1
|
Shrivastava M, Kouyoumdjian GS, Kirbizakis E, Ruiz D, Henry M, Vincent AT, Sellam A, Whiteway M. The Adr1 transcription factor directs regulation of the ergosterol pathway and azole resistance in Candida albicans. mBio 2023; 14:e0180723. [PMID: 37791798 PMCID: PMC10653825 DOI: 10.1128/mbio.01807-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Research often relies on well-studied orthologs within related species, with researchers using a well-studied gene or protein to allow prediction of the function of the ortholog. In the opportunistic pathogen Candida albicans, orthologs are usually compared with Saccharomyces cerevisiae, and this approach has been very fruitful. Many transcription factors (TFs) do similar jobs in the two species, but many do not, and typically changes in function are driven not by modifications in the structures of the TFs themselves but in the connections between the transcription factors and their regulated genes. This strategy of changing TF function has been termed transcription factor rewiring. In this study, we specifically looked for rewired transcription factors, or Candida-specific TFs, that might play a role in drug resistance. We investigated 30 transcription factors that were potentially rewired or were specific to the Candida clade. We found that the Adr1 transcription factor conferred resistance to drugs like fluconazole, amphotericin B, and terbinafine when activated. Adr1 is known for fatty acid and glycerol utilization in Saccharomyces, but our study reveals that it has been rewired and is connected to ergosterol biosynthesis in Candida albicans.
Collapse
Affiliation(s)
- Manjari Shrivastava
- Department of Biology, Concordia University, Montréal, Quebec, Canada
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | | | | | - Daniel Ruiz
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| | - Manon Henry
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Antony T. Vincent
- Department of Animal Sciences, Université Laval, Quebec City, Canada
| | - Adnane Sellam
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
2
|
Buttinelli M, Panetta G, Bucci A, Frascaria D, Morea V, Miele AE. Protein Engineering of Multi-Modular Transcription Factor Alcohol Dehydrogenase Repressor 1 (Adr1p), a Tool for Dissecting In Vitro Transcription Activation. Biomolecules 2019; 9:biom9090497. [PMID: 31533362 PMCID: PMC6769490 DOI: 10.3390/biom9090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Studying transcription machinery assembly in vitro is challenging because of long intrinsically disordered regions present within the multi-modular transcription factors. One example is alcohol dehydrogenase repressor 1 (Adr1p) from fermenting yeast, responsible for the metabolic switch from glucose to ethanol. The role of each individual transcription activation domain (TAD) has been previously studied, but their interplay and their roles in enhancing the stability of the protein is not known. In this work, we designed five unique miniAdr1 constructs containing either TADs I-II-III or TAD I and III, connected by linkers of different sizes and compositions. We demonstrated that miniAdr1-BL, containing only PAR-TAD I+III with a basic linker (BL), binds the cognate DNA sequence, located in the promoter of the ADH2 (alcohol dehydrogenase 2) gene, and is necessary to stabilize the heterologous expression. In fact, we found that the sequence of the linker between TAD I and III affected the solubility of free miniAdr1 proteins, as well as the stability of their complexes with DNA. miniAdr1-BL is the stable unit able to recognize ADH2 in vitro, and hence it is a promising tool for future studies on nucleosomal DNA binding and transcription machinery assembly in vitro.
Collapse
Affiliation(s)
- Memmo Buttinelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Gianna Panetta
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ambra Bucci
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Daniele Frascaria
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Veronica Morea
- National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Erica Miele
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS–UCBL-Université de Lyon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
- Correspondence: ; Tel.: +39-06-4991-0556
| |
Collapse
|
3
|
In Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island. PLoS One 2016; 11:e0158793. [PMID: 27388898 PMCID: PMC4936726 DOI: 10.1371/journal.pone.0158793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/22/2016] [Indexed: 12/27/2022] Open
Abstract
The regulation model of the Staphylococcus aureus pathogenicity island SaPIbov1 transfer was recently reported. The repressor protein Stl obstructs the expression of SaPI proteins Str and Xis, latter which is responsible for mobilization initiation. Upon Φ11 phage infection of S. aureus. phage dUTPase activates the SaPI transfer via Stl-dUTPase complex formation. Our aim was to predict the binding sites for the Stl repressor within the S. aureus pathogenicity island DNA sequence. We found that Stl was capable to bind to three 23-mer oligonucleotides, two of those constituting sequence segments in the stl-str, while the other corresponding to sequence segment within the str-xis intergenic region. Within these oligonucleotides, mutational analysis revealed that the predicted binding site for the Stl protein exists as a palindromic segment in both intergenic locations. The palindromes are built as 6-mer repeat sequences involved in Stl binding. The 6-mer repeats are separated by a 5 oligonucleotides long, nonspecific sequence. Future examination of the interaction between Stl and its binding sites in vivo will provide a molecular explanation for the mechanisms of gene repression and gene activation exerted simultaneously by the Stl protein in regulating transfer of the SaPIbov1 pathogenicity island in S. aureus.
Collapse
|
4
|
Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Appl Microbiol Biotechnol 2016; 100:3219-31. [PMID: 26743658 PMCID: PMC4786601 DOI: 10.1007/s00253-015-7266-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the “Custer effect”. Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.
Collapse
Affiliation(s)
| | - Juozas Siurkus
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dorte Joerck-Ramberg
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhihao Ling
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Nerve Zhou
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - James E Blevins
- Consulting statistician, Pinnmöllevägen 48, SE-24755, Dalby, Sweden
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv, 79005, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowizca 4, Rzeszow, 35-601, Poland
| | - Jure Piškur
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Olena P Ishchuk
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden.
| |
Collapse
|
5
|
Yao W, Li Y, Li B, Luo H, Xu H, Pan Z, Xie Z, Li Q. Epigenetic regulation of bovine spermatogenic cell-specific gene boule. PLoS One 2015; 10:e0128250. [PMID: 26030766 PMCID: PMC4451259 DOI: 10.1371/journal.pone.0128250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Non-primate mammals have two deleted azoospermia (DAZ) family genes, DAZL and Boule; genes in this family encode RNA-binding proteins essential for male fertility in diverse animals. Testicular DAZL transcription is regulated by epigenetic factors such as DNA methylation. However, nothing is known about the epigenetic regulation of Boule. Here, we explored the role of DNA methylation in the regulation of the bovine Boule (bBoule) gene. We found that a long CpG island (CGI) in the bBoule promoter was hypermethylated in the testes of cattle-yak hybrids with low bBoule expression, whereas cattle had relatively low methylation levels (P < 0.01), and there was no difference in the methylation level in the short CGI of the gene body between cattle and cattle-yak hybrids (P > 0.05). We identified a 107 bp proximal core promoter region of bBoule. Intriguingly, the differences in the methylation level between cattle and cattle-yak hybrids were larger in the core promoter than outside the core promoter. An in vitro methylation assay showed that the core promoter activity of bBoule decreased significantly after M.SssI methylase treatment (P < 0.01). We also observed dramatically increased bBoule transcription in bovine mammary epithelial cells (BMECs) after treatment with the methyltransferase inhibitor 5-Aza-dC. Taken together, our results establish that methylation status of the core promoter might be involved in testicular bBoule transcription, and may provide new insight into the epigenetic regulation of DAZ family genes and clinical insights regarding male infertility.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongtao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- * E-mail:
| |
Collapse
|
6
|
Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet 2014; 46:1160-5. [PMID: 25261935 PMCID: PMC4217527 DOI: 10.1038/ng.3101] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/03/2014] [Indexed: 01/05/2023]
Abstract
Cancer primarily develops due to somatic alterations in the genome. Advances in sequencing have enabled large-scale sequencing studies across many tumor types, emphasizing discovery of alterations in protein-coding genes. However, the protein-coding exome comprises less than 2% of the human genome. Here, we analyze complete genome sequences of 863 human tumors from The Cancer Genome Atlas and other sources to systematically identify non-coding regions that are recurrently mutated in cancer. We utilize novel frequency and sequence-based approaches to comprehensively scan the genome for non-coding mutations with potential regulatory impact. We identified recurrent mutations in regulatory elements upstream of PLEKHS1, WDR74, and SDHD, as well as previously identified mutations in the TERT promoter. SDHD promoter mutations are frequent in melanoma and associated with reduced gene expression and poor patient prognosis. The non-protein-coding cancer genome remains widely unexplored and our findings represent a step towards targeting the entire genome for clinical purposes.
