1
|
van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 2019; 54:443-465. [PMID: 31744343 DOI: 10.1080/10409238.2019.1691497] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) is an essential component of the spliceosome, the cellular machine responsible for removing introns from precursor mRNAs (pre-mRNAs) in all eukaryotes. U2 is an extraordinarily dynamic splicing factor and the most frequently mutated in cancers. Cryo-electron microscopy (cryo-EM) has transformed our structural and functional understanding of the role of U2 in splicing. In this review, we synthesize these and other data with respect to a view of U2 as an assembly of interconnected functional modules. These modules are organized by the U2 small nuclear RNA (snRNA) for roles in spliceosome assembly, intron substrate recognition, and protein scaffolding. We describe new discoveries regarding the structure of U2 components and how the snRNP undergoes numerous conformational and compositional changes during splicing. We specifically highlight large scale movements of U2 modules as the spliceosome creates and rearranges its active site. U2 serves as a compelling example for how cellular machines can exploit the modular organization and structural plasticity of an RNP.
Collapse
Affiliation(s)
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
A compare-and-contrast NMR dynamics study of two related RRMs: U1A and SNF. Biophys J 2015; 107:208-19. [PMID: 24988355 DOI: 10.1016/j.bpj.2014.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 11/21/2022] Open
Abstract
The U1A/U2B″/SNF family of small nuclear ribonucleoproteins uses a phylogenetically conserved RNA recognition motif (RRM1) to bind RNA stemloops in U1 and/or U2 small nuclear RNA (snRNA). RRMs are characterized by their α/β sandwich topology, and these RRMs use their β-sheet as the RNA binding surface. Unique to this RRM family is the tyrosine-glutamine-phenylalanine (YQF) triad of solvent-exposed residues that are displayed on the β-sheet surface; the aromatic residues form a platform for RNA nucleobases to stack. U1A, U2B″, and SNF have very different patterns of RNA binding affinity and specificity, however, so here we ask how YQF in Drosophila SNF RRM1 contributes to RNA binding, as well as to domain stability and dynamics. Thermodynamic double-mutant cycles using tyrosine and phenylalanine substitutions probe the communication between those two residues in the free and bound states of the RRM. NMR experiments follow corresponding changes in the glutamine side-chain amide in both U1A and SNF, providing a physical picture of the RRM1 β-sheet surface. NMR relaxation and dispersion experiments compare fast (picosecond to nanosecond) and intermediate (microsecond-to-millisecond) dynamics of U1A and SNF RRM1. We conclude that there is a network of amino acid interactions involving Tyr-Gln-Phe in both SNF and U1A RRM1, but whereas mutations of the Tyr-Gln-Phe triad result in small local responses in U1A, they produce extensive microsecond-to-millisecond global motions throughout SNF that alter the conformational states of the RRM.
Collapse
|
3
|
Williams SG, Hall KB. Binding affinity and cooperativity control U2B″/snRNA/U2A' RNP formation. Biochemistry 2014; 53:3727-37. [PMID: 24866816 PMCID: PMC4067145 DOI: 10.1021/bi500438e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The U1A and U2B″ proteins
are components of the U1 and U2
snRNPs, respectively, where they bind to snRNA stemloops. While localization
of U1A and U2B″ to their respective snRNP is a well-known phenomenon,
binding of U2B″ to U2 snRNA is typically thought to be accompanied
by the U2A′ protein. The molecular mechanisms that lead to
formation of the RNA/U2B″/U2A′ complex and its localization
to the U2 snRNP are investigated here, using a combination of in vitro RNA–protein and protein–protein fluorescence
and isothermal titration calorimetry binding experiments. We find
that U2A′ protein binds to U2B″ with nanomolar affinity
but binds to U1A with only micromolar affinity. In addition, there
is RNA-dependent cooperativity (linkage) between protein–protein
and protein–RNA binding. The unique combination of tight binding
and cooperativity ensures that the U2A′/U2B″ complex
is partitioned only to the U2 snRNP.
Collapse
Affiliation(s)
- Sandra G Williams
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School , St. Louis, Missouri 63110, United States
| | | |
Collapse
|
4
|
Kormos BL, Pieniazek SN, Beveridge DL, Baranger AM. U1A protein-stem loop 2 RNA recognition: prediction of structural differences from protein mutations. Biopolymers 2011; 95:591-606. [PMID: 21384338 DOI: 10.1002/bip.21616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/01/2011] [Accepted: 02/07/2011] [Indexed: 01/02/2023]
Abstract
Molecular dynamics (MD) simulations were carried out to compare the free and bound structures of wild type U1A protein with several Phe56 mutant U1A proteins that bind the target stem loop 2 (SL2) RNA with a range of affinities. The simulations indicate the free U1A protein is more flexible than the U1A-RNA complex for both wild type and Phe56 mutant systems. A complete analysis of the hydrogen-bonding (HB) and non-bonded (VDW) interactions over the course of the MD simulations suggested that changes in the interactions in the free U1A protein caused by the Phe56Ala and Phe56Leu mutations may stabilize the helical character in loop 3, and contribute to the weak binding of these proteins to SL2 RNA. Compared with wild type, changes in HB and VDW interactions in Phe56 mutants of the free U1A protein are global, and include differences in β-sheet, loop 1 and loop 3 interactions. In the U1A-RNA complex, the Phe56Ala mutation leads to a series of differences in interactions that resonate through the complex, while the Phe56Leu and Phe56Trp mutations cause local differences around the site of mutation. The long-range networks of interactions identified in the simulations suggest that direct interactions and dynamic processes in both the free and bound forms contribute to complex stability.
Collapse
Affiliation(s)
- Bethany L Kormos
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | |
Collapse
|
5
|
Special Sm core complex functions in assembly of the U2 small nuclear ribonucleoprotein of Trypanosoma brucei. EUKARYOTIC CELL 2009; 8:1228-34. [PMID: 19542313 DOI: 10.1128/ec.00090-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The processing of polycistronic pre-mRNAs in trypanosomes requires the spliceosomal small ribonucleoprotein complexes (snRNPs) U1, U2, U4/U6, U5, and SL, each of which contains a core of seven Sm proteins. Recently we reported the first evidence for a core variation in spliceosomal snRNPs; specifically, in the trypanosome U2 snRNP, two of the canonical Sm proteins, SmB and SmD3, are replaced by two U2-specific Sm proteins, Sm15K and Sm16.5K. Here we identify the U2-specific, nuclear-localized U2B'' protein from Trypanosoma brucei. U2B'' interacts with a second U2 snRNP protein, U2-40K (U2A'), which in turn contacts the U2-specific Sm16.5K/15K subcomplex. Together they form a high-affinity, U2-specific binding complex. This trypanosome-specific assembly differs from the mammalian system and provides a functional role for the Sm core variation found in the trypanosomal U2 snRNP.
Collapse
|
6
|
Toba G, White K. The third RNA recognition motif of Drosophila ELAV protein has a role in multimerization. Nucleic Acids Res 2008; 36:1390-9. [PMID: 18203745 PMCID: PMC2275111 DOI: 10.1093/nar/gkm1168] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ELAV is a neuron-specific RNA-binding protein in Drosophila that is required for development and maintenance of neurons. ELAV regulates alternative splicing of Neuroglian and erect wing (ewg) transcripts, and has been shown to form a multimeric complex on the last ewg intron. The protein has three RNA recognition motifs (RRM1, 2 and 3) with a hinge region between RRM2 and 3. In this study, we used the yeast two-hybrid system to determine the multimerization domain of ELAV. Using deletion constructs, we mapped an interaction activity to a region containing most of RRM3. We found three conserved short sequences in RRM3 that were essential for the interaction, and also sufficient to give the interaction activity to RRM2 when introduced into it. In our in vivo functional assay, a mutation in one of the three sequences showed reduced activity in splicing regulation, underlining the functional importance of multimerization. However, RRM2 with the three RRM3 interaction sequences did not function as RRM3 in vivo, which suggested that multimerization is not the only function of RRM3. Our results are consistent with a model in which RRM3 serves as a bi-functional domain that interacts with both RNA and protein.
Collapse
Affiliation(s)
- Gakuta Toba
- Department of Biology and Volen National Center for Complex Systems, MS008, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | |
Collapse
|
7
|
Saldi T, Wilusz C, MacMorris M, Blumenthal T. Functional redundancy of worm spliceosomal proteins U1A and U2B''. Proc Natl Acad Sci U S A 2007; 104:9753-7. [PMID: 17535930 PMCID: PMC1887542 DOI: 10.1073/pnas.0701720104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Indexed: 11/18/2022] Open
Abstract
In Caenorhabditis elegans, the small nuclear ribonucleoprotein (snRNP)-associated proteins U1A and U2B'' are approximately 50% identical to each other, and neither bears signature characteristics of mammalian U1A or U2B'' or the single Drosophila homolog, SNF. We show here that the genes that encode these proteins (rnp-2 and rnp-3) are cotranscribed in an operon, and that ribonucleoprotein RNP-2 is U1 snRNP-associated (U1A) whereas RNP-3 is U2 snRNP-associated (U2B''). U2B'' interacts with U2 even in the absence of another U2 snRNP protein, U2A'. Like U1A and U2B'' from yeast, plants, and vertebrates, worm U1A and U2B'' are more similar to each other than they are to other U1A or U2B'' proteins, respectively. Even though U1A and U2B'' interact with different snRNPs, they are functionally redundant; knockout of both is required for a lethal phenotype. Interestingly, U1A associates with U2 RNA when U2B'' is deleted. Thus, the two members of this gene family normally function as components of different snRNPs but apparently remain capable of performing the function of the other. Redundancy results from the fact that one protein can substitute for the other, even though it normally does not.
