repressive effect on target promoters.
Collapse
Affiliation(s)
- Theresia Lassak
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in Pichia pastoris. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:460-8. [PMID: 19450714 DOI: 10.1016/j.bbagrm.2009.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 05/01/2009] [Accepted: 05/12/2009] [Indexed: 11/23/2022]
Abstract
Mxr1p (methanol expression regulator 1) functions as a key regulator of methanol metabolism in the methylotrophic yeast Pichia pastoris. In this study, a recombinant Mxr1p protein containing the N-terminal zinc finger DNA binding domain was overexpressed and purified from E. coli cells and its ability to bind to promoter sequences of AOXI encoding alcohol oxidase was examined. In the AOX1 promoter, Mxr1p binds at six different regions. Deletions encompassing these regions result in a significant decrease in AOXI promoter activity in vivo. Based on the analysis of AOXI promoter sequences, a consensus sequence for Mxr1p binding consisting of a core 5' CYCC 3' motif was identified. When the core CYCC sequence is mutated to CYCA, CYCT or CYCM (M = 5-methylcytosine), Mxr1p binding is abolished. Though Mxr1p is the homologue of Saccharomyces cerevisiae Adr1p transcription factor, it does not bind to Adr1p binding site of S. cerevisiae alcohol dehydrogenase promoter (ADH2UAS1). However, two point mutations convert ADH2UAS1 into an Mxr1p binding site. The identification of key DNA elements involved in promoter recognition by Mxr1p is an important step in understanding its function as a master regulator of the methanol utilization pathway in P. pastoris.
Collapse
|
16
|
Jiang L, Zhang B, Wang G, Wang K, Xiao X. Expression, purification and characterization of rat zinc finger protein Mipu1 in Escherichia coli. Mol Cell Biochem 2009; 328:137-44. [PMID: 19337696 DOI: 10.1007/s11010-009-0083-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
The novel gene Mipu1 was recently identified in rat due to its up-regulation in response to myocardial ischemia preconditioning. We previously demonstrated that Mipu1 was a nuclear protein and a transcriptional repressor. In this study, Mipu1 was expressed in E. coli and purified using a recombinant expression system and a purification protocol. Milligram quantities of highly purified Mipu1 were obtained. The purified protein was characterized using western blotting, size exclusion chromatography and EMSA. The Mipu1 protein was also used to generate antiserum in rabbits, which was used to detect the expression of Mipu1 protein under normal and stress conditions, by western blotting.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pathophysiology, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Lisnić B, Svetec IK, Stafa A, Zgaga Z. Size-dependent palindrome-induced intrachromosomal recombination in yeast. DNA Repair (Amst) 2009; 8:383-9. [PMID: 19124276 DOI: 10.1016/j.dnarep.2008.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/15/2008] [Accepted: 11/25/2008] [Indexed: 12/11/2022]
Abstract
Palindromic and quasi-palindromic sequences are important DNA motifs found in various cis-acting genetic elements, but are also known to provoke different types of genetic alterations. The instability of such motifs is clearly size-related and depends on their potential to adopt secondary structures known as hairpins and cruciforms. Here we studied the influence of palindrome size on recombination between two directly repeated copies of the yeast CYC1 gene leading to the loss of the intervening sequence ("pop-out" recombination). We show that palindromes inserted either within one copy or between the two copies of the CYC1 gene become recombinogenic only when they attain a certain critical size and we estimate this critical size to be about 70 bp. With the longest palindrome used in this study (150 bp) we observed a more than 20-fold increase in the pop-out recombination. In the sae2/com1 mutant the palindrome-stimulated recombination was completely abolished. Suppression of palindrome recombinogenicity may be crucial for the maintenance of genetic stability in organisms containing a significant number of large palindromes in their genomes, like humans.
Collapse
Affiliation(s)
- Berislav Lisnić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Laboratory of Biology and Microbial Genetics, Pierottijeva 6, Zagreb, Croatia
| | | | | | | |
Collapse
|
18
|
de Smidt O, du Preez JC, Albertyn J. The alcohol dehydrogenases ofSaccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res 2008; 8:967-78. [DOI: 10.1111/j.1567-1364.2008.00387.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Kacherovsky N, Tachibana C, Amos E, Fox D, Young ET. Promoter binding by the Adr1 transcriptional activator may be regulated by phosphorylation in the DNA-binding region. PLoS One 2008; 3:e3213. [PMID: 18791642 PMCID: PMC2527678 DOI: 10.1371/journal.pone.0003213] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 08/25/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Post-translational modification regulates promoter-binding by Adr1, a Zn-finger transcriptional activator of glucose-regulated genes. Support for this model includes the activation of an Adr1-dependent gene in the absence of Adr1 protein synthesis, and a requirement for the kinase Snf1 for Adr1 DNA-binding. A fusion protein with the Adr1 DNA-binding domain and a heterologous activation domain is glucose-regulated, suggesting that the DNA binding region is the target of regulation. METHODOLOGY/PRINCIPAL FINDINGS Peptide mapping identified serine 98 adjacent to the Zn-fingers as a phosphorylation site. An antibody specific for phosphorylated serine 98 on Adr1 showed that the level of phosphorylated Adr1 relative to the level of total Adr1 decreased with glucose derepression, in a Snf1-dependent manner. Relative phosphorylation decreased in a PHO85 mutant, and this mutant constitutively expressed an Adr1-dependent reporter. Pho85 did not phosphorylate Adr1 in vitro, suggesting that it affects Adr1 indirectly. Mutation of serine 98 to the phosphomimetic amino acid aspartate reduced in vitro DNA-binding of the recombinant Adr1 DNA-binding domain. Mutation to aspartate or alanine affected activation of a reporter by full-length Adr1, and in vivo promoter binding. CONCLUSIONS/SIGNIFICANCE Mutation of Adr1 serine 98 affects in vitro and in vivo DNA binding, and phosphorylation of serine 98 in vivo correlates with glucose availability, suggesting that Adr1 promoter-binding is regulated in part by serine 98 phosphorylation.