Collapse
|
7
|
Zeigler RD, Cohen BA. Discrimination between thermodynamic models of cis-regulation using transcription factor occupancy data. Nucleic Acids Res 2013; 42:2224-34. [PMID: 24288374 PMCID: PMC3936720 DOI: 10.1093/nar/gkt1230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies have identified binding preferences for transcription factors (TFs), but few have yielded predictive models of how combinations of transcription factor binding sites generate specific levels of gene expression. Synthetic promoters have emerged as powerful tools for generating quantitative data to parameterize models of combinatorial cis-regulation. We sought to improve the accuracy of such models by quantifying the occupancy of TFs on synthetic promoters in vivo and incorporating these data into statistical thermodynamic models of cis-regulation. Using chromatin immunoprecipitation-seq, we measured the occupancy of Gcn4 and Cbf1 in synthetic promoter libraries composed of binding sites for Gcn4, Cbf1, Met31/Met32 and Nrg1. We measured the occupancy of these two TFs and the expression levels of all promoters in two growth conditions. Models parameterized using only expression data predicted expression but failed to identify several interactions between TFs. In contrast, models parameterized with occupancy and expression data predicted expression data, and also revealed Gcn4 self-cooperativity and a negative interaction between Gcn4 and Nrg1. Occupancy data also allowed us to distinguish between competing regulatory mechanisms for the factor Gcn4. Our framework for combining occupancy and expression data produces predictive models that better reflect the mechanisms underlying combinatorial cis-regulation of gene expression.
Collapse
Affiliation(s)
- Robert D Zeigler
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, MO 63108, USA
| | | |
Collapse
|
8
|
Compositional bias is a major determinant of the distribution pattern and abundance of palindromes in Drosophila melanogaster. J Mol Evol 2012; 75:130-40. [PMID: 23138634 DOI: 10.1007/s00239-012-9527-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Palindromic sequences are important DNA motifs related to gene regulation, DNA replication and recombination, and thus, investigating the evolutionary forces shaping the distribution pattern and abundance of palindromes in the genome is substantially important. In this article, we analyzed the abundance of palindromes in the genome, and then explored the possible effects of several genomic factors on the palindrome distribution and abundance in Drosophila melanogaster. Our results show that the palindrome abundance in D. melanogaster deviates from random expectation and the uneven distribution of palindromes across the genome is associated with local GC content, recombination rate, and coding exon density. Our data suggest that base composition is the major determinant of the distribution pattern and abundance of palindromes and the correlation between palindrome density and recombination is a side-product of the effect of compositional bias on the palindrome abundance.
Collapse
|
9
|
Parua PK, Ratnakumar S, Braun KA, Dombek KM, Arms E, Ryan PM, Young ET. 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol Cell Biol 2010; 30:5273-83. [PMID: 20855531 PMCID: PMC2976377 DOI: 10.1128/mcb.00715-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/10/2010] [Accepted: 09/02/2010] [Indexed: 11/20/2022] Open
Abstract
14-3-3 proteins, known as Bmh in yeast, are ubiquitous, highly conserved proteins that function as adaptors in signal transduction pathways by binding to phosphorylated proteins to activate, inactivate, or sequester their substrates. Bmh proteins have an important role in glucose repression by binding to Reg1, the regulatory subunit of Glc7, a protein phosphatase that inactivates the AMP-activated protein kinase Snf1. We describe here another role for Bmh in glucose repression. We show that Bmh binds to the Snf1-dependent transcription factor Adr1 and inhibits its transcriptional activity. Bmh binds within the regulatory domain of Adr1 between amino acids 215 and 260, the location of mutant ADR1(c) alleles that deregulate Adr1 activity. This provides the first explanation for the phenotype resulting from these mutations. Bmh inhibits Gal4-Adr1 fusion protein activity by binding to the Ser230 region and blocking the function of a nearby cryptic activating region. ADR1(c) alleles, or the inactivation of Bmh, relieve the inhibition and Snf1 dependence of this activating region, indicating that the phosphorylation of Ser230 and Bmh are important for the inactivation of Gal4-Adr1. The Bmh binding domain is conserved in orthologs of Adr1, suggesting that it acquired an important biological function before the whole-genome duplication of the ancestor of S. cerevisiae.
Collapse
Affiliation(s)
- P. K. Parua
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - S. Ratnakumar
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - K. A. Braun
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - K. M. Dombek
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - E. Arms
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - P. M. Ryan
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - E. T. Young
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| |
Collapse
|
10
|
Jiang L, Zhang B, Wang G, Wang K, Xiao X. Expression, purification and characterization of rat zinc finger protein Mipu1 in Escherichia coli. Mol Cell Biochem 2009; 328:137-44. [PMID: 19337696 DOI: 10.1007/s11010-009-0083-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
The novel gene Mipu1 was recently identified in rat due to its up-regulation in response to myocardial ischemia preconditioning. We previously demonstrated that Mipu1 was a nuclear protein and a transcriptional repressor. In this study, Mipu1 was expressed in E. coli and purified using a recombinant expression system and a purification protocol. Milligram quantities of highly purified Mipu1 were obtained. The purified protein was characterized using western blotting, size exclusion chromatography and EMSA. The Mipu1 protein was also used to generate antiserum in rabbits, which was used to detect the expression of Mipu1 protein under normal and stress conditions, by western blotting.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pathophysiology, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Kacherovsky N, Tachibana C, Amos E, Fox D, Young ET. Promoter binding by the Adr1 transcriptional activator may be regulated by phosphorylation in the DNA-binding region. PLoS One 2008; 3:e3213. [PMID: 18791642 PMCID: PMC2527678 DOI: 10.1371/journal.pone.0003213] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 08/25/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Post-translational modification regulates promoter-binding by Adr1, a Zn-finger transcriptional activator of glucose-regulated genes. Support for this model includes the activation of an Adr1-dependent gene in the absence of Adr1 protein synthesis, and a requirement for the kinase Snf1 for Adr1 DNA-binding. A fusion protein with the Adr1 DNA-binding domain and a heterologous activation domain is glucose-regulated, suggesting that the DNA binding region is the target of regulation. METHODOLOGY/PRINCIPAL FINDINGS Peptide mapping identified serine 98 adjacent to the Zn-fingers as a phosphorylation site. An antibody specific for phosphorylated serine 98 on Adr1 showed that the level of phosphorylated Adr1 relative to the level of total Adr1 decreased with glucose derepression, in a Snf1-dependent manner. Relative phosphorylation decreased in a PHO85 mutant, and this mutant constitutively expressed an Adr1-dependent reporter. Pho85 did not phosphorylate Adr1 in vitro, suggesting that it affects Adr1 indirectly. Mutation of serine 98 to the phosphomimetic amino acid aspartate reduced in vitro DNA-binding of the recombinant Adr1 DNA-binding domain. Mutation to aspartate or alanine affected activation of a reporter by full-length Adr1, and in vivo promoter binding. CONCLUSIONS/SIGNIFICANCE Mutation of Adr1 serine 98 affects in vitro and in vivo DNA binding, and phosphorylation of serine 98 in vivo correlates with glucose availability, suggesting that Adr1 promoter-binding is regulated in part by serine 98 phosphorylation.