Collapse
Affiliation(s)
- Tassa Saldi
- *Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045; and
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Carol Wilusz
- *Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Margaret MacMorris
- *Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045; and
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Thomas Blumenthal
- *Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045; and
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
8
|
Kormos BL, Baranger AM, Beveridge DL. A study of collective atomic fluctuations and cooperativity in the U1A-RNA complex based on molecular dynamics simulations. J Struct Biol 2006; 157:500-13. [PMID: 17194603 PMCID: PMC1994251 DOI: 10.1016/j.jsb.2006.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 10/02/2006] [Accepted: 10/04/2006] [Indexed: 11/21/2022]
Abstract
Cooperative interactions play an important role in recognition and binding in macromolecular systems. In this study, we find that cross-correlated atomic fluctuations can be used to identify cooperative networks in a protein-RNA system. The dynamics of the RRM-containing protein U1A-stem loop 2 RNA complex have been calculated theoretically from a 10 ns molecular dynamics (MD) simulation. The simulation was analyzed by calculating the covariance matrix of all atomic fluctuations. These matrix elements are then presented in the form of a two-dimensional grid, which displays fluctuations on a per residue basis. The results indicate the presence of strong, selective cross-correlated fluctuations throughout the RRM in U1A-RNA. The atomic fluctuations correspond well with previous biophysical studies in which a multiplicity of cooperative networks have been reported and indicate that the various networks identified in separate individual experiments are fluctuationally correlated into a hyper-network encompassing most of the RRM. The calculated results also correspond well with independent results from a statistical covariance analysis of 330 aligned RRM sequences. This method has significant implications as a predictive tool regarding cooperativity in the protein-nucleic acid recognition process.
Collapse
Affiliation(s)
- Bethany L Kormos
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, 237 Church St., Middletown, CT 06459, USA.
| | | | | |
Collapse
|
9
|
Benecke H, Lührmann R, Will CL. The U11/U12 snRNP 65K protein acts as a molecular bridge, binding the U12 snRNA and U11-59K protein. EMBO J 2005; 24:3057-69. [PMID: 16096647 PMCID: PMC1201347 DOI: 10.1038/sj.emboj.7600765] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 07/13/2005] [Indexed: 11/08/2022] Open
Abstract
U11 and U12 interact cooperatively with the 5' splice site and branch site of pre-mRNA as a stable preformed di-snRNP complex, thereby bridging the 5' and 3' ends of the intron within the U12-dependent prespliceosome. To identify proteins contributing to di-snRNP formation and intron bridging, we investigated protein-protein and protein-RNA interactions between components of the U11/U12 snRNP. We demonstrate that the U11/U12-65K protein possesses dual binding activity, interacting directly with U12 snRNA via its C-terminal RRM and the U11-associated 59K protein via its N-terminal half. We provide evidence that, in contrast to the previously published U12 snRNA secondary structure model, the 3' half of U12 forms an extended stem-loop with a highly conserved seven-nucleotide loop and that the latter serves as the 65K binding site. Addition of an oligonucleotide comprising the 65K binding site to an in vitro splicing reaction inhibited U12-dependent, but not U2-dependent, pre-mRNA splicing. Taken together, these data suggest that U11/U12-65K and U11-59K contribute to di-snRNP formation and intron bridging in the minor prespliceosome.
Collapse
Affiliation(s)
- Heike Benecke
- Department of Cellular Biochemistry, MPI of Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, MPI of Biophysical Chemistry, Göttingen, Germany
- Department of Cellular Biochemistry, MPI of Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany. Tel.: +49 551 201 1405; Fax: 49 551 201 1197; E-mail:
| | - Cindy L Will
- Department of Cellular Biochemistry, MPI of Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
10
|
Bollenbach TJ, Stern DB. Divalent metal-dependent catalysis and cleavage specificity of CSP41, a chloroplast endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily. Nucleic Acids Res 2003; 31:4317-25. [PMID: 12888490 PMCID: PMC169913 DOI: 10.1093/nar/gkg640] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CSP41 is a ubiquitous chloroplast endoribonuclease belonging to the short chain dehydrogenase/reductase (SDR) superfamily. To help elucidate the role of CSP41 in chloroplast gene regulation, the mechanisms that determine its substrate recognition and catalytic activity were investigated. A divalent metal is required for catalysis, most probably to provide a nucleophile for cleavage 5' to the phosphodiester bond, and may also participate in cleavage site selection. This requirement distinguishes CSP41 from other Rossman fold-containing proteins from the SDR superfamily, including several RNA-binding proteins and endonucleases. CSP41 is active only in the presence of MgCl2 and CaCl2. Although Mg2+- and Ca2+-activated CSP41 cleave at identical sites in the single-stranded regions of a stem-loop-containing substrate, Mg2+-activated CSP41 was also able to cleave within the double-stranded region of the stem-loop. Mixed metal experiments with Mg2+ and Ca2+ suggest that CSP41 contains a single divalent metal-binding site which is non-selective, since Mn2+, Co2+ and Zn2+ compete with Mg2+ for binding, although there is no activity in their presence. Using site-directed mutagenesis, we identified three residues, Asn71, Asp89 and Asp103, which may form the divalent metal-binding pocket. The activation constant for Mg2+ (K(A,Mg) = 2.1 +/- 0.4 mM) is of the same order of magnitude as the stromal Mg2+ concentrations, which fluctuate between 0.5 and 10 mM as a function of light and of leaf development. These changes in stromal Mg2+ concentration may regulate CSP41 activity, and thus cpRNA stability, during plant development.
Collapse
Affiliation(s)
- Thomas J Bollenbach
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853, USA.
| | | |
Collapse
|
11
|
Shiels JC, Tuite JB, Nolan SJ, Baranger AM. Investigation of a conserved stacking interaction in target site recognition by the U1A protein. Nucleic Acids Res 2002; 30:550-8. [PMID: 11788718 PMCID: PMC99821 DOI: 10.1093/nar/30.2.550] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three highly conserved aromatic residues in RNA recognition motifs (RRM) participate in stacking interactions with RNA bases upon binding RNA. We have investigated the contribution of one of these aromatic residues, Phe56, to the complex formed between the N-terminal RRM of the spliceosomal protein U1A and stem-loop 2 of U1 snRNA. Previous work showed that the aromatic group is important for high affinity binding. Here we probe how mutation of Phe56 affects the kinetics of complex dissociation, the strength of the hydrogen bonds formed between U1A and the base that stacks with Phe56 (A6) and specific target site recognition. Substitution of Phe56 with Trp or Tyr increased the rate of dissociation of the complex, consistent with previously reported results. However, substitution of Phe56 with His decreased the rate of complex association, implying a change in the initial formation of the complex. Simultaneous modification of residue 56 and A6 revealed energetic coupling between the aromatic group and the functional groups of A6 that hydrogen bond to U1A. Finally, mutation of Phe56 to Leu reduced the ability of U1A to recognize stem-loop 2 correctly. Taken together, these experiments suggest that Phe56 contributes to binding affinity by stacking with A6 and participating in networks of energetically coupled interactions that enable this conserved aromatic amino acid to play a complex role in target site recognition.
Collapse
Affiliation(s)
- Jerome C Shiels
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | |
Collapse
|
12
|
Danner S, Belasco JG. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci U S A 2001; 98:12954-9. [PMID: 11606722 PMCID: PMC60806 DOI: 10.1073/pnas.211439598] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA-binding proteins are central to posttranscriptional gene regulation and play an important role in a number of major human diseases. Cloning such proteins is a crucial but often difficult step in elucidating the biological function of RNA regulatory elements. To make it easier to clone proteins that specifically bind RNA elements of interest, we have developed a rapid and broadly applicable in vitro genetic selection method based on T7 phage display. Using hairpin II of U1 small nuclear RNA (U1hpII) or the 3' stem loop of histone mRNA as bait, we could selectively amplify T7 phage that display either the spliceosomal protein U1A or the histone stem loop-binding protein from a lung cDNA phage library containing more than 10(7) independent clones. The use of U1hpII mutants with various affinities for U1A revealed that this method allows the selection even of proteins that bind their cognate RNA targets with relatively weak affinities (K(d) as high as the micromolar range). Experiments with a mixture of recombinant phage displaying U1A or the closely related protein U2B" demonstrated that addition of a competitor RNA can suppress selection of a protein with a higher affinity for a given RNA target, thereby allowing the preferential amplification of a lower affinity protein. Together, these findings suggest that T7 phage display can be used to rapidly and selectively clone virtually any protein that binds a known RNA regulatory element, including those that bind with low affinity or that must compete for binding with other proteins.
Collapse
Affiliation(s)
- S Danner
- Skirball Institute of Biomolecular Medicine and Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
13
|
Nagengast AA, Salz HK. The Drosophila U2 snRNP protein U2A' has an essential function that is SNF/U2B" independent. Nucleic Acids Res 2001; 29:3841-7. [PMID: 11557816 PMCID: PMC55907 DOI: 10.1093/nar/29.18.3841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recruitment of the U2 snRNP to the pre-mRNA is an essential step in spliceosome assembly. Although the protein components of the U2 snRNP have been identified, their individual contributions to function are poorly defined. In vitro studies with the Drosophila and human proteins suggest that two of the U2 snRNP-specific proteins, U2A' and U2B", function exclusively as a dimer. In Drosophila the presence of the U2B" counterpart, Sans-Fille (SNF), in the U2 snRNP is dispensable for viability, suggesting that SNF is not necessary for U2 snRNP function in vivo. With the identification of a single U2A'-like protein in the Drosophila genome, we can now investigate the relationship between SNF and its putative binding partner in vivo. Here we show that Drosophila U2A' protein interacts with SNF in vivo and, like its human counterpart, is U2 snRNP specific. Unexpectedly, however, we find that loss of function causes lethality, suggesting that U2A', but not SNF, is critical for U2 snRNP function. Moreover, although we demonstrate that several domains in the SNF protein are important for the interaction with the Drosophila U2A' protein, including a redundant domain at the normally dispensable C-terminus, we find that U2A' does not require heterodimer formation for either its vital function or U2 snRNP assembly. Thus together these data demonstrate that in Drosophila U2A' has an essential function that is unrelated to its role as the partner protein of SNF/U2B".