Collapse
Affiliation(s)
- Nataly Kacherovsky
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Christine Tachibana
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Emily Amos
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Fox
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Elton T. Young
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
20
|
Trzcinska-Danielewicz J, Ishikawa T, Miciałkiewicz A, Fronk J. Yeast transcription factor Oaf1 forms homodimer and induces some oleate-responsive genes in absence of Pip2. Biochem Biophys Res Commun 2008; 374:763-6. [PMID: 18671944 DOI: 10.1016/j.bbrc.2008.07.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
Genes encoding peroxisomal proteins in the yeast Saccharomyces cereviasiae are induced in the presence of oleate in growth medium. This induction is known to be mediated by the binding of a heterodimer of transcription factors Oaf1 and Pip2 to an upstream activating sequence called ORE (oleate response element). By analyzing expression of nine ORE-containing genes we show that the presence of an ORE sequence is not sufficient to confer oleate inducibility, as three such genes were in fact expressed constitutively. Moreover, some of the oleate-inducible genes undergo activation even in the absence of Pip2. Using coimmunoprecipitation we show that, when Pip2 is missing, Oaf1 may form homodimers which apparently substitute for the Oaf1-Pip2 heterodimer.
Collapse
|
21
|
Abstract
Transcriptional transactivators are important proteins which in addition to controlling the cell regulatory circuitries, can be manipulated for various biotechnological processes. The latter is of great interest for non-conventional yeasts used for industrial purposes. To facilitate the identification of these transactivators, we have reanalyzed the "Génolevures" data (FEBS Lett. 487 (2000); http://cbi.labri.u-bordeaux.fr/Genolevures/) for the presence of zinc finger (Zf) proteins. After analysis of 239 RST ("random sequence tag") sequences, we describe in this paper 161 homologs of the Saccharomyces cerevisiae Zf proteins present in one or several of 13 different hemiascomyceteous yeasts. These partial sequences have been evaluated on different criteria such as percentage of identity of the proteins, synteny, detailed analysis of the Zf motif and flanking regions, and iterative BLASTs. They can be used to fetch the corresponding gene.
Collapse
Affiliation(s)
- Francoise Bussereau
- Institut de Génétique et Microbiologie (CNRS UMR 8621), Bâtiment 400, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
22
|
Schaufler LE, Klevit RE. Mechanism of DNA binding by the ADR1 zinc finger transcription factor as determined by SPR. J Mol Biol 2003; 329:931-9. [PMID: 12798683 DOI: 10.1016/s0022-2836(03)00550-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ADR1 protein recognizes a six base-pair consensus DNA sequence using two zinc fingers and an adjacent accessory motif. Kinetic measurements were performed on the DNA-binding domain of ADR1 using surface plasmon resonance. Binding by ADR1 was characterized to two known native binding sequences from the ADH2 and CTA1 promoter regions, which differ in two of the six consensus positions. In addition, non-specific binding by ADR1 to a random DNA sequence was measured. ADR1 binds the native sites with nanomolar affinities. Remarkably, ADR1 binds non-specific DNA with affinities only approximately tenfold lower than the native sequences. The specific and non-specific binding affinities are conferred mainly by differences in the association phase of DNA binding. The association rate for the complex is strongly influenced by the proximal accessory region, while the dissociation reaction and specificity of binding are controlled by the two zinc fingers. Binding kinetics of two ADR1 mutants was also examined. ADR1 containing an R91K mutation in the accessory region bound with similar affinity to wild-type, but with slightly less sequence specificity. The R91K mutation was observed to increase binding affinity to a suboptimal sequence by decreasing the complex dissociation rate. L146H, a change-of-specificity mutation at the +3 position of the second zinc finger, bound its preferred sequence with a slightly higher affinity than wild-type. The L146H mutant indicates that beneficial protein-DNA contacts provide similar levels of stabilization to the complex, whether they are hydrogen-bonding or van der Waals interactions.
Collapse
Affiliation(s)
- Lawrence E Schaufler
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
23
|
Schüller HJ. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003; 43:139-60. [PMID: 12715202 DOI: 10.1007/s00294-003-0381-8] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 01/20/2003] [Accepted: 01/21/2003] [Indexed: 11/30/2022]
Abstract
Although sugars are clearly the preferred carbon sources of the yeast Saccharomyces cerevisiae, nonfermentable substrates such as ethanol, glycerol, lactate, acetate or oleate can also be used for the generation of energy and cellular biomass. Several regulatory networks of glucose repression (carbon catabolite repression) are involved in the coordinate biosynthesis of enzymes required for the utilization of nonfermentable substrates. Positively and negatively acting complexes of pleiotropic regulatory proteins have been characterized. The Snf1 (Cat1) protein kinase complex, together with its regulatory subunit Snf4 (Cat3) and alternative beta-subunits Sip1, Sip2 or Gal83, plays an outstanding role for the derepression of structural genes which are repressed in the presence of a high glucose concentration. One molecular function of the Snf1 complex is deactivation by phosphorylation of the general glucose repressor Mig1. In addition to regulation of alternative sugar fermentation, Mig1 also influences activators of respiration and gluconeogenesis, although to a lesser extent. Snf1 is also required for conversion of specific regulatory factors into transcriptional activators. This review summarizes regulatory cis-acting elements of structural genes of the nonfermentative metabolism, together with the corresponding DNA-binding proteins (Hap2-5, Rtg1-3, Cat8, Sip4, Adr1, Oaf1, Pip2), and describes the molecular interactions among general regulators and pathway-specific factors. In addition to the influence of the carbon source at the transcriptional level, mechanisms of post-transcriptional control such as glucose-regulated stability of mRNA are also discussed briefly.
Collapse
Affiliation(s)
- Hans-Joachim Schüller
- Institut für Mikrobiologie, Abteilung Genetik und Biochemie, Ernst-Moritz-Arndt-Universität, Jahnstrasse 15a, 17487 Greifswald, Germany.
| |
Collapse
|
24
|
Abstract
A recognition code for protein-DNA interactions would allow for the prediction of binding sites based on protein sequence, and the identification of binding proteins for specific DNA targets. Crystallographic studies of protein-DNA complexes showed that a simple, deterministic recognition code does not exist. Here, we present a probabilistic recognition code (P-code) that assigns energies to all possible base-pair-amino acid interactions for the early growth response factor (EGR) family of zinc-finger transcription factors. The specific energy values are determined by a maximum likelihood method using examples from in vitro randomisation experiments (namely, SELEX and phage display) reported in the literature. The accuracy of the model is tested in several ways, including the ability to predict in vivo binding sites of EGR proteins and other non-EGR zinc-finger proteins, and the correlation between predicted and measured binding affinities of various EGR proteins to several different DNA sites. We also show that this model improves significantly upon the prediction capabilities of previous qualitative and quantitative models. The probabilistic code we develop uses information about the interacting positions between the protein and DNA, but we show that such information is not necessary, although it reduces the number of parameters to be determined. We also employ the assumption that the total binding energy is the sum of the energies of the individual contacts, but we describe how that assumption can be relaxed at the cost of additional parameters.