Collapse
Affiliation(s)
- Nataly Kacherovsky
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Christine Tachibana
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Emily Amos
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Fox
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Elton T. Young
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
12
|
Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S, Cregg JM. Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol 2006; 26:883-97. [PMID: 16428444 PMCID: PMC1347016 DOI: 10.1128/mcb.26.3.883-897.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/26/2005] [Accepted: 10/24/2005] [Indexed: 11/20/2022] Open
Abstract
Growth of the yeast Pichia pastoris on methanol induces the expression of genes whose products are required for its metabolism. Three of the methanol pathway enzymes are located in an organelle called the peroxisome. As a result, both methanol pathway enzymes and proteins involved in peroxisome biogenesis (PEX proteins) are induced in response to this substrate. The most highly regulated of these genes is AOX1, which encodes alcohol oxidase, the first enzyme of the methanol pathway, and a peroxisomal enzyme. To elucidate the molecular mechanisms responsible for methanol regulation, we identify genes required for the expression of AOX1. Mutations in one gene, named MXR1 (methanol expression regulator 1), result in strains that are unable to (i) grow on the peroxisomal substrates methanol and oleic acid, (ii) induce the transcription of AOX1 and other methanol pathway and PEX genes, and (iii) form normal-appearing peroxisomes in response to methanol. MXR1 encodes a large protein with a zinc finger DNA-binding domain near its N terminus that has similarity to Saccharomyces cerevisiae Adr1p. In addition, Mxr1p is localized to the nucleus in cells grown on methanol or other gluconeogenic substrates. Finally, Mxr1p specifically binds to sequences upstream of AOX1. We conclude that Mxr1p is a transcription factor that is necessary for the activation of many genes in response to methanol. We propose that MXR1 is the P. pastoris homologue of S. cerevisiae ADR1 but that it has gained new functions and lost others through evolution as a result of changes in the spectrum of genes that it controls.
Collapse
Affiliation(s)
- Geoffrey Paul Lin-Cereghino
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, 2000 N.W. Walker Road, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schüller HJ. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003; 43:139-60. [PMID: 12715202 DOI: 10.1007/s00294-003-0381-8] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 01/20/2003] [Accepted: 01/21/2003] [Indexed: 11/30/2022]
Abstract
Although sugars are clearly the preferred carbon sources of the yeast Saccharomyces cerevisiae, nonfermentable substrates such as ethanol, glycerol, lactate, acetate or oleate can also be used for the generation of energy and cellular biomass. Several regulatory networks of glucose repression (carbon catabolite repression) are involved in the coordinate biosynthesis of enzymes required for the utilization of nonfermentable substrates. Positively and negatively acting complexes of pleiotropic regulatory proteins have been characterized. The Snf1 (Cat1) protein kinase complex, together with its regulatory subunit Snf4 (Cat3) and alternative beta-subunits Sip1, Sip2 or Gal83, plays an outstanding role for the derepression of structural genes which are repressed in the presence of a high glucose concentration. One molecular function of the Snf1 complex is deactivation by phosphorylation of the general glucose repressor Mig1. In addition to regulation of alternative sugar fermentation, Mig1 also influences activators of respiration and gluconeogenesis, although to a lesser extent. Snf1 is also required for conversion of specific regulatory factors into transcriptional activators. This review summarizes regulatory cis-acting elements of structural genes of the nonfermentative metabolism, together with the corresponding DNA-binding proteins (Hap2-5, Rtg1-3, Cat8, Sip4, Adr1, Oaf1, Pip2), and describes the molecular interactions among general regulators and pathway-specific factors. In addition to the influence of the carbon source at the transcriptional level, mechanisms of post-transcriptional control such as glucose-regulated stability of mRNA are also discussed briefly.
Collapse
Affiliation(s)
- Hans-Joachim Schüller
- Institut für Mikrobiologie, Abteilung Genetik und Biochemie, Ernst-Moritz-Arndt-Universität, Jahnstrasse 15a, 17487 Greifswald, Germany.
| |
Collapse
|
14
|
Koerkamp MG, Rep M, Bussemaker HJ, Hardy GPMA, Mul A, Piekarska K, Szigyarto CAK, De Mattos JMT, Tabak HF. Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. Mol Biol Cell 2002; 13:2783-94. [PMID: 12181346 PMCID: PMC117942 DOI: 10.1091/mbc.e02-02-0075] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast cells were grown in glucose-limited chemostat cultures and forced to switch to a new carbon source, the fatty acid oleate. Alterations in gene expression were monitored using DNA microarrays combined with bioinformatics tools, among which was included the recently developed algorithm REDUCE. Immediately after the switch to oleate, a transient and very specific stress response was observed, followed by the up-regulation of genes encoding peroxisomal enzymes required for fatty acid metabolism. The stress response included up-regulation of genes coding for enzymes to keep thioredoxin and glutathione reduced, as well as enzymes required for the detoxification of reactive oxygen species. Among the genes coding for various isoenzymes involved in these processes, only a specific subset was expressed. Not the general stress transcription factors Msn2 and Msn4, but rather the specific factor Yap1p seemed to be the main regulator of the stress response. We ascribe the initiation of the oxidative stress response to a combination of poor redox flux and fatty acid-induced uncoupling of the respiratory chain during the metabolic reprogramming phase.
Collapse
Affiliation(s)
- Marian Groot Koerkamp
- Department of Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kunitomo H, Higuchi T, Iino Y, Yamamoto M. A zinc-finger protein, Rst2p, regulates transcription of the fission yeast ste11(+) gene, which encodes a pivotal transcription factor for sexual development. Mol Biol Cell 2000; 11:3205-17. [PMID: 10982411 PMCID: PMC14986 DOI: 10.1091/mbc.11.9.3205] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Schizosaccharomyces pombe ste11 encodes a high-mobility group family transcriptional activator that is pivotal in sexual development. Transcription of ste11 is induced by starvation of nutrients via a decrease of the cAMP-dependent protein kinase (PKA) activity. Here we report the identification of a novel transcription factor, Rst2p, that directly regulates ste11 expression. Cells in which the rst2 gene was disrupted expressed ste11 poorly and were sterile, and this sterility could be suppressed by artificial expression of ste11. Disruption of rst2 suppressed hypermating and hypersporulation in the PKA-null mutant, whereas overexpression of rst2 induced sexual development in the PKA-activated mutant. Cloning analysis indicated that Rst2p was a Cys(2)His(2) zinc-finger protein carrying 567 amino acid residues. Rst2p could bind specifically to a stress response element-like cis element located in the ste11 promoter region, which was important for ste11 expression. Meanwhile, transcription of ste11 was reduced significantly by a defective mutation in itself. An artificial supply of functional Ste11p circumvented this reduction. A complete Ste11p-binding motif (TR box) found in the promoter region was necessary for the full expression of ste11, suggesting that Ste11p is involved in the activation of ste11. We conclude that transcription of ste11 is under autoregulation in addition to control through the PKA-Rst2p pathway.