Collapse
Affiliation(s)
- A A Nagengast
- Department of Genetics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | |
Collapse
|
14
|
Boudonck K, Dolan L, Shaw PJ. The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell 1999; 10:2297-307. [PMID: 10397766 PMCID: PMC25444 DOI: 10.1091/mbc.10.7.2297] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1999] [Accepted: 04/21/1999] [Indexed: 11/11/2022] Open
Abstract
Coiled bodies are nuclear organelles that contain components of at least three RNA-processing pathways: pre-mRNA splicing, histone mRNA 3'- maturation, and pre-rRNA processing. Their function remains unknown. However, it has been speculated that coiled bodies may be sites of splicing factor assembly and/or recycling, play a role in histone mRNA 3'-processing, or act as nuclear transport or sorting structures. To study the dynamics of coiled bodies in living cells, we have stably expressed a U2B"-green fluorescent protein fusion in tobacco BY-2 cells and in Arabidopsis plants. Time-lapse confocal microscopy has shown that coiled bodies are mobile organelles in plant cells. We have observed movements of coiled bodies in the nucleolus, in the nucleoplasm, and from the periphery of the nucleus into the nucleolus, which suggests a transport function for coiled bodies. Furthermore, we have observed coalescence of coiled bodies, which suggests a mechanism for the decrease in coiled body number during the cell cycle. Deletion analysis of the U2B" gene construct has shown that the first RNP-80 motif is sufficient for localization to the coiled body.
Collapse
Affiliation(s)
- K Boudonck
- Department of Cell Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | |
Collapse
|
15
|
Krämer A, Grüter P, Gröning K, Kastner B. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J Cell Biol 1999; 145:1355-68. [PMID: 10385517 PMCID: PMC2133165 DOI: 10.1083/jcb.145.7.1355] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 17S U2 small nuclear ribonucleoprotein particle (snRNP) represents the active form of U2 snRNP that binds to the pre-mRNA during spliceosome assembly. This particle forms by sequential interactions of splicing factors SF3b and SF3a with the 12S U2 snRNP. We have purified SF3b and the 15S U2 snRNP, an intermediate in the assembly pathway, from HeLa cell nuclear extracts and show that SF3b consists of four subunits of 49, 130, 145, and 155 kD. Biochemical analysis indicates that both SF3b and the 12S U2 snRNP are required for the incorporation of SF3a into the 17S U2 snRNP. Nuclease protection studies demonstrate interactions of SF3b with the 5' half of U2 small nuclear RNA, whereas SF3a associates with the 3' portion of the U2 snRNP and possibly also interacts with SF3b. Electron microscopy of the 15S U2 snRNP shows that it consists of two domains in which the characteristic features of isolated SF3b and the 12S U2 snRNP are conserved. Comparison to the two-domain structure of the 17S U2 snRNP corroborates the biochemical results in that binding of SF3a contributes to an increase in size of the 12S U2 domain and possibly induces a structural change in the SF3b domain.
Collapse
Affiliation(s)
- A Krämer
- Département de Biologie Cellulaire, Université de Genève, CH-1211 Genève 4, Switzerland.
| | | | | | | |
Collapse
|
16
|
Abstract
Human U2 snRNP contains two specific proteins, U2A' and U2B", that interact with U2 snRNA stem-loop IV. In Saccharomyces cerevisiae, only the counterpart of human U2B", Yib9p, has been identified. Database searches revealed a gene potentially coding for a protein with striking similarities to human U2A', henceforth called LEA1 (looks exceptionally like U2A'). We demonstrate that Lea1p is a specific component of the yeast U2 snRNP. In addition, we show that Lea1p interacts directly with Yib9p. In vivo association of Lea1p with U2 snRNA requires Yib9p. Reciprocally, Yib9p binds to the U2 snRNA only in the presence of Lea1p in vivo, even though it has been previously shown to associate on its own with the U2 snRNA stem-loop IV in vitro. Strains lacking LEA1 and/or YIB9 grow slowly, are temperature sensitive and contain reduced levels of U2 snRNA. Pre-mRNA splicing is strongly impaired in these cells. In vitro studies demonstrate that spliceosome assembly is blocked prior to addition of U2 snRNP. This phenotype can be rescued partially, but specifically, by addition of the corresponding recombinant protein(s). This demonstrates a specific role for the yeast U2 snRNP specific proteins during formation of the pre-spliceosome.
Collapse
Affiliation(s)
- F Caspary
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
17
|
Rudner DZ, Breger KS, Kanaar R, Adams MD, Rio DC. RNA binding activity of heterodimeric splicing factor U2AF: at least one RS domain is required for high-affinity binding. Mol Cell Biol 1998; 18:4004-11. [PMID: 9632785 PMCID: PMC108985 DOI: 10.1128/mcb.18.7.4004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pre-mRNA splicing factor U2AF (U2 small nuclear ribonucleoprotein particle [snRNP] auxiliary factor) plays a critical role in 3' splice site selection. U2AF binds site specifically to the intron pyrimidine tract between the branchpoint and the 3' splice site and targets U2 snRNP to the branch site at an early step in spliceosome assembly. Human U2AF is a heterodimer composed of large (hU2AF65) and small (hU2AF35) subunits. hU2AF65 contains an arginine-serine-rich (RS) domain and three RNA recognition motifs (RRMs). hU2AF35 has a degenerate RRM and a carboxyl-terminal RS domain. Genetic studies have recently shown that the RS domains on the Drosophila U2AF subunit homologs are each inessential and might have redundant functions in vivo. The site-specific pyrimidine tract binding activity of the U2AF heterodimer has previously been assigned to hU2AF65. While the requirement for the three RRMs on hU2AF65 is firmly established, a role for the large-subunit RS domain in RNA binding remains unresolved. We have analyzed the RNA binding activity of the U2AF heterodimer in vitro. When the Drosophila small-subunit homolog (dU2AF38) was complexed with the large-subunit (dU2AF50) pyrimidine tract, RNA binding activity increased 20-fold over that of free dU2AF50. We detected a similar increase in RNA binding activity when we compared the human U2AF heterodimer and hU2AF65. Surprisingly, the RS domain on dU2AF38 was necessary for the increased binding activity of the dU2AF heterodimer. In addition, removal of the RS domain from the Drosophila large-subunit monomer (dU2AF50DeltaRS) severely impaired its binding activity. However, if the dU2AF38 RS domain was supplied in a complex with dU2AF50DeltaRS, high-affinity binding was restored. These results suggest that the presence of one RS domain of U2AF, on either the large or small subunit, promotes high-affinity pyrimidine tract RNA binding activity, consistent with redundant roles for the U2AF RS domains in vivo.
Collapse
Affiliation(s)
- D Z Rudner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | | | | | |
Collapse
|
18
|
Allain FH, Howe PW, Neuhaus D, Varani G. Structural basis of the RNA-binding specificity of human U1A protein. EMBO J 1997; 16:5764-72. [PMID: 9312034 PMCID: PMC1170207 DOI: 10.1093/emboj/16.18.5764] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The RNP domain is a very common eukaryotic protein domain involved in recognition of a wide range of RNA structures and sequences. Two structures of human U1A in complex with distinct RNA substrates have revealed important aspects of RNP-RNA recognition, but have also raised intriguing questions concerning the origin of binding specificity. The beta-sheet of the domain provides an extensive RNA-binding platform for packing aromatic RNA bases and hydrophobic protein side chains. However, many interactions between functional groups on the single-stranded nucleotides and residues on the beta-sheet surface are potentially common to RNP proteins with diverse specificity and therefore make only limited contribution to molecular discrimination. The refined structure of the U1A complex with the RNA polyadenylation inhibition element reported here clarifies the role of the RNP domain principal specificity determinants (the variable loops) in molecular recognition. The most variable region of RNP proteins, loop 3, plays a crucial role in defining the global geometry of the intermolecular interface. Electrostatic interactions with the RNA phosphodiester backbone involve protein side chains that are unique to U1A and are likely to be important for discrimination. This analysis provides a novel picture of RNA-protein recognition, much closer to our current understanding of protein-protein recognition than that of DNA-protein recognition.
Collapse
Affiliation(s)
- F H Allain
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
19
|
Bouvet P, Jain C, Belasco JG, Amalric F, Erard M. RNA recognition by the joint action of two nucleolin RNA-binding domains: genetic analysis and structural modeling. EMBO J 1997; 16:5235-46. [PMID: 9311984 PMCID: PMC1170156 DOI: 10.1093/emboj/16.17.5235] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interaction of nucleolin with a short stem-loop structure (NRE) requires two contiguous RNA-binding domains (RBD 1+2). The structural basis for RNA recognition by these RBDs was studied using a genetic system in Escherichia coli. Within each of the two domains, we identified several mutations that severely impair interaction with the RNA target. Mutations that alter RNA-binding specificity were also isolated, suggesting the identity of specific contacts between RBD 1+2 amino acids and nucleotides within the NRE stem-loop. Our data indicate that both RBDs participate in a joint interaction with the NRE and that each domain uses a different surface to contact the RNA. The constraints provided by these genetic data and previous mutational studies have enabled us to propose a three-dimensional model of nucleolin RBD 1+2 bound to the NRE stem-loop.