Collapse
Affiliation(s)
- Panayiotis V Benos
- Department of Genetics, School of Medicine, Washington University, Campus Box 8232, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
25
|
Koerkamp MG, Rep M, Bussemaker HJ, Hardy GPMA, Mul A, Piekarska K, Szigyarto CAK, De Mattos JMT, Tabak HF. Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. Mol Biol Cell 2002; 13:2783-94. [PMID: 12181346 PMCID: PMC117942 DOI: 10.1091/mbc.e02-02-0075] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast cells were grown in glucose-limited chemostat cultures and forced to switch to a new carbon source, the fatty acid oleate. Alterations in gene expression were monitored using DNA microarrays combined with bioinformatics tools, among which was included the recently developed algorithm REDUCE. Immediately after the switch to oleate, a transient and very specific stress response was observed, followed by the up-regulation of genes encoding peroxisomal enzymes required for fatty acid metabolism. The stress response included up-regulation of genes coding for enzymes to keep thioredoxin and glutathione reduced, as well as enzymes required for the detoxification of reactive oxygen species. Among the genes coding for various isoenzymes involved in these processes, only a specific subset was expressed. Not the general stress transcription factors Msn2 and Msn4, but rather the specific factor Yap1p seemed to be the main regulator of the stress response. We ascribe the initiation of the oxidative stress response to a combination of poor redox flux and fatty acid-induced uncoupling of the respiratory chain during the metabolic reprogramming phase.
Collapse
Affiliation(s)
- Marian Groot Koerkamp
- Department of Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Felenbok B, Flipphi M, Nikolaev I. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:149-204. [PMID: 11550794 DOI: 10.1016/s0079-6603(01)69047-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This article reviews our knowledge of the ethanol utilization pathway (alc system) in the hyphal fungus Aspergillus nidulans. We discuss the progress made over the past decade in elucidating the two regulatory circuits controlling ethanol catabolism at the level of transcription, specific induction, and carbon catabolite repression, and show how their interplay modulates the utilization of nutrient carbon sources. The mechanisms featuring in this regulation are presented and their modes of action are discussed: First, AlcR, the transcriptional activator, which demonstrates quite remarkable structural features and an original mode of action; second, the physiological inducer acetaldehyde, whose intracellular accumulation induces the alc genes and thereby a catabolic flux while avoiding intoxification; third, CreA, the transcriptional repressor mediating carbon catabolite repression in A. nidulans, which acts in different ways on the various alc genes; Fourth, the promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA) and the regulatory alcR gene, which exhibit exceptional strength compared to other genes of the respective classes. alc gene expression depends on the number and localization of regulatory cis-acting elements and on the particular interaction between the two regulator proteins, AlcR and CreA, binding to them. All these characteristics make the ethanol regulon a suitable system for induced expression of heterologous protein in filamentous fungi.
Collapse
Affiliation(s)
- B Felenbok
- Institut de Génétique et Microbiologie, Université Paris-Sud, Centre Universitaire d'Orsay, France.
| | | | | |
Collapse
|
27
|
Walther K, Schüller HJ. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2037-2044. [PMID: 11495982 DOI: 10.1099/00221287-147-8-2037] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glucose-repressible alcohol dehydrogenase II, encoded by the ADH2 gene of the yeast Saccharomyces cerevisiae, is transcriptionally controlled by the activator Adr1, binding UAS1 of the control region. However, even in an adr1 null mutant, a substantial level of gene derepression can be detected, arguing for the existence of a further mechanism of activation. Here it is shown that the previously identified UAS2 contains a distantly related variant of the carbon source-responsive element (CSRE) initially found upstream of gluconeogenic genes. In a mutant defective for the CSRE-binding factor Cat8, derepression of an ADH2-lacZ fusion was reduced to about 12% of the wild-type level. Gene expression in a cat8 adr1 double mutant decreased almost to the basal level of the glucose-repressed promoter. CSRE(ADH2) present in a single copy turned out to be a weak UAS element, while a significant synergism of gene activation was found in the presence of at least two copies. Its importance for regulated gene activation was confirmed by site-directed mutagenesis of the CSRE in the natural ADH2 control region. Direct binding of Cat8 to CSRE(ADH2) could be shown by electrophoretic retardation of the corresponding protein/DNA complex in the presence of a specific antibody. In contrast to what was shown previously for CSRE sequence variants, no significant influence of the isofunctional activator Sip4 on CSRE(ADH2) was detected. In conclusion, these results show a derepression of ADH2 by synergistically acting regulators Adr1 (interacting with UAS1) and Cat8, binding to UAS2 (=CSRE(ADH2)).
Collapse
Affiliation(s)
- Kristin Walther
- Institut für Mikrobiologie, Abt. Genetik und Biochemie, Jahnstr. 15a, D-17487 Greifswald, Germany1
| | - Hans-Joachim Schüller
- Institut für Mikrobiologie, Abt. Genetik und Biochemie, Jahnstr. 15a, D-17487 Greifswald, Germany1
| |
Collapse
|
28
|
Worthington MT, Pelo J, Luo RQ. Cloning of random oligonucleotides to create single-insert plasmid libraries. Anal Biochem 2001; 294:169-75. [PMID: 11444813 DOI: 10.1006/abio.2001.5162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Random double-stranded oligonucleotides are useful reagents to identify the optimal binding sites for DNA-binding proteins, such as transcriptional activators. Some applications require ligation of random oligonucleotides to form plasmid-based libraries such as the yeast one-hybrid system, where the activation of a cloned DNA sequence from a library of random DNA-binding sequences activates a reporter gene. Current theories do not account for the low efficiencies of oligonucleotide-based plasmid library construction methods. We developed a technique to clone single oligonucleotides into plasmid vectors with high efficiency that predictably results in only one oligonucleotide insert per colony and used this method to clone a yeast one-hybrid library. This method, either as presented or with modifications, should be suitable for any situation where high-efficiency cloning of single oligonucleotide inserts is desired.