Collapse
Affiliation(s)
- H Kunitomo
- Department of Biophysics and Biochemistry, Graduate School of Science, Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
16
|
Komarnitsky PB, Klebanow ER, Weil PA, Denis CL. ADR1-mediated transcriptional activation requires the presence of an intact TFIID complex. Mol Cell Biol 1998; 18:5861-7. [PMID: 9742103 PMCID: PMC109172 DOI: 10.1128/mcb.18.10.5861] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1998] [Accepted: 06/25/1998] [Indexed: 11/20/2022] Open
Abstract
The yeast transcriptional activator ADR1, which is required for ADH2 and other genes' expression, contains four transactivation domains (TADs). While previous studies have shown that these TADs act through GCN5 and ADA2, and presumably TFIIB, other factors are likely to be involved in ADR1 function. In this study, we addressed the question of whether TFIID is also required for ADR1 action. In vitro binding studies indicated that TADI of ADR1 was able to retain TAFII90 from yeast extracts and TADII could retain TBP and TAFII130/145. TADIV, however, was capable of retaining multiple TAFIIs, suggesting that TADIV was binding TFIID from yeast whole-cell extracts. The ability of TADIV truncation derivatives to interact with TFIID correlated with their transcription activation potential in vivo. In addition, the ability of LexA-ADR1-TADIV to activate transcription in vivo was compromised by a mutation in TAFII130/145. ADR1 was found to associate in vivo with TFIID in that immunoprecipitation of either TAFII90 or TBP from yeast whole-cell extracts specifically coimmunoprecipitated ADR1. Most importantly, depletion of TAFII90 from yeast cells dramatically reduced ADH2 derepression. These results indicate that ADR1 physically associates with TFIID and that its ability to activate transcription requires an intact TFIID complex.
Collapse
Affiliation(s)
- P B Komarnitsky
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | |
Collapse
|
17
|
Madison JM, Dudley AM, Winston F. Identification and analysis of Mot3, a zinc finger protein that binds to the retrotransposon Ty long terminal repeat (delta) in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:1879-90. [PMID: 9528759 PMCID: PMC121417 DOI: 10.1128/mcb.18.4.1879] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1997] [Accepted: 01/06/1998] [Indexed: 02/07/2023] Open
Abstract
Spt3 and Mot1 are two transcription factors of Saccharomyces cerevisiae that are thought to act in a related fashion to control the function of TATA-binding protein (TBP). Current models suggest that while Spt3 and Mot1 do not directly interact, they do function in a related fashion to stabilize the TBP-TATA interaction at particular promoters. Consistent with this model, certain combinations of spt3 and mot1 mutations are inviable. To identify additional proteins related to Spt3 and Mot1 functions, we screened for high-copy-number suppressors of the mot1 spt3 inviability. This screen identified a previously unstudied gene, MOT3, that encodes a zinc finger protein. We show that Mot3 binds in vitro to three sites within the retrotransposon Ty long terminal repeat (delta) sequence. One of these sites is immediately 5' of the delta TATA region. Although a mot3 null mutation causes no strong phenotypes, it does cause some mild phenotypes, including a very modest increase in Ty mRNA levels, partial suppression of transcriptional defects caused by a mot1 mutation, and partial suppression of an spt3 mutation. These results, in conjunction with those of an independent study of Mot3 (A. Grishin, M. Rothenberg, M. A. Downs, and K. J. Blumer, Genetics, in press), suggest that this protein plays a varied role in gene expression that may be largely redundant with other factors.
Collapse
Affiliation(s)
- J M Madison
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Dombek KM, Young ET. Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1. Mol Cell Biol 1997; 17:1450-8. [PMID: 9032272 PMCID: PMC231870 DOI: 10.1128/mcb.17.3.1450] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Saccharomyces cerevisiae, the unregulated cyclic AMP-dependent protein kinase (cAPK) activity of bcy1 mutant cells inhibits expression of the glucose-repressible ADH2 gene. The transcription factor Adr1p is thought to be the primary target of cAPK. Here we demonstrate that the decreased abundance of Adr1p in bcy1 mutant cells contributes to the inhibition of ADH2 expression. Activation of ADH2 transcription was blocked in bcy1 mutant cells, and UAS1, the Adr1p binding site in the ADH2 promoter, was sufficient to mediate this effect. Concurrent with this loss of transcriptional activation was an up to 30-fold reduction in the level of Adr1p. Mutating the strong cAPK phosphorylation site at serine 230 did not suppress this effect. Analysis of ADR1 mRNA levels and ADR1-lacZ expression suggested that decreased ADR1 transcription was responsible for the reduced protein level. In contrast to the ADH2 promoter, however, deletion analysis suggested that cAPK does not act through a discrete DNA element in the ADR1 promoter. The amount of Adr1p found in bcy1 mutant cells should have been sufficient to support 23% of the wild-type level of ADH2 expression. Since no ADH2 expression was detectable in bcy1 mutant cells, cAPK must also act by other mechanisms. Overexpression of Adr1p only partially restored ADH2 expression, indicating that some of these mechanisms may impinge upon events at or subsequent to the ADR1-dependent step in ADH2 transcriptional activation.
Collapse
Affiliation(s)
- K M Dombek
- Department of Biochemistry, University of Washington, Seattle 98195-7350, USA.
| | | |
Collapse
|
19
|
Pedone PV, Ghirlando R, Clore GM, Gronenborn AM, Felsenfeld G, Omichinski JG. The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding. Proc Natl Acad Sci U S A 1996; 93:2822-6. [PMID: 8610125 PMCID: PMC39717 DOI: 10.1073/pnas.93.7.2822] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Specific DNA binding to the core consensus site GAGAGAG has been shown with an 82-residue peptide (residues 310-391) taken from the Drosophila transcription factor GAGA. Using a series of deletion mutants, it was demonstrated that the minimal domain required for specific binding (residues 310-372) includes a single zinc finger of the Cys2-His2 family and a stretch of basic amino acids located on the N-terminal end of the zinc finger. In gel retardation assays, the specific binding seen with either the peptide or the whole protein is zinc dependent and corresponds to a dissociation constant of approximately 5 x 10(-9) M for the purified peptide. It has previously been thought that a single zinc finger of the Cys2-His2 family is incapable of specific, high-affinity binding to DNA. The combination of an N-terminal basic region with a single Cys2-His2 zinc finger in the GAGA protein can thus be viewed as a novel DNA binding domain. This raises the possibility that other proteins carrying only one Cys2-His2 finger are also capable of high-affinity specific binding to DNA.