Collapse
Affiliation(s)
- P Bouvet
- Laboratoire de Biologie Moléculaire Eucaryote, Institut de Biologie Cellulaire et de Génétique du CNRS, UPR 9006, 118 route de Narbonne, 31062 Toulouse Cedex, France.
| | | | | | | | | |
Collapse
|
20
|
Chandler SD, Mayeda A, Yeakley JM, Krainer AR, Fu XD. RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins. Proc Natl Acad Sci U S A 1997; 94:3596-601. [PMID: 9108022 PMCID: PMC20485 DOI: 10.1073/pnas.94.8.3596] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pre-mRNA splicing requires a large number of RNA-binding proteins that have one or more RNA-recognition motifs (RRMs). Among these is the SR protein family, whose members are essential for splicing and are able to commit pre-mRNAs to the splicing pathway with overlapping but distinct substrate specificity. Some SR proteins, such as SC35, contain an N-terminal RRM and a C-terminal arginine/serine-rich (RS) domain, whereas others, such as SF2/ASF, also contain a second, atypical RRM. Although both the RRMs and the RS domain of SR proteins are required for constitutive splicing, it is unclear which domain(s) defines their substrate specificity, and whether two RRMs in a given SR protein function independently or act coordinately. Using domain swaps between SC35 and SF2/ASF and a functional commitment assay, we demonstrate that individual domains are functional modules, RS domains are interchangeable, and substrate specificity is defined by the RRMs. The atypical RRM of SF2/ASF does not appear to function alone in splicing, but can either activate or suppress the splicing specificity of an N-terminal RRM. Therefore, multiple RRMs in SR proteins act coordinately to achieve a unique spectrum of pre-mRNA substrate specificity.
Collapse
Affiliation(s)
- S D Chandler
- Department of Medicine, University of California, San Diego, La Jolla 92093-0651, USA
| | | | | | | | | |
Collapse
|
21
|
Shi PY, Li W, Brinton MA. Cell proteins bind specifically to West Nile virus minus-strand 3' stem-loop RNA. J Virol 1996; 70:6278-87. [PMID: 8709255 PMCID: PMC190653 DOI: 10.1128/jvi.70.9.6278-6287.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The first 96 nucleotides of the 5'noncoding region (NCR) of West Nile virus (WNV) genomic RNA were previously reported to form thermodynamically predicted stem-loop (SL) structures that are conserved among flaviviruses. The complementary minus-strand 3' NCR RNA, which is thought to function as a promoter for the synthesis of plus-strand RNA, forms a corresponding predicted SL structure. RNase probing of the WNV 3' minus-strand stem-loop RNA [WNV (-)3' SL RNA] confirmed the existence of a terminal secondary structure. RNA-protein binding studies were performed with BHK S100 cytoplasmic extracts and in vitro-synthesized WNV (-)3' SL RNA as the probe. Three RNA-protein complexes (complexes 1,2, and 3) were detected by a gel mobility shift assay, and the specificity of the RNA-protein interactions was confirmed by gel mobility shift and UV-induced cross-linking competition assays. Four BHK cell proteins with molecular masses of 108, 60, 50, and 42 kDa were detected by UV-induced cross-linking to the WNV (-)3' SL RNA. A preliminary mapping study indicated that all four proteins bound to the first 75 nucleotides of the WNV 3' minus-strand RNA, the region that contains the terminal SL. A flavivirus resistance phenotype was previously shown to be inherited in mice as a single, autosomal dominant allele. The efficiencies of infection of resistant cells and susceptible cells are similar, but resistant cells (C3H/RV) produce less genomic RNA than congenic, susceptible cells (C3H/He). Three RNA-protein complexes and four UV-induced cross-linked cell proteins with mobilities identical to those detected in BHK cell extracts with the WNV (-)3' SL RNA were found in both C3H/RV and C3H/He cell extracts. However, the half-life of the C3H/RV complex 1 was three times longer than that of the C3H/He complex 1. It is possible that the increased binding activity of one of the resistant cell proteins for the flavivirus minus-strand RNA could result in a reduced synthesis of plus-strand RNA as observed with the flavivirus resistance phenotype.
Collapse
Affiliation(s)
- P Y Shi
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | | | |
Collapse
|
22
|
VanHoy RW, Wise JA. Molecular analysis of a novel schizosaccharomyces pombe gene containing two RNP consensus-sequence RNA-binding domains. Curr Genet 1996; 29:307-15. [PMID: 8598051 DOI: 10.1007/bf02208611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteins containing RNP consensus-sequence RNA-binding domains (CS-RBDs) play diverse roles in many aspects of RNA metabolism. Using a PCR strategy, we cloned portions of six new Schizosaccharomyces pombe genes encoding RBD proteins, including a putative homolog of the mammalian splicing factor SAP49. The genomic locus corresponding to a second PCR product, designated rnp24a, was cloned and characterized in detail. Sequence analysis revealed that the Rnp24 protein is highly charged and contains a second RBD with an unusually long Loop-3 sequence. Strains containing a disrupted copy of the rnp24 gene display neither loss of viability nor any discernible growth defects under a variety of conditions, suggesting that the function of Rnp24p overlaps with that of another fission yeast protein. Although database searches did not identify proteins that share extensive amino-acid identity with Rnp24p, phylogenetic analysis suggests that its closest relatives are metazoan hnRNP proteins. The lack of an observable phenotype in S. pombe cells lacking Rnp24p is consistent with this classification, since hnRNP proteins in higher cells include several distinct subfamilies with similar sequences and RNA-binding specificities.
Collapse
Affiliation(s)
- R W VanHoy
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
23
|
Laird-Offringa IA, Belasco JG. Analysis of RNA-binding proteins by in vitro genetic selection: identification of an amino acid residue important for locking U1A onto its RNA target. Proc Natl Acad Sci U S A 1995; 92:11859-63. [PMID: 8524863 PMCID: PMC40502 DOI: 10.1073/pnas.92.25.11859] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An in vitro genetic system was developed as a rapid means for studying the specificity determinants of RNA-binding proteins. This system was used to investigate the origin of the RNA-binding specificity of the mammalian spliceosomal protein U1A. The U1A domain responsible for binding to U1 small nuclear RNA was locally mutagenized and displayed as a combinatorial library on filamentous bacteriophage. Affinity selection identified four U1A residues in the mutagenized region that are important for specific binding to U1 hairpin II. One of these residues (Leu-49) disproportionately affects the rates of binding and release and appears to play a critical role in locking the protein onto the RNA. Interestingly, a protein variant that binds more tightly than U1A emerged during the selection, showing that the affinity of U1A for U1 RNA has not been optimized during evolution.
Collapse
Affiliation(s)
- I A Laird-Offringa
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Blackwell JL, Brinton MA. BHK cell proteins that bind to the 3' stem-loop structure of the West Nile virus genome RNA. J Virol 1995; 69:5650-8. [PMID: 7637011 PMCID: PMC189422 DOI: 10.1128/jvi.69.9.5650-5658.1995] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The first 83 3' nucleotides of the genome RNA of the flavivirus West Nile encephalitis virus (WNV) form a stable stem-loop (SL) structure which is followed in the genome by a smaller SL. These 3' structures are highly conserved among divergent flaviviruses, suggesting that they may function as cis-acting signals for RNA replication and as such might specifically bind to cellular or viral proteins. Cellular proteins from uninfected and WNV-infected BHK-21 S100 cytoplasmic extracts formed three distinct complexes with the WNV plus-strand 3' SL [(+)3'SL] RNA in a gel mobility shift assay. Subsequent competitor gel shift analyses showed that two of these RNA-protein complexes, complexes 1 and 2, contained cell proteins that specifically bound to the WNV (+)3'SL RNA. UV-induced cross-linking and Northwestern blotting analyses detected WNV (+)3'SL RNA-binding proteins of 56, 84, and 105 kDa. When the S100 cytoplasmic extracts were partially purified by ion-exchange chromatography, a complex that comigrated with complex 1 was detected in fraction 19, while a complex that comigrated with complex 2 was detected in fraction 17. UV-induced cross-linking experiments indicated that an 84-kDa cell protein in fraction 17 and a 105-kDa protein in fraction 19 bound specifically to the WNV (+)3'SL RNA. In addition to binding to the (+)3'SL RNA, the 105-kDa protein bound to the SL structure located at the 3' end of the WNV minus-strand RNA. Initial mapping studies indicated that the 84- and 105-kDa proteins bind to different regions of the (+)3'SL RNA. The 3'-terminal SL RNA of another flavivirus, dengue virus type 3, specifically competed with the WNV (+)3'SL RNA in gel shift assays, suggesting that the host proteins identified in this study are flavivirus specific.