Collapse
Affiliation(s)
- M T Worthington
- The Digestive Health Research Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
29
|
Kamashev DE, Balandina AV, Karpov VL. Tramtrack protein-DNA interactions. A cross-linking study. J Biol Chem 2000; 275:36056-61. [PMID: 10964908 DOI: 10.1074/jbc.m001691200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interaction of the Tramtrack protein from Drosophila melanogaster with DNA was analyzed by a cross-linking method. Tramtrack residues cross-linkable to the partially depurinated DNA were identified by direct sequencing. The N-terminal alpha-amino group of the protein DNA-binding domain was found to be the major product of cross-linking. The location of the N terminus on the DNA was determined by identification of the DNA bases that were cross-linked to the protein alpha-amino group. We conclude that accessory N-terminal peptide preceding the first zinc finger of Tramtrack directly interacts with DNA, both in specific and nonspecific DNA-protein complexes. Our finding explains the role in the protein binding of the DNA bases outside of the direct interaction with the zinc fingers.
Collapse
Affiliation(s)
- D E Kamashev
- Laboratory of Chromatin Structure and Function, W. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 117984 Moscow, Russia.
| | | | | |
Collapse
|
30
|
Manfield IW, Reynolds LA, Gittins J, Kneale GG. The DNA-binding domain of the gene regulatory protein AreA extends beyond the minimal zinc-finger region conserved between GATA proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:325-32. [PMID: 11018257 DOI: 10.1016/s0167-4781(00)00197-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The AreA protein of Aspergillus nidulans regulates the activity of over 100 genes involved in the utilisation of nitrogen, and has a limited region of homology with the vertebrate family of GATA proteins around a zinc finger (Zf) motif. A 66 amino acid (a.a.) residue fragment (Zf(66)) corresponding to the zinc finger, a 91 a.a fragment (Zf(91)) containing an additional 25 a.a. at the C-terminus, and a much larger 728 a.a. sequence (3'EX) corresponding to the 3'exon have been over-expressed as fusion proteins in E. coli and purified. The DNA-protein complexes formed by these proteins have been examined by gel retardation analysis. The 91 a.a. protein forms a discrete shifted species with a GATA-containing DNA fragment with high affinity (K(d)=0.15 nM), whereas the 66 a.a. protein has very low ( approximately microM) affinity for the same sequence. The results show that the region of AreA required for high affinity DNA binding extends beyond the zinc finger motif that is homologous to GATA-1, requiring in addition a region within the 25 a.a. sequence C-terminal to the zinc finger. Using hydroxyl radical and ethylation interference footprinting, the minimal Zinc finger protein (Zf(66)) shows no appreciable interference effects whereas Zf(91) shows much stronger interference effects, identical to those of the larger protein. These effects extend over sequences up to two nucleotides either side of the GATA site, and indicate contacts additional to those observed in the three-dimensional structure of the complex of the minimal zinc-finger protein with DNA. We suggest that these additional contacts are responsible for the enhanced DNA binding affinity of the extended zinc-finger protein Zf(91).
Collapse
Affiliation(s)
- I W Manfield
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, St. Michael's Building, PO1 2DT, Portsmouth, UK
| | | | | | | |
Collapse
|
31
|
Ramil E, Agrimonti C, Shechter E, Gervais M, Guiard B. Regulation of the CYB2 gene expression: transcriptional co-ordination by the Hap1p, Hap2/3/4/5p and Adr1p transcription factors. Mol Microbiol 2000; 37:1116-32. [PMID: 10972830 DOI: 10.1046/j.1365-2958.2000.02065.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the Saccharomyces cerevisiae nuclear gene CYB2 encoding the mitochondrial enzyme L-(+)-lactate-cytochrome c oxidoreductase (EC 1.2.2.3) is subject to several strict metabolic controls at the transcriptional level: repression due to glucose fermentation, derepression by ethanol, induction by lactate and inhibition under anaerobic conditions or in response to deficiency of haem biosynthesis. In this respect, the data obtained from the transcriptional analysis of the CYB2 gene contribute to a better understanding of the control of mitochondrial biogenesis. In this study, we show that Hap1p is the main transcriptional activator involved in the control of CYB2 transcription. We found that Hap1p activity, known to be oxygen dependent, is effected by DNA-protein interaction with two binding sites present in the CYB2 promoter. Control is moreover dependent on carbon sources. This regulation by the carbon substrates is subordinate to the activity of the complex Hap2/3/4/5p, which counteracts the negative effect of the URS1 element. Finally, our results suggest that the Adr1p transcriptional activator is also required in CYB2 transcription control. This work provides new data which allows a better understanding of the molecular mechanisms implicated in the co-regulation at the transcriptional level of the genes encoding proteins involved in various aspects of oxidative metabolism.
Collapse
Affiliation(s)
- E Ramil
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS associé à l'Université Pierre et Marie Curie, 91198 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
32
|
Kunitomo H, Higuchi T, Iino Y, Yamamoto M. A zinc-finger protein, Rst2p, regulates transcription of the fission yeast ste11(+) gene, which encodes a pivotal transcription factor for sexual development. Mol Biol Cell 2000; 11:3205-17. [PMID: 10982411 PMCID: PMC14986 DOI: 10.1091/mbc.11.9.3205] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Schizosaccharomyces pombe ste11 encodes a high-mobility group family transcriptional activator that is pivotal in sexual development. Transcription of ste11 is induced by starvation of nutrients via a decrease of the cAMP-dependent protein kinase (PKA) activity. Here we report the identification of a novel transcription factor, Rst2p, that directly regulates ste11 expression. Cells in which the rst2 gene was disrupted expressed ste11 poorly and were sterile, and this sterility could be suppressed by artificial expression of ste11. Disruption of rst2 suppressed hypermating and hypersporulation in the PKA-null mutant, whereas overexpression of rst2 induced sexual development in the PKA-activated mutant. Cloning analysis indicated that Rst2p was a Cys(2)His(2) zinc-finger protein carrying 567 amino acid residues. Rst2p could bind specifically to a stress response element-like cis element located in the ste11 promoter region, which was important for ste11 expression. Meanwhile, transcription of ste11 was reduced significantly by a defective mutation in itself. An artificial supply of functional Ste11p circumvented this reduction. A complete Ste11p-binding motif (TR box) found in the promoter region was necessary for the full expression of ste11, suggesting that Ste11p is involved in the activation of ste11. We conclude that transcription of ste11 is under autoregulation in addition to control through the PKA-Rst2p pathway.