Collapse
Affiliation(s)
- P V Pedone
- Laboratory of Molecular Biology, Naional Institutes of Health, Bethesda, MD 20892-0530, USA
| | | | | | | | | | | |
Collapse
|
20
|
Donoviel MS, Kacherovsky N, Young ET. Synergistic activation of ADH2 expression is sensitive to upstream activation sequence 2 (UAS2) orientation, copy number and UAS1-UAS2 helical phasing. Mol Cell Biol 1995; 15:3442-9. [PMID: 7760841 PMCID: PMC230579 DOI: 10.1128/mcb.15.6.3442] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The alcohol dehydrogenase 2 (ADH2) gene of Saccharomyces cerevisiae is under stringent glucose repression. Two cis-acting upstream activation sequences (UAS) that function synergistically in the derepression of ADH2 gene expression have been identified. UAS1 is the binding site for the transcriptional regulator Adr1p. UAS2 has been shown to be important for ADH2 expression and confers glucose-regulated, ADR1-independent activity to a heterologous reporter gene. An analysis of point mutations within UAS2, in the context of the entire ADH2 upstream regulatory region, showed that the specific sequence of UAS2 is important for efficient derepression of ADH2, as would be expected if UAS2 were the binding site for a transcriptional regulatory protein. In the context of the ADH2 upstream regulatory region, including UAS1, working in concert with the ADH2 basal promoter elements, UAS2-dependent gene activation was dependent on orientation, copy number, and helix phase. Multimerization of UAS2, or its presence in reversed orientation, resulted in a decrease in ADH2 expression. In contrast, UAS2-dependent expression of a reporter gene containing the ADH2 basal promoter and coding sequence was enhanced by multimerization of UAS2 and was independent of UAS2 orientation. The reduced expression caused by multimerization of UAS2 in the native promoter was observed only in the presence of ADR1. Inhibition of UAS2-dependent gene expression by Adr1p was also observed with a UAS2-dependent ADH2 reporter gene. This inhibition increased with ADR1 copy number and required the DNA-binding activity of Adr1p. Specific but low-affinity binding of Adr1p to UAS2 in vitro was demonstrated, suggesting that the inhibition of UAS2-dependent gene expression observed in vivo could be a direct effect due to Adr1p binding to UAS2.
Collapse
Affiliation(s)
- M S Donoviel
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
21
|
Suzuki M, Yagi N. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families. Proc Natl Acad Sci U S A 1994; 91:12357-61. [PMID: 7809040 PMCID: PMC45436 DOI: 10.1073/pnas.91.26.12357] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously reported that in four transcription factor families the DNA-recognition rules can be described as (i) chemical rules, which list possible pairings between the 20 amino acid residues and the four DNA bases, and (ii) stereochemical rules, which describe the base and amino acid positions in contact. We have incorporated these rules into a computer program and examined the nature of the rules. Here we conclude that the DNA recognition rules are simple, logical, and consistent. The rules are specific enough to predict DNA-binding characteristics from a protein sequence.
Collapse
Affiliation(s)
- M Suzuki
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
22
|
Suzuki M, Gerstein M, Yagi N. Stereochemical basis of DNA recognition by Zn fingers. Nucleic Acids Res 1994; 22:3397-405. [PMID: 8078776 PMCID: PMC523735 DOI: 10.1093/nar/22.16.3397] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA-recognition rules for Zn fingers are discussed in terms of crystal structures. The rules can explain the DNA-binding characteristics of a number of Zn finger proteins for which there are no crystal structures. The rules have two parts: chemical rules, which list the possible pairings between the 4 DNA bases and the 20 amino acid residues, and stereochemical rules, which describe the specific base positions contacted by several amino acid positions in the Zn finger. It is discussed that to maintain the correct binding geometry, in which the N-terminus of the recognition helix is closer to the DNA than the C-terminus, the residues facing the DNA on the helix must be larger near the C-terminus, and that two different types of fingers (A and B) bind to DNA in distinctly different ways and cover different numbers of base pairs.
Collapse
Affiliation(s)
- M Suzuki
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
23
|
Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol Cell Biol 1994. [PMID: 8196627 DOI: 10.1128/mcb.14.6.3842] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adr1p is a regulatory protein in the yeast Saccharomyces cerevisiae that binds to and activates transcription from two sites in a perfect 22-bp inverted repeat, UAS1, in the ADH2 promoter. Binding requires two C2H2 zinc fingers and a region amino terminal to the fingers. The importance for DNA binding of each position within UAS1 was deduced from two types of assays. Both methods led to an identical consensus sequence containing only four essential base pairs: GG(A/G)G. The preferred sequence, TTGG(A/G)GA, is found in both halves of the inverted repeat. The region of Adr1p amino terminal to the fingers is important for phosphate contacts in the central region of UAS1. However, no base-specific contacts in this portion of UAS1 are important for DNA binding or for ADR1-dependent transcription in vivo. When the central 6 bp were deleted, only a single monomer of Adr1p was able to bind in vitro and activation in vivo was severely reduced. On the basis of these results and previous knowledge about the DNA binding site requirements, including constraints on the spacing and orientation of sites that affect activation in vivo, a consensus binding site for Adr1p was derived. By using this consensus site, potential Adr1p binding sites were located in the promoters of genes known to show ADR1-dependent expression. In addition, this consensus allowed the identification of new potential target genes for Adr1p.
Collapse
|
24
|
Cheng C, Kacherovsky N, Dombek KM, Camier S, Thukral SK, Rhim E, Young ET. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol Cell Biol 1994; 14:3842-52. [PMID: 8196627 PMCID: PMC358751 DOI: 10.1128/mcb.14.6.3842-3852.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Adr1p is a regulatory protein in the yeast Saccharomyces cerevisiae that binds to and activates transcription from two sites in a perfect 22-bp inverted repeat, UAS1, in the ADH2 promoter. Binding requires two C2H2 zinc fingers and a region amino terminal to the fingers. The importance for DNA binding of each position within UAS1 was deduced from two types of assays. Both methods led to an identical consensus sequence containing only four essential base pairs: GG(A/G)G. The preferred sequence, TTGG(A/G)GA, is found in both halves of the inverted repeat. The region of Adr1p amino terminal to the fingers is important for phosphate contacts in the central region of UAS1. However, no base-specific contacts in this portion of UAS1 are important for DNA binding or for ADR1-dependent transcription in vivo. When the central 6 bp were deleted, only a single monomer of Adr1p was able to bind in vitro and activation in vivo was severely reduced. On the basis of these results and previous knowledge about the DNA binding site requirements, including constraints on the spacing and orientation of sites that affect activation in vivo, a consensus binding site for Adr1p was derived. By using this consensus site, potential Adr1p binding sites were located in the promoters of genes known to show ADR1-dependent expression. In addition, this consensus allowed the identification of new potential target genes for Adr1p.
Collapse
Affiliation(s)
- C Cheng
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | | | | | | | | | |
Collapse
|
25
|
Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol Cell Biol 1994. [PMID: 8264631 DOI: 10.1128/mcb.14.1.629] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast transcriptional activator ADR1 is required for expression of the glucose-repressible alcohol dehydrogenase gene (ADH2), as well as genes involved in glycerol metabolism. The N-terminal half of the ADR1 protein was shown to contain three separate transactivation domains, including one (TADI) that encompasses the zinc finger DNA-binding domain. While TADII and TADIII were shown to be functionally redundant in activating ADH2 expression, deletion of only TADIII impaired ADR1 control of glycerol metabolism genes. None of these activation domains appeared to be carbon source regulated when separated from the ADH2 promoter context. Interspersed among these activation domains were two regions which, when removed, increased ADR1 activity; one was localized to the site of ADR1c mutations (residues 227 to 239) that allow glucose-insensitive ADH2 expression. The 227-to-239 region blocked ADR1 activity independently of the TAD present on ADR1, ADR1 DNA binding, and specific ADH2 promoter sequences. In addition, this region inhibited the function of a heterologous transcriptional activator. These results are consistent with the existence of an extragenic factor that binds the ADR1c region and represses ADR1 activity and suggest that other factors are responsible for aiding ADR1 in the carbon source regulation of ADH2.