Collapse
Affiliation(s)
- J L Blackwell
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | |
Collapse
|
25
|
Stolow DT, Haynes SR. Cabeza, a Drosophila gene encoding a novel RNA binding protein, shares homology with EWS and TLS, two genes involved in human sarcoma formation. Nucleic Acids Res 1995; 23:835-43. [PMID: 7708500 PMCID: PMC306767 DOI: 10.1093/nar/23.5.835] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously described a partial Drosophila cDNA, clone P19, which bears homology to members of the RNA recognition motif (RRM) family of proteins [Haynes et al. (1987) Proc. Natl. Acad. Sci. USA, 84, 1819-1823]. RNA binding as well as involvement in RNA processing has been demonstrated for some RRM proteins. We report here the further characterization of P19, which we renamed cabeza (caz). caz is located on the X chromosome at position 14B. Using Northern analysis, at least four transcripts from the caz gene were observed at varying levels during development. caz mRNA and protein are enriched in the brain and central nervous system during embryogenesis. In addition, the protein is enriched in the adult head. UV crosslinking was used to demonstrate in vitro RNA binding activity for full-length recombinant caz protein and for the caz RRM domain. Sequence analysis revealed caz is related to two human genes, EWS and TLS, which are involved in chromosomal translocations. The fusion of EWS and TLS to other cellular genes results in sarcoma formation. In addition to their overall structural organization and sequence similarity, these three genes share an RRM which is divergent from typical RRMs. Therefore, it appears that these genes constitute a new sub-family of RNA binding proteins.
Collapse
Affiliation(s)
- D T Stolow
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
26
|
Shamoo Y, Abdul-Manan N, Williams KR. Multiple RNA binding domains (RBDs) just don't add up. Nucleic Acids Res 1995; 23:725-8. [PMID: 7535921 PMCID: PMC306750 DOI: 10.1093/nar/23.5.725] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
One of the most common motifs for binding RNA in eukaryotes is the RNA binding domain (RBD) or RNA Recognition Motif (RRM). One of the more intriguing aspects of these proteins is their modular nature. Proteins have been found containing from one to four RRMs. In most instances, these domains have some basal level of non-sequence specific RNA binding affinity. In addition, many also have a higher affinity for a specific structure or sequence of RNA. In the cases of heterogenous nuclear ribonucleoprotein A1 (hnRNP A1), yeast poly-A binding protein and splicing factor U2AF65, the individual free energy of binding of the RBDs for RNA are not strictly additive. By invoking a model in which the amino acids connecting adjoining RBDs are considered to be flexible linkers with an interresidue spacing of about 3.5 A, it is possible to predict the apparent association constants for at least some multi-RBD proteins to single-stranded RNA. We have surveyed the literature and found that individual RBDs are separated by 'linker' sequences of highly variable length. These linkers provide a critical determinant of binding affinity and may modulate cis versus trans binding. A clearer understanding of multi-RBD binding is essential to critically evaluating the role of these proteins in RNA splicing, packaging and transport.
Collapse
Affiliation(s)
- Y Shamoo
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510-8024, USA
| | | | | |
Collapse
|
27
|
The U1 small nuclear ribonucleoprotein (snRNP) 70K protein is transported independently of U1 snRNP particles via a nuclear localization signal in the RNA-binding domain. Mol Cell Biol 1994. [PMID: 7516470 DOI: 10.1128/mcb.14.7.4662] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Expression of the recombinant human U1-70K protein in COS cells resulted in its rapid transport to the nucleus, even when binding to U1 RNA was debilitated. Deletion analysis of the U1-70K protein revealed the existence of two segments of the protein which were independently capable of nuclear localization. One nuclear localization signal (NLS) was mapped within the U1 RNA-binding domain and consists of two typically separated but interdependent elements. The major element of this NLS resides in structural loop 5 between the beta 4 strand and the alpha 2 helix of the folded RNA recognition motif. The C-terminal half of the U1-70K protein which was capable of nuclear entry contains two arginine-rich regions, which suggests the existence of a second NLS. Site-directed mutagenesis of the RNA recognition motif NLS demonstrated that the U1-70K protein can be transported independently of U1 RNA and that its association with the U1 small nuclear ribonucleoprotein particle can occur in the nucleus.
Collapse
|
28
|
Abstract
Sxl has been proposed to regulate splicing of specific target genes by directly interacting with their pre-mRNAs. We have therefore examined the RNA-binding properties of Sxl protein in vitro and in vivo. Gel shift and UV cross-linking assays with a purified recombinant MBP-Sxl fusion protein demonstrated preferential binding to RNAs containing poly(U) tracts, and the protein footprinted over the poly(U) region. The protein did not appear to recognize either branch point or AG dinucleotide sequences, but an adenosine residue at the 5' end of the poly(U) tract enhanced binding severalfold. MBP-Sxl formed two shifted complexes on a tra regulated acceptor site RNA; the doubly shifted form may have been stabilized by protein-protein interactions. Consistent with its proposed role in pre-mRNA processing, in nuclear extracts Sxl was found in large ribonucleoprotein (RNP) complexes which sedimented significantly faster than bulk heterogeneous nuclear RNP and small nuclear RNPs. Anti-Sxl staining of polytene chromosomes showed Sxl protein at a number of chromosomal locations, among which was the Sxl locus itself. Sxl protein could also be targeted to a new chromosomal site carrying a transgene containing splicing regulatory sequences from the Sxl gene, following transcriptional induction. After prolonged heat shock, all Sxl protein was restricted to the heat-induced puff at the hs93D locus. In contrast, a presumptive small nuclear RNP protein was observed at several heat puffs following shock.
Collapse
|
29
|
Romac JM, Graff DH, Keene JD. The U1 small nuclear ribonucleoprotein (snRNP) 70K protein is transported independently of U1 snRNP particles via a nuclear localization signal in the RNA-binding domain. Mol Cell Biol 1994; 14:4662-70. [PMID: 7516470 PMCID: PMC358839 DOI: 10.1128/mcb.14.7.4662-4670.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Expression of the recombinant human U1-70K protein in COS cells resulted in its rapid transport to the nucleus, even when binding to U1 RNA was debilitated. Deletion analysis of the U1-70K protein revealed the existence of two segments of the protein which were independently capable of nuclear localization. One nuclear localization signal (NLS) was mapped within the U1 RNA-binding domain and consists of two typically separated but interdependent elements. The major element of this NLS resides in structural loop 5 between the beta 4 strand and the alpha 2 helix of the folded RNA recognition motif. The C-terminal half of the U1-70K protein which was capable of nuclear entry contains two arginine-rich regions, which suggests the existence of a second NLS. Site-directed mutagenesis of the RNA recognition motif NLS demonstrated that the U1-70K protein can be transported independently of U1 RNA and that its association with the U1 small nuclear ribonucleoprotein particle can occur in the nucleus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Cell Line
- Cell Nucleus/metabolism
- Chlorocebus aethiops
- Cloning, Molecular
- Epitopes/analysis
- Humans
- Molecular Weight
- Mutagenesis, Site-Directed
- Peptide Fragments/analysis
- Point Mutation
- Protein Structure, Tertiary
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Ribonucleoprotein, U1 Small Nuclear/chemistry
- Ribonucleoprotein, U1 Small Nuclear/isolation & purification
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/isolation & purification
- Ribonucleoproteins, Small Nuclear/metabolism
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- J M Romac
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
30
|
Samuels ME, Bopp D, Colvin RA, Roscigno RF, Garcia-Blanco MA, Schedl P. RNA binding by Sxl proteins in vitro and in vivo. Mol Cell Biol 1994; 14:4975-90. [PMID: 7516476 PMCID: PMC358869 DOI: 10.1128/mcb.14.7.4975-4990.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sxl has been proposed to regulate splicing of specific target genes by directly interacting with their pre-mRNAs. We have therefore examined the RNA-binding properties of Sxl protein in vitro and in vivo. Gel shift and UV cross-linking assays with a purified recombinant MBP-Sxl fusion protein demonstrated preferential binding to RNAs containing poly(U) tracts, and the protein footprinted over the poly(U) region. The protein did not appear to recognize either branch point or AG dinucleotide sequences, but an adenosine residue at the 5' end of the poly(U) tract enhanced binding severalfold. MBP-Sxl formed two shifted complexes on a tra regulated acceptor site RNA; the doubly shifted form may have been stabilized by protein-protein interactions. Consistent with its proposed role in pre-mRNA processing, in nuclear extracts Sxl was found in large ribonucleoprotein (RNP) complexes which sedimented significantly faster than bulk heterogeneous nuclear RNP and small nuclear RNPs. Anti-Sxl staining of polytene chromosomes showed Sxl protein at a number of chromosomal locations, among which was the Sxl locus itself. Sxl protein could also be targeted to a new chromosomal site carrying a transgene containing splicing regulatory sequences from the Sxl gene, following transcriptional induction. After prolonged heat shock, all Sxl protein was restricted to the heat-induced puff at the hs93D locus. In contrast, a presumptive small nuclear RNP protein was observed at several heat puffs following shock.
Collapse
Affiliation(s)
- M E Samuels
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Poly(A) polymerase (PAP) contains regions of similarity with several known protein domains. Through site-directed mutagenesis, we provide evidence that PAP contains a functional ribonucleoprotein-type RNA binding domain (RBD) that is responsible for primer binding, making it the only known polymerase to contain such a domain. The RBD is adjacent to, and probably overlaps with, an apparent catalytic region responsible for polymerization. Despite the presence of sequence similarities, this catalytic domain appears to be distinct from the conserved polymerase module found in a large number of RNA-dependent polymerases. PAP contains two nuclear localization signals (NLSs) in its C terminus, each by itself similar to the consensus bipartite NLS found in many nuclear proteins. Mutagenesis experiments indicate that both signals, which are separated by nearly 140 residues, play important roles in directing PAP exclusively to the nucleus. Surprisingly, basic amino acids in the N-terminal-most NLS are also essential for AAUAAA-dependent polyadenylation but not for nonspecific poly(A) synthesis, suggesting that this region of PAP is involved in interactions both with nuclear targeting proteins and with nuclear polyadenylation factors. The serine/threonine-rich C terminus is multiply phosphorylated, including at sites affected by mutations in either NLS.