Collapse
Affiliation(s)
- H Kunitomo
- Department of Biophysics and Biochemistry, Graduate School of Science, Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
33
|
Lee JH, Shimojo M, Chai YG, Hersh LB. Studies on the interaction of REST4 with the cholinergic repressor element-1/neuron restrictive silencer element. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:88-98. [PMID: 11039732 DOI: 10.1016/s0169-328x(00)00129-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
REST4 is a neuron specific truncated form of the transcription factor REST/NRSE derived by alternative splicing. REST4 was previously shown to block the repressor activity of REST/NRSF by forming a hetero-oligomer, Shimojo et al. [Mol. Cell. Biol. 19 (1999) 6788-6795]. A series of deletion mutants have now been used to characterize REST4 in terms of its structure and DNA binding. REST4 was found to be O-glycosylated between between residues 87 and 152. Binding of REST4 to the cholinergic RE-1/NRSE was approximately 1/10 to 1/20 as strong as full length REST/NRSF. DNA binding was enhanced by deletion of the first 86 residues and was found to require all four of the C-terminal zinc fingers as well as a twelve amino acid sequence preceding the first of these zinc fingers. REST4 can form homo-oligomers, however only the monomer was found to bind to DNA. REST4 binds to the 3' sequence of the cholinergic NRSE suggesting an anti-parallel orientation of the protein to the DNA.
Collapse
Affiliation(s)
- J H Lee
- Department of Biochemistry, University of Kentucky, Chandler Medical Center, Lexington 40536-0298, USA
| | | | | | | |
Collapse
|
34
|
Young ET, Sloan J, Miller B, Li N, van Riper K, Dombek KM. Evolution of a glucose-regulated ADH gene in the genus Saccharomyces. Gene 2000; 245:299-309. [PMID: 10717481 DOI: 10.1016/s0378-1119(00)00035-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To determine when a glucose-repressed alcohol dehydrogenase isozyme and its regulatory gene, ADR1, arose during evolution, we surveyed species of the genus Saccharomyces for glucose-repressed ADH isozymes and for ADR1 homologues. Glucose-repressed ADH isozymes were present in all species of Saccharomyces sensu strictu and also in Saccharomyces kluyveri, the most distant member of the Saccharomyces clade. We cloned and characterized ADH promoters from S. bayanus, S. douglasii, and S. kluyveri. The ADH promoters from S. bayanus and S. douglasii had conserved sequences, including upstream regulatory elements, and an extended polydA tract. The expression of a reporter gene driven by the S. bayanus promoter was glucose-repressed and dependent on the major activator of transcription, ADR1, when it was introduced into S. cerevisiae. One S. kluyveri promoter was also glucose-repressed and ADR1-dependent in S. cerevisiae. The other S. kluyveri ADH promoter was expressed constitutively and was ADR1-independent. Although showing little sequence conservation with the S. cerevisiae ADH2 promoter, the glucose-repressed S. kluyveri promoter contains numerous potential binding sites for Adr1. The glucose-repressed ADH from S. kluyveri is a mitochondrial isozyme most closely related to S. cerevisiae ADHIII. ADR1 homologues from S. douglasii and S. paradoxus contain a trinucleotide repeat encoding polyAsn that is lacking in S. cerevisiae and S. bayanus. No ADR1 homologue could be detected in S. kluyveri, suggesting that the potential for Adr1 regulation may have arisen first, before ADR1 evolved.
Collapse
MESH Headings
- Alcohol Dehydrogenase/genetics
- Alcohol Dehydrogenase/metabolism
- Base Sequence
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Evolution, Molecular
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Fungal
- Glucose/physiology
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Lac Operon/genetics
- Mitochondria/enzymology
- Molecular Sequence Data
- Mutagenesis
- Phylogeny
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/genetics
- Regulatory Sequences, Nucleic Acid
- Saccharomyces/enzymology
- Saccharomyces/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- E T Young
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Sloan JS, Dombek KM, Young ET. Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. J Biol Chem 1999; 274:37575-82. [PMID: 10608811 DOI: 10.1074/jbc.274.53.37575] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADR1 encodes a transcriptional activator that regulates genes involved in carbon source utilization in Saccharomyces cerevisiae. ADR1 is itself repressed by glucose, but the significance of this repression for regulating target genes is not known. To test if the reduction in Adr1 levels contributes to glucose repression of ADH2 expression, we generated yeast strains in which the level of Adr1 produced during growth in glucose-containing medium is similar to that present in wild-type cells grown in the absence of glucose. In these Adr1-overproducing strains, ADH2 expression remained tightly repressed, and UAS1, the element in the ADH2 promoter that binds Adr1, was sufficient to maintain glucose repression. Post-translational modification of Adr1 activity is implicated in repression, since ADH2 derepression occurred in the absence of de novo protein synthesis. The N-terminal 172 amino acids of Adr1, containing the DNA binding and nuclear localization domains, fused to the Herpesvirus VP16-encoded transcription activation domain, conferred regulated expression at UAS1. Nuclear localization of an Adr1-GFP fusion protein was not glucose-regulated, suggesting that the DNA binding domain of Adr1 is sufficient to confer regulated expression on target genes. A Gal4-Adr1 fusion protein was unable to confer glucose repression at GAL4-dependent promoters, suggesting that regulation mediated by ADR1 is specific to UAS1.