Collapse
|
26
|
Cook WJ, Chase D, Audino DC, Denis CL. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol Cell Biol 1994; 14:629-40. [PMID: 8264631 PMCID: PMC358412 DOI: 10.1128/mcb.14.1.629-640.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The yeast transcriptional activator ADR1 is required for expression of the glucose-repressible alcohol dehydrogenase gene (ADH2), as well as genes involved in glycerol metabolism. The N-terminal half of the ADR1 protein was shown to contain three separate transactivation domains, including one (TADI) that encompasses the zinc finger DNA-binding domain. While TADII and TADIII were shown to be functionally redundant in activating ADH2 expression, deletion of only TADIII impaired ADR1 control of glycerol metabolism genes. None of these activation domains appeared to be carbon source regulated when separated from the ADH2 promoter context. Interspersed among these activation domains were two regions which, when removed, increased ADR1 activity; one was localized to the site of ADR1c mutations (residues 227 to 239) that allow glucose-insensitive ADH2 expression. The 227-to-239 region blocked ADR1 activity independently of the TAD present on ADR1, ADR1 DNA binding, and specific ADH2 promoter sequences. In addition, this region inhibited the function of a heterologous transcriptional activator. These results are consistent with the existence of an extragenic factor that binds the ADR1c region and represses ADR1 activity and suggest that other factors are responsible for aiding ADR1 in the carbon source regulation of ADH2.
Collapse
Affiliation(s)
- W J Cook
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham 03824
| | | | | | | |
Collapse
|
27
|
Dhawale SS, Lane AC. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res 1993; 21:5537-46. [PMID: 8284197 PMCID: PMC310513 DOI: 10.1093/nar/21.24.5537] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- S S Dhawale
- Indiana University, Purdue University at Fort Wayne 46805
| | | |
Collapse
|
28
|
Identification and purification of a protein that binds DNA cooperatively with the yeast SWI5 protein. Mol Cell Biol 1993. [PMID: 8355698 DOI: 10.1128/mcb.13.9.5524] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae SWI5 gene encodes a zinc finger protein required for the expression of the HO gene. A protein fusion between glutathione S-transferase and SWI5 was expressed in Escherichia coli and purified. The GST-SWI5 fusion protein formed only a low-affinity complex in vitro with the HO promoter, which was inhibited by low concentrations of nonspecific DNA. This result was surprising, since genetic evidence demonstrated that SWI5 functions at the HO promoter via this site in vivo. A yeast factor, GRF10 (also known as PHO2 and BAS2), that promoted high-affinity binding of SWI5 in the presence of a large excess of nonspecific carrier DNA was purified. Final purification of the 83-kDa GRF10 protein was achieved by cooperative interaction-based DNA affinity chromatography. In vitro binding studies demonstrated that SWI5 and GRF10 bind DNA cooperatively. Methylation interference and missing-nucleoside studies demonstrated that the two proteins bind at adjacent sites, with each protein making unique DNA contacts. SWI5 and GRF10 interactions were not detected in the absence of DNA. The role of cooperative DNA binding in determining promoter specificity of eukaryotic transcription factors is discussed.
Collapse
|
29
|
Brazas RM, Stillman DJ. Identification and purification of a protein that binds DNA cooperatively with the yeast SWI5 protein. Mol Cell Biol 1993; 13:5524-37. [PMID: 8355698 PMCID: PMC360269 DOI: 10.1128/mcb.13.9.5524-5537.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Saccharomyces cerevisiae SWI5 gene encodes a zinc finger protein required for the expression of the HO gene. A protein fusion between glutathione S-transferase and SWI5 was expressed in Escherichia coli and purified. The GST-SWI5 fusion protein formed only a low-affinity complex in vitro with the HO promoter, which was inhibited by low concentrations of nonspecific DNA. This result was surprising, since genetic evidence demonstrated that SWI5 functions at the HO promoter via this site in vivo. A yeast factor, GRF10 (also known as PHO2 and BAS2), that promoted high-affinity binding of SWI5 in the presence of a large excess of nonspecific carrier DNA was purified. Final purification of the 83-kDa GRF10 protein was achieved by cooperative interaction-based DNA affinity chromatography. In vitro binding studies demonstrated that SWI5 and GRF10 bind DNA cooperatively. Methylation interference and missing-nucleoside studies demonstrated that the two proteins bind at adjacent sites, with each protein making unique DNA contacts. SWI5 and GRF10 interactions were not detected in the absence of DNA. The role of cooperative DNA binding in determining promoter specificity of eukaryotic transcription factors is discussed.
Collapse
Affiliation(s)
- R M Brazas
- Department of Cellular, Viral, and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | |
Collapse
|
30
|
ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Mol Cell Biol 1993. [PMID: 8321238 DOI: 10.1128/mcb.13.7.4391] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, expression of the ADH2 gene is undetectable during growth on glucose. The transcription factor ADR1 is required to fully activate expression when glucose becomes depleted. Partial activation during growth on glucose occurred in cells carrying a constitutive allele of ADR1 in which the phosphorylatable serine of a cyclic AMP (cAMP)-dependent protein kinase phosphorylation site had been changed to alanine. When glucose was removed from the growth medium, a substantial increase in the level of this constitutive expression was observed for both the ADH2 gene and a reporter construct containing the ADR1 binding site. This suggests that glucose can block ADR1-mediated activation independently of cAMP-dependent phosphorylation at serine 230. REG1/HEX2/SRN1 was identified as a potential serine 230-independent repressor of ADH2 expression. Yeast strains carrying a deletion of the REG1 gene, reg1-1966, showed a large increase in ADR1-dependent expression of ADH2 during growth on glucose. A smaller increase in ADR1-independent expression was also observed. Additionally, an increase in the level of ADR1 expression and posttranslational modification of the ADR1 protein were observed. When the reg1-1966 allele was combined with various ADR1 constitutive alleles, the level of ADH2 expression was synergistically elevated. This indicates that REG1 can act independently of phosphorylation at serine 230. Our results suggest that glucose repression in the presence of ADR1 constitutive alleles occurs primarily through a REG1-dependent pathway which appears to affect ADH2 transcription at multiple levels.
Collapse
|
31
|
Dombek KM, Camier S, Young ET. ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Mol Cell Biol 1993; 13:4391-9. [PMID: 8321238 PMCID: PMC360004 DOI: 10.1128/mcb.13.7.4391-4399.1993] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Saccharomyces cerevisiae, expression of the ADH2 gene is undetectable during growth on glucose. The transcription factor ADR1 is required to fully activate expression when glucose becomes depleted. Partial activation during growth on glucose occurred in cells carrying a constitutive allele of ADR1 in which the phosphorylatable serine of a cyclic AMP (cAMP)-dependent protein kinase phosphorylation site had been changed to alanine. When glucose was removed from the growth medium, a substantial increase in the level of this constitutive expression was observed for both the ADH2 gene and a reporter construct containing the ADR1 binding site. This suggests that glucose can block ADR1-mediated activation independently of cAMP-dependent phosphorylation at serine 230. REG1/HEX2/SRN1 was identified as a potential serine 230-independent repressor of ADH2 expression. Yeast strains carrying a deletion of the REG1 gene, reg1-1966, showed a large increase in ADR1-dependent expression of ADH2 during growth on glucose. A smaller increase in ADR1-independent expression was also observed. Additionally, an increase in the level of ADR1 expression and posttranslational modification of the ADR1 protein were observed. When the reg1-1966 allele was combined with various ADR1 constitutive alleles, the level of ADH2 expression was synergistically elevated. This indicates that REG1 can act independently of phosphorylation at serine 230. Our results suggest that glucose repression in the presence of ADR1 constitutive alleles occurs primarily through a REG1-dependent pathway which appears to affect ADH2 transcription at multiple levels.