Collapse
|
32
|
Abstract
Poly(A) polymerase (PAP) contains regions of similarity with several known protein domains. Through site-directed mutagenesis, we provide evidence that PAP contains a functional ribonucleoprotein-type RNA binding domain (RBD) that is responsible for primer binding, making it the only known polymerase to contain such a domain. The RBD is adjacent to, and probably overlaps with, an apparent catalytic region responsible for polymerization. Despite the presence of sequence similarities, this catalytic domain appears to be distinct from the conserved polymerase module found in a large number of RNA-dependent polymerases. PAP contains two nuclear localization signals (NLSs) in its C terminus, each by itself similar to the consensus bipartite NLS found in many nuclear proteins. Mutagenesis experiments indicate that both signals, which are separated by nearly 140 residues, play important roles in directing PAP exclusively to the nucleus. Surprisingly, basic amino acids in the N-terminal-most NLS are also essential for AAUAAA-dependent polyadenylation but not for nonspecific poly(A) synthesis, suggesting that this region of PAP is involved in interactions both with nuclear targeting proteins and with nuclear polyadenylation factors. The serine/threonine-rich C terminus is multiply phosphorylated, including at sites affected by mutations in either NLS.
Collapse
Affiliation(s)
- T Raabe
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
33
|
Cusick ME. RNP1, a new ribonucleoprotein gene of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1994; 22:869-77. [PMID: 8139928 PMCID: PMC307894 DOI: 10.1093/nar/22.5.869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A previously unidentified ribonucleoprotein (RNP) gene of yeast has been cloned and sequenced. The gene, named RNP1, was found adjacent to a previously sequenced gene encoding the second gene for ribosomal protein L4. RNP1 contains two RNA Recognition Motifs (RRM), [alternatively known as RNA binding Domains (RBD)], but unlike most RNP genes does not contain any auxiliary simple sequence domains. The first RRM (RRM1) most resembles RRM domains found in the hnRNP A/B class of RNP proteins. The second RRM (RRM2) most resembles a RRM so far seen only in the single RRM of the yeast SSB1 gene. Two null mutants of RNP1 that were created, a frameshift disruption and a complete deletion of the gene, were viable, demonstrating that the gene is not essential for cell growth. Two double null mutants of yeast RNP genes that were created (delta RNP1/delta SSB1 and delta SSB1/delta NPL3) were also viable. A fragment identical in size to the RRM1 domain could be amplified by PCR from the DNA of fungi, plants, and animals, using primers matching the ends of this domain, indicating that the structure of RRM1 is conserved. Another potential open reading frame on the same cloned fragment of DNA encodes a gene product whose structure resembles that of a seven-transmembrane-segment membrane receptor protein.
Collapse
Affiliation(s)
- M E Cusick
- Department of Medical Biochemistry and Genetics, Texas A&M College of Medicine, College Station 77843-1114
| |
Collapse
|
34
|
Birney E, Kumar S, Krainer AR. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 1993; 21:5803-16. [PMID: 8290338 PMCID: PMC310458 DOI: 10.1093/nar/21.25.5803] [Citation(s) in RCA: 545] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We present a systematic analysis of sequence motifs found in metazoan protein factors involved in constitutive pre-mRNA splicing and in alternative splicing regulation. Using profile analysis we constructed a database enriched in protein sequences containing one or more presumptive copies of the RNA-recognition motif (RRM). We provide an accurate alignment of RRMs and structure-based criteria for identifying new RRMs, including many that lack the prototype RNP-1 submotif. We present a comprehensive table of 125 sequences containing 252 RRMs, including 22 previously unreported RRMs in 17 proteins. The presence of a putative RRM in these proteins, which are implicated in a variety of cellular processes, strongly suggests that their function involves binding to RNA. Unreported homologies in the RRM-enriched database to the metazoan SR family of splicing factors are described for an Arg-rich human nuclear protein and two yeast proteins (S. pombe mei2 and S. cerevisiae Npl3). We have rigorously tested the phylogenetic relationships of a large sample of RRMs. This analysis indicates that the RRM is an ancient conserved region (ACR) that has diversified by duplication of genes and intragenic domains. Statistical analyses and classification of repeated Arg-Ser (RS) and RGG domains in various protein splicing factors are presented.
Collapse
Affiliation(s)
- E Birney
- Cold Spring Harbor Laboratory, NY 11724-2208
| | | | | |
Collapse
|
35
|
Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. Mol Cell Biol 1993. [PMID: 8497264 DOI: 10.1128/mcb.13.6.3494] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the RNA binding specificity of Hel-N1, a human neuron-specific RNA-binding protein, which contains three RNA recognition motifs. Hel-N1 is a human homolog of Drosophila melanogaster elav, which plays a vital role in the development of neurons. A random RNA selection procedure revealed that Hel-N1 prefers to bind RNAs containing short stretches of uridylates similar to those found in the 3' untranslated regions (3' UTRs) of oncoprotein and cytokine mRNAs such as c-myc, c-fos, and granulocyte macrophage colony-stimulating factor. Direct binding studies demonstrated that Hel-N1 bound and formed multimers with c-myc 3' UTR mRNA and required, as a minimum, a specific 29-nucleotide stretch containing AUUUG, AUUUA, and GUUUUU. Deletion analysis demonstrated that a fragment of Hel-N1 containing 87 amino acids, encompassing the third RNA recognition motif, forms an RNA binding domain for the c-myc 3' UTR. In addition, Hel-N1 was shown to be reactive with autoantibodies from patients with paraneoplastic encephalomyelitis both before and after binding to c-myc mRNA.
Collapse
|
36
|
Levine TD, Gao F, King PH, Andrews LG, Keene JD. Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. Mol Cell Biol 1993; 13:3494-504. [PMID: 8497264 PMCID: PMC359819 DOI: 10.1128/mcb.13.6.3494-3504.1993] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have investigated the RNA binding specificity of Hel-N1, a human neuron-specific RNA-binding protein, which contains three RNA recognition motifs. Hel-N1 is a human homolog of Drosophila melanogaster elav, which plays a vital role in the development of neurons. A random RNA selection procedure revealed that Hel-N1 prefers to bind RNAs containing short stretches of uridylates similar to those found in the 3' untranslated regions (3' UTRs) of oncoprotein and cytokine mRNAs such as c-myc, c-fos, and granulocyte macrophage colony-stimulating factor. Direct binding studies demonstrated that Hel-N1 bound and formed multimers with c-myc 3' UTR mRNA and required, as a minimum, a specific 29-nucleotide stretch containing AUUUG, AUUUA, and GUUUUU. Deletion analysis demonstrated that a fragment of Hel-N1 containing 87 amino acids, encompassing the third RNA recognition motif, forms an RNA binding domain for the c-myc 3' UTR. In addition, Hel-N1 was shown to be reactive with autoantibodies from patients with paraneoplastic encephalomyelitis both before and after binding to c-myc mRNA.
Collapse
Affiliation(s)
- T D Levine
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | |
Collapse
|
37
|
Li Y, Nagayoshi S, Sugita M, Sugiura M. Structure and expression of the tobacco nuclear gene encoding the 33 kDa chloroplast ribonucleoprotein. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:304-9. [PMID: 8510660 DOI: 10.1007/bf00281632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tobacco chloroplasts contain a family of ribonucleoproteins (RNPs) which appear to be involved in mRNA processing and splicing in chloroplasts. We have characterized a new cDNA, 33k-6, potentially encoding a tobacco 33 kDa chloroplast RNP (cp33) homologue. This cDNA has a 78 bp insertion near the 3' end with respect to previously characterized cp33 cDNAs, leading to the creation of an alternative C-terminal sequence. The cp33 protein is encoded by a single-copy nuclear gene in Nicotiana sylvestris, which contains three introns. No typical TATA box is present in the upstream region of the gene. Multiple transcription start sites are often observed for promoters lacking TATA boxes, and have been suggested in the cp33 gene. Sequence comparison revealed that the 78 bp insertion in 33k-6 is derived from the third intron of the cp33 gene which is not removed during pre-mRNA splicing. Ribonuclease protection analysis showed that the processing of the third intron is slow compared to the other introns. A possible role for the partially spliced mRNA (cp33k-6) is discussed.
Collapse
Affiliation(s)
- Y Li
- Center for Gene Research, Nagoya University, Japan
| | | | | | | |
Collapse
|
38
|
U2 small nuclear RNA 3' end formation is directed by a critical internal structure distinct from the processing site. Mol Cell Biol 1993. [PMID: 8423779 DOI: 10.1128/mcb.13.2.1119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature U2 small nuclear RNA is generated by the removal of 11 to 12 nucleotides from the 3' end of the primary transcript. This pre-U2 RNA processing reaction takes place in the cytoplasm. In this study, the sequences and/or structures of pre-U2 RNA that are important for 3' processing have been examined in an in vitro system. The 7-methylguanosine cap, stem-loops I and II, the lariat branch site recognition sequence, the conserved Sm domain, and several other regions throughout the 5' end of U2 RNA have no apparent role in the 3' processing reaction. In fact, deletion of the entire first 104 nucleotides resulted in mini-pre-U2 RNAs which were efficiently processed. Similarly, deletion of the top two-thirds of stem-loop III or mutation of nucleotides in the loop of stem-loop IV had little effect on 3' processing. Most surprisingly, the precursor's 11- to 12-nucleotide 3' extension itself was of relatively little importance, since this sequence could be replaced with completely different sequences with only a minor effect on the 3' processing reaction. In contrast, we have defined a critical structure consisting of the bottom of stem III and the stem of stem-loop IV that is essential for 3' processing of pre-U2 RNA. Compensatory mutations which restore base pairing in this region resulted in normal 3' processing. Thus, although the U2 RNA processing activity recognizes the bottom of stem III and stem IV, the sequence of this critical region is much less important than its structure. These results, together with the surprising observation that the reaction is relatively indifferent to the sequence of the 11- to 12-nucleotide 3' extension itself, point to a 3' processing reaction of pre-U2 RNA that has sequence and structure requirements significantly different from those previously identified for pre-mRNA 3' processing.