Collapse
Affiliation(s)
- J S Sloan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|
36
|
Grauslund M, Lopes JM, Rønnow B. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion. Nucleic Acids Res 1999; 27:4391-8. [PMID: 10536147 PMCID: PMC148721 DOI: 10.1093/nar/27.22.4391] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Saccharomyces cerevisiae glycerol utilization is mediated by two enzymes, glycerol kinase (Gut1p) and mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p). The carbon source regulation of GUT1 was studied using promoter-reporter gene fusions. The promoter activity was lowest during growth on glucose and highest on the non-fermentable carbon sources, glycerol, ethanol, lactate, acetate and oleic acid. Mutational analysis of the GUT1 promoter region showed that two upstream activation sequences, UAS(INO) and UAS(ADR1), are responsible for approximately 90% of the expression during growth on glycerol. UAS(ADR1) is a presumed binding site for the zinc finger transcription factor Adr1p and UAS(INO) is a presumed binding site for the basic helix-loop-helix transcription factors Ino2p and Ino4p. In vitro experiments showed Adr1 and Ino2/Ino4 protein-dependent binding to UAS(ADR1) and UAS(INO). The negative regulator Opi1p mediates repression of the GUT1 promoter, whereas the effects of the glucose repressors Mig1p and Mig2p are minor. Together, the experiments show that GUT1 is carbon source regulated by different activation and repression systems.
Collapse
Affiliation(s)
- M Grauslund
- Danisco Biotechnology, Danisco A/S, Langebrogade 1, DK-1001 Copenhagen K, Denmark
| | | | | |
Collapse
|
37
|
Young ET, Saario J, Kacherovsky N, Chao A, Sloan JS, Dombek KM. Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. J Biol Chem 1998; 273:32080-7. [PMID: 9822683 DOI: 10.1074/jbc.273.48.32080] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional activator Adr1p controls expression of the glucose-repressible alcohol dehydrogenase gene (ADH2), genes involved in glycerol metabolism, and genes required for peroxisome biogenesis and function. Previous data suggested that promoter-specific activation domains might contribute to expression of the different types of ADR1-dependent genes. By using gene fusions encoding the Gal4p DNA binding domain and portions of Adr1p, we identified a single, strong acidic activation domain spanning amino acids 420-462 of Adr1p. Both acidic and hydrophobic amino acids within this activation domain were important for its function. The critical hydrophobic residues are in a motif previously identified in p53 and related acidic activators. A mini-Adr1 protein consisting of the DNA binding domain of Adr1p fused to this 42-residue activation domain carried out all of the known functions of wild-type ADR1. It conferred stringent glucose repression on the ADH2 locus and on UAS1-containing reporter genes. The putative inhibitory region of Adr1p encompassing the protein kinase A phosphorylation site at Ser-230 is thus not essential for glucose repression mediated by ADR1. Mini-ADR1 allowed efficient derepression of gene expression. In addition it complemented an ADR1-null allele for growth on glycerol and oleate media, indicating efficient activation of genes required for glycerol metabolism and peroxisome biogenesis. Thus, a single activation domain can activate all ADR1-dependent promoters.
Collapse
Affiliation(s)
- E T Young
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Hyre DE, Klevit RE. A disorder-to-order transition coupled to DNA binding in the essential zinc-finger DNA-binding domain of yeast ADR1. J Mol Biol 1998; 279:929-43. [PMID: 9642072 DOI: 10.1006/jmbi.1998.1811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The motional dynamics and solvent-exchange behavior of free and DNA-bound forms of the minimal zinc-finger DNA-binding domain of the yeast transcription factor ADR1 (ADR1-DBD) are investigated using NMR. The parameters measured include the 1H-15N heteronuclear NOE, 15N and 1H T1 relaxation rates, 15N T2 relaxation rates, and solvent-exchange rates. The spin relaxation parameters, spectral density maps, and solvent-exchange behavior show that, exclusive of the N and C termini, three distinct regions of free ADR1-DBD exhibit different motions on multiple timescales. The N-terminal proximal, or accessory, region appears to be unstructured and highly flexible: it exhibits large amplitude motions on a picosecond timescale, little or no protection from solvent exchange, and random-coil proton chemical shifts. The two zinc fingers tumble anisotropically as folded domains, with the tumbling of the individual fingers being only partly correlated to each other, and are modestly protected from solvent exchange except near the tips of the fingers and in the linker joining them. Free ADR1-DBD exhibits exchange broadening around P97 in the proximal region, at the tip of finger 1, and throughout finger 2. Upon binding, most of the proximal region and both zinc fingers tumble as a single domain and exhibit significantly reduced picosecond timescale motions. This region becomes more protected from solvent exchange. The bound portion of the proximal region is proposed to lie exposed on the surface of the DNA. Exchange broadening remains around P97 but also becomes evident for residues in direct contact with the DNA and in the linker. We conclude that the region of ADR1-DBD essential for high-affinity binding undergoes a disorder-to-order transition upon binding to its cognate DNA and, together with the zinc fingers, forms a cohesive molecular complex with the nucleic acid.
Collapse
Affiliation(s)
- D E Hyre
- Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, WA, 98195-7742, USA
| | | |
Collapse
|
39
|
Xu H, Li Y, Mao Z, Li Y, Wu Z, Qu L, An C, Ming X, Schiemann J, Casper R, Chen Z. Rice dwarf phytoreovirus segment S11 encodes a nucleic acid binding protein. Virology 1998; 240:267-72. [PMID: 9454700 DOI: 10.1006/viro.1997.8945] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The function of rice dwarf virus segment 11 and the corresponding segments of other phytoreoviruses is not yet determined. The amino acid sequence of Pns11, encoded by segment 11, contains a putative zinc finger and five flanking basic regions at the C-terminus. The full-length Pns11 protein and three truncated derivatives, which lack the N-terminus, the zinc-finger or the C-terminal five basic regions were expressed in Escherichia coli and their nucleic acid binding properties were studied. Pns11 interacts with single- and double-stranded forms of DNA and RNA in a sequence-nonspecific manner. The truncated derivative which contains both the zinc-finger and the C-terminal basic regions has the same binding properties as the full-length Pns11. However, removal of either of these domains prevents binding activity. The binding activity of Pns11 was drastically reduced when the blots were treated with a high concentration of EDTA. Moreover, Pns11 extracted from infected rice also binds to single-stranded RNA. These data suggest that RDV Pns11 binding activity is structure-dependent and it may play an important role in virus replication and/or genome assortment.