Collapse
Affiliation(s)
- K M Dombek
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | |
Collapse
|
32
|
Abstract
A second-site mutation that restored DNA binding to ADR1 mutants altered at different positions in the two zinc fingers was identified. This mutation (called IS1) was a conservative change of arginine 91 to lysine in a region amino terminal to the two zinc fingers and known from previous experiments to be necessary for DNA binding. IS1 increased binding to the UAS1 sequence two- to sevenfold for various ADR1 mutants and twofold for wild-type ADR1. The change of arginine 91 to glycine decreased binding twofold, suggesting that this arginine is involved in DNA binding in the wild-type protein. The increase in binding by IS1 did not involve protein-protein interactions between the two ADR1 monomers, nor did it require the presence of the sequences flanking UAS1. However, the effect of IS1 was influenced by the sequence of the first finger, suggesting that interactions between the region amino terminal to the fingers and the fingers themselves could exist. A model for the role of the amino-terminal region based on these results and sequence homologies with other DNA-binding motifs is proposed.
Collapse
|
33
|
Camier S, Kacherovsky N, Young ET. A mutation outside the two zinc fingers of ADR1 can suppress defects in either finger. Mol Cell Biol 1992; 12:5758-67. [PMID: 1448103 PMCID: PMC360515 DOI: 10.1128/mcb.12.12.5758-5767.1992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A second-site mutation that restored DNA binding to ADR1 mutants altered at different positions in the two zinc fingers was identified. This mutation (called IS1) was a conservative change of arginine 91 to lysine in a region amino terminal to the two zinc fingers and known from previous experiments to be necessary for DNA binding. IS1 increased binding to the UAS1 sequence two- to sevenfold for various ADR1 mutants and twofold for wild-type ADR1. The change of arginine 91 to glycine decreased binding twofold, suggesting that this arginine is involved in DNA binding in the wild-type protein. The increase in binding by IS1 did not involve protein-protein interactions between the two ADR1 monomers, nor did it require the presence of the sequences flanking UAS1. However, the effect of IS1 was influenced by the sequence of the first finger, suggesting that interactions between the region amino terminal to the fingers and the fingers themselves could exist. A model for the role of the amino-terminal region based on these results and sequence homologies with other DNA-binding motifs is proposed.
Collapse
Affiliation(s)
- S Camier
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | |
Collapse
|
34
|
Fairall L, Rhodes D. A new approach to the analysis of DNase I footprinting data and its application to the TFIIIA/5S DNA complex. Nucleic Acids Res 1992; 20:4727-31. [PMID: 1408784 PMCID: PMC334224 DOI: 10.1093/nar/20.18.4727] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have re-examined DNase I footprinting data for the binding of transcription factor IIIA (TFIIIA) to the 5S RNA gene, taking into account the protein-DNA contacts observed in the crystal structure of the DNase I/DNA complex (1, 2). This structure was not available when many of the original footprinting experiments on the TFIIIA/DNA complex were performed. In this way the pattern of DNase I cleavage can be interpreted to map out with greater precision the regions on the 5S DNA occupied by TFIIIA. Then, assuming the binding site for a zinc-finger may be the same as that found in the structure of the zinc-finger protein Zif268/DNA complex (3), and taking into account footprinting data for truncated forms of TFIIIA, the TFIIIA zinc-fingers were fitted within the permitted regions. On the basis of this, an alignment of the zinc-fingers of TFIIIA with its DNA binding site is proposed, which combines features of earlier models (4).
Collapse
Affiliation(s)
- L Fairall
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
35
|
Chantret I, Lacasa M, Chevalier G, Ruf J, Islam I, Mantei N, Edwards Y, Swallow D, Rousset M. Sequence of the complete cDNA and the 5' structure of the human sucrase-isomaltase gene. Possible homology with a yeast glucoamylase. Biochem J 1992; 285 ( Pt 3):915-23. [PMID: 1353958 PMCID: PMC1132882 DOI: 10.1042/bj2850915] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complete sequence of the 6 kb cDNA and the 5' genomic structure are reported for the gene coding for the human intestinal brush border hydrolase sucrase-isomaltase. The human sucrase-isomaltase cDNA shows a high level of identity (83%) with that of the rabbit enzyme, indicating that the protein shares the same structural domains in both species. In addition to the previously reported homology with lysosomal alpha-glucosidase, the sucrase and isomaltase subunits also appear to be homologous to a yeast glucoamylase. A 14 kb human genomic clone has been isolated which includes the first three exons and the first two introns of the gene, as well as 9.5 kb 5' to the major start site of transcription. The first exon comprises 62 bp of untranslated sequence and the second starts exactly at the initiation ATG codon. Typical CAAT and TATA boxes are seen upstream of the first exon. A genetic polymorphism is described which involves a PstI site in the second intron. Southern blotting, sequencing and mRNA studies indicate that the structures of the sucrase-isomaltase gene and its mRNA are unaltered in the two human colon cancer cell lines Caco-2 and HT-29 in comparison with normal human small intestine.
Collapse
Affiliation(s)
- I Chantret
- MRC Human Biochemical Genetics Unit, Galton Laboratory, University College London, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mutations in the zinc fingers of ADR1 that change the specificity of DNA binding and transactivation. Mol Cell Biol 1992. [PMID: 1588970 DOI: 10.1128/mcb.12.6.2784] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADR1 is a yeast transcription factor that contains two zinc fingers of the Cys-2-His-2 (C2H2) class. Mutations that change the specificity of DNA binding of ADR1 to its target site, upstream activation sequence 1 (UAS1), have been identified at three positions in the first zinc finger. Mutations Arg-115 to Gln, His-118 to Thr, and Arg-121 to Asn led to new specificities of DNA binding at adjacent positions 10, 9, and 8 (3'-GAG-5') in UAS1. Arg-115 is at the finger tip, and His-118 and Arg-121 are at positions 3 and 6, respectively, in the alpha helix of finger 1. One double mutant displayed the binding specificity expected from the properties of its constituent new-specificity mutations. Mutations in the second finger that allowed its binding site to be identified through loss-of-contact phenotypes were made. These mutations imply a tail-to-tail orientation of the two ADR1 monomers on their adjacent binding sites. Finger 1 is aligned on UAS1 in an amino-to-carboxyl-terminal orientation along the guanine-rich strand in a 3'-to-5' direction. One of the ADR1 mutants was functional in vivo with both its cognate binding site and wild-type UAS1, but the other two mutants were defective in transactivation despite their ability to bind with high affinity to their cognate binding sites.