Collapse
|
39
|
Jacobson MR, Rhoadhouse M, Pederson T. U2 small nuclear RNA 3' end formation is directed by a critical internal structure distinct from the processing site. Mol Cell Biol 1993; 13:1119-29. [PMID: 8423779 PMCID: PMC358996 DOI: 10.1128/mcb.13.2.1119-1129.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mature U2 small nuclear RNA is generated by the removal of 11 to 12 nucleotides from the 3' end of the primary transcript. This pre-U2 RNA processing reaction takes place in the cytoplasm. In this study, the sequences and/or structures of pre-U2 RNA that are important for 3' processing have been examined in an in vitro system. The 7-methylguanosine cap, stem-loops I and II, the lariat branch site recognition sequence, the conserved Sm domain, and several other regions throughout the 5' end of U2 RNA have no apparent role in the 3' processing reaction. In fact, deletion of the entire first 104 nucleotides resulted in mini-pre-U2 RNAs which were efficiently processed. Similarly, deletion of the top two-thirds of stem-loop III or mutation of nucleotides in the loop of stem-loop IV had little effect on 3' processing. Most surprisingly, the precursor's 11- to 12-nucleotide 3' extension itself was of relatively little importance, since this sequence could be replaced with completely different sequences with only a minor effect on the 3' processing reaction. In contrast, we have defined a critical structure consisting of the bottom of stem III and the stem of stem-loop IV that is essential for 3' processing of pre-U2 RNA. Compensatory mutations which restore base pairing in this region resulted in normal 3' processing. Thus, although the U2 RNA processing activity recognizes the bottom of stem III and stem IV, the sequence of this critical region is much less important than its structure. These results, together with the surprising observation that the reaction is relatively indifferent to the sequence of the 11- to 12-nucleotide 3' extension itself, point to a 3' processing reaction of pre-U2 RNA that has sequence and structure requirements significantly different from those previously identified for pre-mRNA 3' processing.
Collapse
Affiliation(s)
- M R Jacobson
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | | | |
Collapse
|
40
|
Small nuclear ribonucleoprotein (RNP) U2 contains numerous additional proteins and has a bipartite RNP structure under splicing conditions. Mol Cell Biol 1993. [PMID: 8380223 DOI: 10.1128/mcb.13.1.307] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small nuclear (sn) ribonucleoprotein (RNP) U2 functions in the splicing of mRNA by recognizing the branch site of the unspliced pre-mRNA. When HeLa nuclear splicing extracts are centrifuged on glycerol gradients, U2 snRNPs sediment at either 12S (under high salt concentration conditions) or 17S (under low salt concentration conditions). We isolated the 17S U2 snRNPs from splicing extracts under nondenaturing conditions by using centrifugation and immunoaffinity chromatography and examined their structure by electron microscope. In addition to common proteins B', B, D1, D2, D3, E, F, and G and U2-specific proteins A' and B", which are present in the 12S U2 snRNP, at least nine previously unidentified proteins with apparent molecular masses of 35, 53, 60, 66, 92, 110, 120, 150, and 160 kDa bound to the 17S U2 snRNP. The latter proteins dissociate from the U2 snRNP at salt concentrations above 200 mM, yielding the 12S U2 snRNP particle. Under the electron microscope, the 17S U2 snRNPs exhibited a bipartite appearance, with two main globular domains connected by a short filamentous structure that is sensitive to RNase. These findings suggest that the additional globular domain, which is absent from 12S U2 snRNPs, contains some of the 17S U2-specific proteins. The 5' end of the RNA in the U2 snRNP is more exposed for reaction with RNase H and with chemical probes when the U2 snRNP is in the 17S form than when it is in the 12S form. Removal of the 5' end of this RNA reduces the snRNP's Svedberg value from 17S to 12S. Along with the peculiar morphology of the 17S snRNP, these data indicate that most of the 17S U2-specific proteins are bound to the 5' half of the U2 snRNA.
Collapse
|
41
|
Isolation of RRM-type RNA-binding protein genes and the analysis of their relatedness by using a numerical approach. Mol Cell Biol 1993. [PMID: 8417324 DOI: 10.1128/mcb.13.1.174] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins with RNA recognition motifs (RRMs) have important roles in a great many aspects of RNA metabolism. However, this family has yet to be systematically studied in any single organism. In order to investigate the size of the RRM gene family in Drosophila melanogaster and to clone members of this family, we used a polymerase chain reaction (PCR) with highly degenerate oligonucleotides to amplify DNA fragments between the RNP-1 and RNP-2 consensus sequences of the RRM proteins. Cloning and sequencing of 124 PCR products revealed 12 different RRM sequences (RRM1 to RRM12). When PCR products were used as probes in genomic Southern and Northern (RNA) analyses, 16 restriction fragments and 25 transcripts, respectively, were detected. Since the combinations of nucleotide sequences represented in the PCR primers correspond to only 4% of the RRM sequences inferred to be possible from known RRM sequences, we estimate the size of the RRM gene family in the order of three hundred genes in flies. In order to gain insight into the possible functions of the genes encoding the RRMs, we analyzed the sequence similarities between the 12 RRMs and 62 RRM sequences of known proteins. This analysis showed that the RRMs of functionally related proteins have similar sequences and are clustered together in the RRM gene tree. On the basis of this observation, the RRMs can be divided into three groups: a heterogeneous nuclear ribonucleoprotein type, a splicing regulator type, and a development-specific factor type. This result suggests that we have isolated good candidates for both housekeeping and developmentally important genes involved in RNA metabolism.
Collapse
|
42
|
Behrens SE, Tyc K, Kastner B, Reichelt J, Lührmann R. Small nuclear ribonucleoprotein (RNP) U2 contains numerous additional proteins and has a bipartite RNP structure under splicing conditions. Mol Cell Biol 1993; 13:307-19. [PMID: 8380223 PMCID: PMC358910 DOI: 10.1128/mcb.13.1.307-319.1993] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Small nuclear (sn) ribonucleoprotein (RNP) U2 functions in the splicing of mRNA by recognizing the branch site of the unspliced pre-mRNA. When HeLa nuclear splicing extracts are centrifuged on glycerol gradients, U2 snRNPs sediment at either 12S (under high salt concentration conditions) or 17S (under low salt concentration conditions). We isolated the 17S U2 snRNPs from splicing extracts under nondenaturing conditions by using centrifugation and immunoaffinity chromatography and examined their structure by electron microscope. In addition to common proteins B', B, D1, D2, D3, E, F, and G and U2-specific proteins A' and B", which are present in the 12S U2 snRNP, at least nine previously unidentified proteins with apparent molecular masses of 35, 53, 60, 66, 92, 110, 120, 150, and 160 kDa bound to the 17S U2 snRNP. The latter proteins dissociate from the U2 snRNP at salt concentrations above 200 mM, yielding the 12S U2 snRNP particle. Under the electron microscope, the 17S U2 snRNPs exhibited a bipartite appearance, with two main globular domains connected by a short filamentous structure that is sensitive to RNase. These findings suggest that the additional globular domain, which is absent from 12S U2 snRNPs, contains some of the 17S U2-specific proteins. The 5' end of the RNA in the U2 snRNP is more exposed for reaction with RNase H and with chemical probes when the U2 snRNP is in the 17S form than when it is in the 12S form. Removal of the 5' end of this RNA reduces the snRNP's Svedberg value from 17S to 12S. Along with the peculiar morphology of the 17S snRNP, these data indicate that most of the 17S U2-specific proteins are bound to the 5' half of the U2 snRNA.
Collapse
Affiliation(s)
- S E Behrens
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Kim YJ, Baker BS. Isolation of RRM-type RNA-binding protein genes and the analysis of their relatedness by using a numerical approach. Mol Cell Biol 1993; 13:174-83. [PMID: 8417324 PMCID: PMC358897 DOI: 10.1128/mcb.13.1.174-183.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Proteins with RNA recognition motifs (RRMs) have important roles in a great many aspects of RNA metabolism. However, this family has yet to be systematically studied in any single organism. In order to investigate the size of the RRM gene family in Drosophila melanogaster and to clone members of this family, we used a polymerase chain reaction (PCR) with highly degenerate oligonucleotides to amplify DNA fragments between the RNP-1 and RNP-2 consensus sequences of the RRM proteins. Cloning and sequencing of 124 PCR products revealed 12 different RRM sequences (RRM1 to RRM12). When PCR products were used as probes in genomic Southern and Northern (RNA) analyses, 16 restriction fragments and 25 transcripts, respectively, were detected. Since the combinations of nucleotide sequences represented in the PCR primers correspond to only 4% of the RRM sequences inferred to be possible from known RRM sequences, we estimate the size of the RRM gene family in the order of three hundred genes in flies. In order to gain insight into the possible functions of the genes encoding the RRMs, we analyzed the sequence similarities between the 12 RRMs and 62 RRM sequences of known proteins. This analysis showed that the RRMs of functionally related proteins have similar sequences and are clustered together in the RRM gene tree. On the basis of this observation, the RRMs can be divided into three groups: a heterogeneous nuclear ribonucleoprotein type, a splicing regulator type, and a development-specific factor type. This result suggests that we have isolated good candidates for both housekeeping and developmentally important genes involved in RNA metabolism.