Collapse
Affiliation(s)
- H Xu
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schmiedeskamp M, Rajagopal P, Klevit RE. NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1. Protein Sci 1997; 6:1835-48. [PMID: 9300483 PMCID: PMC2143792 DOI: 10.1002/pro.5560060904] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutagenesis studies have revealed that the minimal DNA-binding domain of the yeast transcription factor ADR1 consists of two Cys2-His2 zinc fingers plus an additional 20 residues proximal and N-terminal to the fingers. We have assigned NMR 1H, 15N, and 13C chemical shifts for the entire minimal DNA-binding domain of ADR1 both free and bound to specific DNA. 1H chemical shift values suggest little structural difference between the zinc fingers in this construct and in single-finger constructs, and 13C alpha chemical shift index analysis indicates little change in finger structure upon DNA binding. 1H chemical shift perturbations upon DNA binding are observed, however, and these are mapped to define the protein-DNA interface. The two zinc fingers appear to bind DNA with different orientations, as the entire helix of finger 1 is perturbed, while only the extreme N-terminus of the finger 2 helix is affected. Furthermore, residues N-terminal to the first finger undergo large chemical shift changes upon DNA binding suggesting a role at the protein-DNA interface. A striking correspondence is observed between the protein-DNA interface mapped by chemical shift changes and that previously mapped by mutagenesis.
Collapse
Affiliation(s)
- M Schmiedeskamp
- Biomolecular Structure Center, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
41
|
Pereira GG, Hollenberg CP. Conserved regulation of the Hansenula polymorpha MOX promoter in Saccharomyces cerevisiae reveals insights in the transcriptional activation by Adr1p. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:181-91. [PMID: 8665936 DOI: 10.1111/j.1432-1033.1996.0181q.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Hansenula polymorpha MOX gene encodes a peroxisomal enzyme that catalyzes the first step of the highly specialized methanol metabolism. MOX is strongly transcribed in cells growing in methanol and completely repressed in glucose. We show here that the MOX promoter confers a glucose-repressible expression upon a lacZ reporter gene in Saccharomyces cerevisiae, an unrelated yeast species that lacks the methanol metabolism. Repression was mediated by a 200-bp region of the MOX promoter, termed MOX-B, and was counteracted by Adr1p, a transcription factor involved in the derepression of S. cerevisiae genes encoding peroxisomal proteins, the class to which MOX belongs. Binding of Adr1p to MOX-B was demonstrated by gel retardation and DNaseI-footprinting, and Adr1p was shown to interact with a DNA region containing only a half of the putative Adr1p consensus binding site. Our findings suggest that Adr1p is a conserved regulator for genes encoding peroxisomal proteins at least in other yeast species, and that its interaction with the DNA is dependent on the promoter context.
Collapse
Affiliation(s)
- G G Pereira
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
42
|
Brazas RM, Bhoite LT, Murphy MD, Yu Y, Chen Y, Neklason DW, Stillman DJ. Determining the requirements for cooperative DNA binding by Swi5p and Pho2p (Grf10p/Bas2p) at the HO promoter. J Biol Chem 1995; 270:29151-61. [PMID: 7493941 DOI: 10.1074/jbc.270.49.29151] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
SW15 encodes a zinc finger DNA binding protein required for the transcription of the Saccharomyces cerevisiae HO gene, and PHO2 encodes a homeodomain DNA binding protein. In vitro biochemical studies using purified Swi5p and Pho2p proteins have demonstrated that Swi5p and Pho2p bind cooperatively to the HO promoter. In this report we investigate the regions of the Swi5p and Pho2p proteins required for cooperative DNA binding. The analysis of each protein gives a similar result: the zinc finger or homeodomain DNA binding domains are each sufficient for in vitro DNA binding, but additional regions of each protein are required for cooperative DNA binding. In vitro and in vivo experiments were conducted with promoters with altered spacing between the Pho2p and Swi5p binding sites. Mutations that increased the distance between the two binding sites had minimal effects on either in vitro cooperative DNA binding or in vivo upstream activating sequence activity. These observations suggest that the interaction domains of Swi5p and Pho2p are flexible and can tolerate an increase in distance between the two binding sites. The mechanism of the cooperative DNA binding by Swi5p and Pho2p is discussed.
Collapse
Affiliation(s)
- R M Brazas
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City 84132, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
44
|
Simon MM, Pavlik P, Hartig A, Binder M, Ruis H, Cook WJ, Denis CL, Schanz B. A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:289-96. [PMID: 7500953 DOI: 10.1007/bf00290529] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Saccharomyces cerevisiae transcriptional activator ADR1, which controls ADH2 gene expression, was shown to be involved in the regulation of peroxisome proliferation. To study the mode of action of ADR1, we compared strains carrying the adr1-1 mutation, high or low copy numbers of the ADR1 gene, the constitutive allele ADR1-5c, and 3'-deletions of ADR1. High ADR1 gene dosage increased the transcription of genes encoding peroxisomal proteins as compared to one copy of the ADR1 gene. Furthermore, overexpression of ADR1 under ethanol growth conditions induced the proliferation of peroxisomal structures. The organelles were observed to be localized in clusters, a typical feature of peroxisomes induced by oleic acid. In contrast, the ADR1-5c allele, which induces ADH2 expression to a level comparable to that of high ADR1 gene dosage was found to have only a small effect. An analysis of functional domains of the ADR1 protein revealed that the N-terminal 220 amino acids of ADR1 were sufficient for wild-type levels of transcription of the FOX2, FOX3, and PAS1 genes, but the entire ADR1 protein was required for complete induction of the CTA1 gene and for growth oleic acid medium. Our data suggest that a functional domain of the ADR1 protein localized between residues 643 and 1323 is required for the induction of peroxisomal structures and for the utilization of oleic acid.