Collapse
|
37
|
Thukral SK, Morrison ML, Young ET. Mutations in the zinc fingers of ADR1 that change the specificity of DNA binding and transactivation. Mol Cell Biol 1992; 12:2784-92. [PMID: 1588970 PMCID: PMC364473 DOI: 10.1128/mcb.12.6.2784-2792.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ADR1 is a yeast transcription factor that contains two zinc fingers of the Cys-2-His-2 (C2H2) class. Mutations that change the specificity of DNA binding of ADR1 to its target site, upstream activation sequence 1 (UAS1), have been identified at three positions in the first zinc finger. Mutations Arg-115 to Gln, His-118 to Thr, and Arg-121 to Asn led to new specificities of DNA binding at adjacent positions 10, 9, and 8 (3'-GAG-5') in UAS1. Arg-115 is at the finger tip, and His-118 and Arg-121 are at positions 3 and 6, respectively, in the alpha helix of finger 1. One double mutant displayed the binding specificity expected from the properties of its constituent new-specificity mutations. Mutations in the second finger that allowed its binding site to be identified through loss-of-contact phenotypes were made. These mutations imply a tail-to-tail orientation of the two ADR1 monomers on their adjacent binding sites. Finger 1 is aligned on UAS1 in an amino-to-carboxyl-terminal orientation along the guanine-rich strand in a 3'-to-5' direction. One of the ADR1 mutants was functional in vivo with both its cognate binding site and wild-type UAS1, but the other two mutants were defective in transactivation despite their ability to bind with high affinity to their cognate binding sites.
Collapse
Affiliation(s)
- S K Thukral
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | |
Collapse
|
38
|
Identification of the promoter region involved in the autoregulation of the transcriptional activator ALCR in Aspergillus nidulans. Mol Cell Biol 1992. [PMID: 1569930 DOI: 10.1128/mcb.12.5.1932] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ALCR protein is the transcriptional activator of the ethanol utilization pathway in the filamentous fungus Aspergillus nidulans. This activator belongs to a family of fungal proteins having a conserved DNA-binding domain containing six cysteines (C6 class) with some striking features. At variance with other motifs of this class, the binding domain of ALCR is strongly asymmetrical in relation to the central cysteines and moreover was predicted to adopt a helix-turn-helix structure. This domain of ALCR was synthesized in Escherichia coli and purified as a glutathione-S-transferase fusion protein. Our results show that the transcriptional activator ALCR is a DNA-binding protein. The DNA-binding motif contains zinc that is necessary for the specific DNA binding. The ALCR peptide binds upstream of the coding region of alcR to two specific targets with different affinities that are characterized by a conserved 5-nucleotide core, 5'-CCGCA-3' (or its reverse). One site, the lower-affinity binding site, is a direct repeat, and the other, the higher-affinity binding site, is a palindromic sequence with dyad symmetry. Therefore, the ALCR binding protein is able to recognize one DNA sequence in two different configurations. An alcR mutant obtained by deletion of the two specific targets in the cis-acting region of the alcR gene is unable to grow on ethanol and does not express any alcohol dehydrogenase activity. These results demonstrate that the binding sites are in vivo functional targets (UASalc) for the ALCR protein in A. nidulans. They corroborate prior evidence that alcR is autoregulated.
Collapse
|
39
|
Kulmburg P, Sequeval D, Lenouvel F, Mathieu M, Felenbok B. Identification of the promoter region involved in the autoregulation of the transcriptional activator ALCR in Aspergillus nidulans. Mol Cell Biol 1992; 12:1932-9. [PMID: 1569930 PMCID: PMC364357 DOI: 10.1128/mcb.12.5.1932-1939.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ALCR protein is the transcriptional activator of the ethanol utilization pathway in the filamentous fungus Aspergillus nidulans. This activator belongs to a family of fungal proteins having a conserved DNA-binding domain containing six cysteines (C6 class) with some striking features. At variance with other motifs of this class, the binding domain of ALCR is strongly asymmetrical in relation to the central cysteines and moreover was predicted to adopt a helix-turn-helix structure. This domain of ALCR was synthesized in Escherichia coli and purified as a glutathione-S-transferase fusion protein. Our results show that the transcriptional activator ALCR is a DNA-binding protein. The DNA-binding motif contains zinc that is necessary for the specific DNA binding. The ALCR peptide binds upstream of the coding region of alcR to two specific targets with different affinities that are characterized by a conserved 5-nucleotide core, 5'-CCGCA-3' (or its reverse). One site, the lower-affinity binding site, is a direct repeat, and the other, the higher-affinity binding site, is a palindromic sequence with dyad symmetry. Therefore, the ALCR binding protein is able to recognize one DNA sequence in two different configurations. An alcR mutant obtained by deletion of the two specific targets in the cis-acting region of the alcR gene is unable to grow on ethanol and does not express any alcohol dehydrogenase activity. These results demonstrate that the binding sites are in vivo functional targets (UASalc) for the ALCR protein in A. nidulans. They corroborate prior evidence that alcR is autoregulated.
Collapse
Affiliation(s)
- P Kulmburg
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
40
|
Bai YL, Kohlhaw GB. Manipulation of the 'zinc cluster' region of transcriptional activator LEU3 by site-directed mutagenesis. Nucleic Acids Res 1991; 19:5991-7. [PMID: 1945883 PMCID: PMC329057 DOI: 10.1093/nar/19.21.5991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transcriptional activator LEU3 of Saccharomyces cerevisiae belongs to a family of lower eukaryotic DNA binding proteins with a well-conserved DNA binding motif known as the Zn(II)2Cys6 binuclear cluster. We have constructed mutations in LEU3 that affect either one of the conserved cysteines (Cys47) or one of several amino acids located within a variable subregion of the DNA binding motif. LEU3 proteins with a mutation at Cys47 were very poor activators which could not be rescued by supplying Zn(II) to the growth medium. Mutations within the variable subregion were generally well-tolerated. Only two of seven mutations in this region generated poor activators, and both could be reactivated by Zn(II) supplements. Three of the other five mutations gave rise to activators that were better than wild type. One of these, His50Cys, exhibited a 1.5 fold increase in in vivo target gene activation and a notable increase in the affinity for target DNA. The properties of the His50Cys mutant are discussed in terms of a variant structure of the DNA binding motif. During the course of this work, evidence was obtained suggesting that only one of the two LEU3 protein-DNA complexes routinely seen actually activates transcription. The other (which may contain an additional protein factor) does not.
Collapse
Affiliation(s)
- Y L Bai
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
41
|
Thukral SK, Morrison ML, Young ET. Alanine scanning site-directed mutagenesis of the zinc fingers of transcription factor ADR1: residues that contact DNA and that transactivate. Proc Natl Acad Sci U S A 1991; 88:9188-92. [PMID: 1924382 PMCID: PMC52678 DOI: 10.1073/pnas.88.20.9188] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To identify functionally important amino acids in the two zinc fingers of transcription factor ADR1 [alcohol dehydrogenase (ADH) II synthesis regulator], oligonucleotide-directed mutagenesis was used to substitute alanine for the original amino acid at each position in both fingers. The effects of these mutations on DNA binding and thermal stability of ADR1 in vitro and on activation of ADH2 expression in vivo were measured. The DNA binding activity was remarkably heatstable. Amino acids that are candidates for DNA contact sites were identified in the finger-tip and alpha-helical region of each finger, three in the first finger and two in the second. Unexpectedly, an acidic residue in the first finger was essential for transactivation, but its replacement by alanine had no effect on DNA binding. Substitution at several highly conserved positions did not affect ADR1 functions. The ADR1 zinc fingers appear to make relatively few energetically significant contacts to DNA, perhaps as few as three in the first finger and one in the second.
Collapse
Affiliation(s)
- S K Thukral
- Department of Biochemistry SJ70, University of Washington, Seattle 98195
| | | | | |
Collapse
|