Collapse
Affiliation(s)
- Y J Kim
- Department of Biological Sciences, Stanford University, California 94305
| | | |
Collapse
|
44
|
Tsai DE, Kenan DJ, Keene JD. In vitro selection of an RNA epitope immunologically cross-reactive with a peptide. Proc Natl Acad Sci U S A 1992; 89:8864-8. [PMID: 1384035 PMCID: PMC50024 DOI: 10.1073/pnas.89.19.8864] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An antiserum raised against a peptide was used to select a unique RNA species from a degenerate pool of RNAs designed to resemble an autoantibody recognition site in U1 RNA. The peptide and the selected RNA epitope could compete for antibody binding, suggesting that both RNA and peptide epitopes occupy the same or overlapping antigen-combining sites. Thus, the RNA epitope functioned as a specific inhibitor of the antibody-antigen interaction. We demonstrate that the RNA epitope can be used to tag unrelated RNA molecules and also to detect the presence of the antibody. We propose that sequence-specific recognition of RNA by antibodies may involve protein-RNA contacts similar to those occurring in other nucleic acid-binding proteins. In addition, these findings are compatible with the suggestion that nucleic acid-binding autoantibodies may arise through immunological cross-reactivity between proteins and nucleic acids.
Collapse
Affiliation(s)
- D E Tsai
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
45
|
Hall KB, Stump WT. Interaction of N-terminal domain of U1A protein with an RNA stem/loop. Nucleic Acids Res 1992; 20:4283-90. [PMID: 1508720 PMCID: PMC334137 DOI: 10.1093/nar/20.16.4283] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The U1A protein is a sequence-specific RNA binding protein found in the U1 snRNP particle where it binds to stem/loop II of U1 snRNA. U1A contains two 'RNP' or 'RRM' (RNA Recognition Motif) domains, which are common to many RNA-binding proteins. The N-terminal RRM has been shown to bind specifically to the U1 RNA stem/loop, while the RNA target of the C-terminal domain is unknown. Here, we describe experiments using a 102 amino acid N-terminal RRM of U1A (102A) and a 25-nucleotide RNA stem/loop to measure the binding constants and thermodynamic parameters of this RNA:protein complex. Using nitrocellulose filter binding, we measure a dissociation constant KD = 2 x 10(-11) M in 250 mM NaCl, 2 mM MgC2, and 10 mM sodium cacodylate, pH 6 at room temperature, and a half-life for the complex of 5 minutes. The free energy of association (delta G degrees) of this complex is about -14 kcal/mol in these conditions. Determination of the salt dependence of the binding suggests that at least 8 ion-pairs are formed upon complex formation. A mutation in the RNA loop sequence reduces the affinity 10 x, or about 10% of the total free energy.
Collapse
Affiliation(s)
- K B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110
| | | |
Collapse
|
46
|
Harper DS, Fresco LD, Keene JD. RNA binding specificity of a Drosophila snRNP protein that shares sequence homology with mammalian U1-A and U2-B" proteins. Nucleic Acids Res 1992; 20:3645-50. [PMID: 1386424 PMCID: PMC334013 DOI: 10.1093/nar/20.14.3645] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have characterized a recombinant Drosophila melanogaster RNA binding protein, D25, by virtue of its antigenic relationship to mammalian U1 and U2 small nuclear ribonucleoprotein (U snRNP) proteins. Sequence analysis revealed that D25 bears strong similarity to both the human U1 snRNP-A (U1-A) and U2 snRNP-B" (U2-B") proteins. However, at residues known to be critical for the RNA binding specificities of U1-A and U2-B" D25 sequence is more similar to U2-B". Using direct RNA binding assays D25 selected U1 RNA from either HeLa or Drosophila Kc cell total RNA. Furthermore, D25 bound U1 RNA when transfected into mammalian cells. Thus, D25 appears to be a Drosophila homolog of the mammalian U1-A protein, despite its sequence similarity to U2-B".
Collapse
Affiliation(s)
- D S Harper
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
47
|
Domain structure of U2 and U4/U6 small nuclear ribonucleoprotein particles from Trypanosoma brucei: identification of trans-spliceosomal specific RNA-protein interactions. Mol Cell Biol 1992. [PMID: 1310147 DOI: 10.1128/mcb.12.2.468] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maturation of mRNAs in trypanosomes involves trans splicing of the 5' end of the spliced leader RNA and the exons of polycistronic pre-mRNAs, requiring small nuclear ribonucleoproteins (snRNPs) as cofactors. We have mapped protein-binding sites in the U2 and U4/U6 snRNPs by a combination of RNase H protection analysis, native gel electrophoresis, and CsCl density gradient centrifugation. In the U2 snRNP, protein binding occurs primarily in the 3'-terminal domain; through U2 snRNP reconstitution and chemical modification-interference assays, we have identified discrete positions within stem-loop IV of Trypanosoma brucei U2 RNA that are essential for protein binding; significantly, some of these positions differ from the consensus sequence derived from cis-spliceosomal U2 RNAs. In the U4/U6 snRNP, the major protein-binding region is contained within the 3'-terminal half of U4 RNA. In sum, while the overall domain structure of the U2 and U4/U6 snRNPs is conserved between cis- and trans-splicing systems, our data suggest that there are also trans-spliceosomal specific determinants of RNA-protein binding.
Collapse
|
48
|
Günzl A, Cross M, Bindereif A. Domain structure of U2 and U4/U6 small nuclear ribonucleoprotein particles from Trypanosoma brucei: identification of trans-spliceosomal specific RNA-protein interactions. Mol Cell Biol 1992; 12:468-79. [PMID: 1310147 PMCID: PMC364191 DOI: 10.1128/mcb.12.2.468-479.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Maturation of mRNAs in trypanosomes involves trans splicing of the 5' end of the spliced leader RNA and the exons of polycistronic pre-mRNAs, requiring small nuclear ribonucleoproteins (snRNPs) as cofactors. We have mapped protein-binding sites in the U2 and U4/U6 snRNPs by a combination of RNase H protection analysis, native gel electrophoresis, and CsCl density gradient centrifugation. In the U2 snRNP, protein binding occurs primarily in the 3'-terminal domain; through U2 snRNP reconstitution and chemical modification-interference assays, we have identified discrete positions within stem-loop IV of Trypanosoma brucei U2 RNA that are essential for protein binding; significantly, some of these positions differ from the consensus sequence derived from cis-spliceosomal U2 RNAs. In the U4/U6 snRNP, the major protein-binding region is contained within the 3'-terminal half of U4 RNA. In sum, while the overall domain structure of the U2 and U4/U6 snRNPs is conserved between cis- and trans-splicing systems, our data suggest that there are also trans-spliceosomal specific determinants of RNA-protein binding.
Collapse
Affiliation(s)
- A Günzl
- Max-Planck-Institut für Molekulare Genetik, Otto-Warburg-Laboratorium, Berlin Dahlem, Germany
| | | | | |
Collapse
|
49
|
Simpson GG, Vaux P, Clark G, Waugh R, Beggs JD, Brown JW. Evolutionary conservation of the spliceosomal protein, U2B''. Nucleic Acids Res 1991; 19:5213-7. [PMID: 1833724 PMCID: PMC328878 DOI: 10.1093/nar/19.19.5213] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
U1 and U2snRNPs play key roles in pre-mRNA splicing. The interactions between the U1 and U2snRNP-specific proteins, U1A, U2A' and U2B'' and their respective UsnRNAs are of interest both to elucidate their roles in splicing, and as models to study RNA-protein interactions. We have cloned a full-length cDNA, encoding U2B'', from potato. This is the first report of a sequence for a plant UsnRNP protein. The plant U2B'' sequence exhibits extensive similarity with the human U2B'' protein at both the DNA and amino acid levels. The evolutionary conservation at the protein level, particularly in sequences implicated in determining specific binding to U2snRNA, suggests conservation of U2B'' function from plants to man. The significance of amino acid substitutions in the RNP-80 motif with respect to U2snRNA binding in plants is discussed.
Collapse
Affiliation(s)
- G G Simpson
- Department of Cellular and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | | | | | | | | |
Collapse
|
50
|
Tsai DE, Harper DS, Keene JD. U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res 1991; 19:4931-6. [PMID: 1717938 PMCID: PMC328792 DOI: 10.1093/nar/19.18.4931] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The U1snRNP-A (U1-A) protein was used to select specific RNA sequences from a degenerate pool of transcripts using direct RNA binding and polymerase chain reaction amplification (PCR). Sequences were randomized in loops of 10 or 13 nucleotides or as a linear stretch of 25 nucleotides. From all three structural contexts, an unpaired ten nucleotide consensus sequence was obtained. A selected stem-loop structure that resembled the natural U1-A protein binding site on loop II of U1 RNA demonstrated the highest affinity of binding in comparison with the other structural contexts. A data profile of selected sequences identified U1 RNA upon searching the GenBank database. Thus, this method was useful in determining the sequence specificity of an RNA binding protein and may complement the use of phylogenetic comparisons to predict conserved recognition elements. These findings also suggest that the evolutionary conservation of loop II of U1 RNA results from constraints imposed by protein binding.
Collapse
Affiliation(s)
- D E Tsai
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|