Collapse
Affiliation(s)
- M M Simon
- Zentrum für Angewandte Genetik, BOKU Wien/Austria
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Taylor WE, Suruki HK, Lin AH, Naraghi-Arani P, Igarashi RY, Younessian M, Katkus P, Vo NV. Designing zinc-finger ADR1 mutants with altered specificity of DNA binding to T in UAS1 sequences. Biochemistry 1995; 34:3222-30. [PMID: 7880816 DOI: 10.1021/bi00010a011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Yeast ADR1 contains two Cys2,His2 zinc fingers needed for DNA binding to the upstream activation sequence UAS1, with bases T5T6G7-G8A9G10 in the ADH2 promoter. Potential DNA-contacting amino acid residues at -1, +3, and +6 in the alpha-helical domains of ADR1's fingers one and two include RHR-RLR; however, the latter finger two residues Leu146 and Arg149 had not proved to be crucial for ADR1 binding, even though Leu146-T6 and Arg149-T5 interactions with UAS1 DNA were predicted. We altered Leu146 or Arg149 by PCR cassette mutagenesis, to study ADR1 mutant binding to 16 UAS1 variants of thymine bases T5 and T6. Mutation of Leu146 to His, making finger two (RLR) like finger one (RHR), decreased binding to wild type UAS1 having T6, but enhanced its binding strength to sequences having purines G6 or A6, similar to binding seen between finger one's His118 and base A9 of UAS1. Mutating Leu146 to Lys caused this finger two RKR mutant to bind strongly to both G6 and T6, possibly by lysine's amine H-bonding to the carbonyl of guanine or thymine. Specificity of ADR1 for UAS1 with T6 may thus be due to hydrophobic interaction between Leu146 and the T6 methyl group. ADR1 mutants with either His or Lys in the central +3 residue (146) of zinc finger two, which have Arg149 in the +6 alpha-helical position, bind with UAS1 mutant sequences having G5 very strongly, T5 strongly, A5 intermediately, and C5 weakly.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W E Taylor
- Department of Chemistry and Biochemistry, California State University, Fullerton 92634
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bernstein BE, Hoffman RC, Klevit RE. Sequence-specific DNA recognition by Cys2, His2 zinc fingers. Ann N Y Acad Sci 1994; 726:92-102; discussion 102-4. [PMID: 8092710 DOI: 10.1111/j.1749-6632.1994.tb52800.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- B E Bernstein
- Department to Biochemistry, University of Washington, Seattle 98195
| | | | | |
Collapse
|
47
|
Bernstein BE, Hoffman RC, Horvath S, Herriott JR, Klevit RE. Structure of a histidine-X4-histidine zinc finger domain: insights into ADR1-UAS1 protein-DNA recognition. Biochemistry 1994; 33:4460-70. [PMID: 8161501 DOI: 10.1021/bi00181a005] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The solution structure for a mutant zinc finger peptide based on the sequence of the C-terminal ADR1 finger has been determined by two-dimensional NMR spectroscopy. The mutant peptide, called PAPA, has both proline residues from the wild-type sequence replaced with alanines. A nonessential cysteine was also replaced with alanine. The behavior of PAPA in solution implicates the prolines in the conformational heterogeneity reported earlier for the wild-type peptide [Xu, R. X., Horvath, S. J., & Klevit, R. E. (1991) Biochemistry 30, 3365-3371]. The solution structure of PAPA reveals several interesting features of the zinc finger motif. The residue immediately following the second cysteine ligand adopts a positive phi angle, which we propose is a common feature of this class of zinc fingers, regardless of whether this residue is a glycine. The NMR spectrum and resulting solution structure of PAPA suggest that a side-chain to side-chain hydrogen bond involving an arginine and an aspartic acid analogous to one observed in the Zif268 protein-DNA cocrystal structure exists in solution in the absence of DNA [Pavletich, N. P., & Pabo, C. O. (1991) Science 252, 809-817]. A model for the interaction between the two ADR1 zinc fingers and their DNA binding sites was built by superpositioning the refined solution structures of PAPA and ADR1b onto the Zif268 structure. This model offers structural explanations for a variety of mutations to the ADR1 zinc finger domains that have been shown to affect DNA-binding affinity or specificity.
Collapse
Affiliation(s)
- B E Bernstein
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
48
|
Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37118-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Pavlik P, Simon M, Schuster T, Ruis H. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr Genet 1993; 24:21-5. [PMID: 8358828 DOI: 10.1007/bf00324660] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The GUT1 gene of Saccharomyces cerevisiae, encoding glycerol kinase, was cloned and sequenced. The cloned genomic DNA fragment contains an open reading frame potentially coding for a protein of 709 amino acids with homology to bacterial glycerol kinases (40.8% identity over 502 amino acids, and 42.1% identity over 496 amino acids, in comparison to the smaller E. coli and B. subtilis enzymes). Disruption of GUT1 showed that the gene is required for growth on glycerol, but not on glucose or ethanol media. No glycerol kinase activity was detected in the disruption mutant. According to enzyme activity and transcript analysis, synthesis of glycerol kinase is repressed by glucose, and derepression is ADR1-dependent.
Collapse
Affiliation(s)
- P Pavlik
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien, Austria
| | | | | | | |
Collapse
|
50
|
Neuhaus D, Nakaseko Y, Schwabe JW, Klug A. Solution structures of two zinc-finger domains from SWI5 obtained using two-dimensional 1H nuclear magnetic resonance spectroscopy. A zinc-finger structure with a third strand of beta-sheet. J Mol Biol 1992; 228:637-51. [PMID: 1453468 DOI: 10.1016/0022-2836(92)90846-c] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper describes the detailed three-dimensional structures of two zinc-finger domains from the yeast transcription factor SWI5, calculated using the results of the n.m.r. experiments described in the accompanying paper. The structure of finger 2 is essentially similar to those previously obtained by others for isolated, synthetic single zinc-finger domains in solution, and for the three zinc-finger peptide Zif268 in its crystalline complex with DNA. The N-terminal half of the sequence forms a two-stranded, irregular beta-sheet containing both of the metal-binding cysteine residues, while the remainder of the structure forms a helix. Approximately the first half of this helix is alpha-helical, whereas the C-terminal portion, including the two metal-binding histidine residues, is 3(10) helical. Four invariant hydrophobic residues form a core to the structure. In contrast to all previously described structures of zinc-finger domains, finger 1 has an additional strand in the beta-sheet, formed by residues N-terminal to the formal start of the finger motif. This additional strand plays a role in stabilising the folded form of finger 1, since a two-finger peptide lacking the N-terminal residues showed folded structure in finger 2 but not in finger 1.
Collapse
Affiliation(s)
- D Neuhaus
- MRC Laboratory of Molecular Biology, Cambridge, England
| | | | | | | |
Collapse
|