1
|
Silvester E, McWilliam KR, Matthews KR. The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream. Pathogens 2017; 6:pathogens6030029. [PMID: 28657594 PMCID: PMC5617986 DOI: 10.3390/pathogens6030029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
African trypanosomes cause devastating disease in sub-Saharan Africa in humans and livestock. The parasite lives extracellularly within the bloodstream of mammalian hosts and is transmitted by blood-feeding tsetse flies. In the blood, trypanosomes exhibit two developmental forms: the slender form and the stumpy form. The slender form proliferates in the bloodstream, establishes the parasite numbers and avoids host immunity through antigenic variation. The stumpy form, in contrast, is non-proliferative and is adapted for transmission. Here, we overview the features of slender and stumpy form parasites in terms of their cytological and molecular characteristics and discuss how these contribute to their distinct biological functions. Thereafter, we describe the technical developments that have enabled recent discoveries that uncover how the slender to stumpy transition is enacted in molecular terms. Finally, we highlight new understanding of how control of the balance between slender and stumpy form parasites interfaces with other components of the infection dynamic of trypanosomes in their mammalian hosts. This interplay between the host environment and the parasite’s developmental biology may expose new vulnerabilities to therapeutic attack or reveal where drug control may be thwarted by the biological complexity of the parasite’s lifestyle.
Collapse
Affiliation(s)
- Eleanor Silvester
- Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Kirsty R McWilliam
- Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Keith R Matthews
- Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| |
Collapse
|
2
|
Bassarak B, Moser I, Menge C. In vitro production of Trypanosoma equiperdum antigen and its evaluation for use in serodiagnosis of dourine. Vet Parasitol 2016; 223:133-40. [PMID: 27198790 DOI: 10.1016/j.vetpar.2016.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022]
Abstract
A modified Baltz's in vitro cultivation system for the propagation of Trypanosoma equiperdum strain OVI was established to develop a replacement for the conventional production procedure of dourine diagnostic antigen in rats. To increase trypanosome yields we designed an optimized culture medium by addition of supplemental compounds. Trypanosomes were adapted to this medium by two succeeding cultivation steps which led to a substantial proliferation rate and an increased cell density tolerance, respectively. As a result, adapted parasites could be propagated to maximum cell densities of >2×10(6) cells/ml, facilitating in vitro antigen production in preparative quantities comparable to the conventional method. A panel of 180 horse field sera, previously sent for testing to the German National Reference Laboratory for Dourine, was tested by complement fixation test using culture-derived as well as conventionally produced dourine antigen. Cohen's kappa values for results obtained with two batches of culture-derived antigen as compared to conventional antigen were 0.91 (95% confidence interval [CI]: 82.2-99.7) and 0.83 (95% CI: 70.3-95.3), respectively. Performance of antigens for diagnostic purposes was characterized in an inter-laboratory comparative study deploying 14 sera from horses with defined dourine statuses. Complement fixation test results from 15 participating European laboratories showed a diagnostic sensitivity of 94.1% (95% CI: 89.4-98.7) and a diagnostic specificity of 96.2% (95% CI: 92.5-99.9) for conventional antigen and a slightly higher diagnostic sensitivity of 96.0% (95% CI: 92.2-99.8) and a diagnostic specificity of 97.1% (95% CI: 94.0-100) for culture-derived antigen. We conclude that our novel approach for dourine antigen production from in vitro-grown trypanosomes described and evaluated herein meets the requirements for the prospective purpose in quantitative and qualitative terms and should be considered by the competent authorities as an alternative for the animal experiment currently prescribed by international standards.
Collapse
Affiliation(s)
- Björn Bassarak
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany; German National Reference Laboratory for Dourine, Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany.
| | - Irmgard Moser
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany; German National Reference Laboratory for Dourine, Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany.
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany.
| |
Collapse
|
3
|
Monk SL, Simmonds P, Matthews KR. A short bifunctional element operates to positively or negatively regulate ESAG9 expression in different developmental forms of Trypanosoma brucei. J Cell Sci 2013; 126:2294-304. [PMID: 23524999 DOI: 10.1242/jcs.126011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In their mammalian host trypanosomes generate 'stumpy' forms from proliferative 'slender' forms as an adaptation for transmission to their tsetse fly vector. This transition is characterised by the repression of many genes while quiescent stumpy forms accumulate during each wave of parasitaemia. However, a subset of genes are upregulated either as an adaptation for transmission or to sustain infection chronicity. Among this group are ESAG9 proteins, whose genes were originally identified as a component of some telomeric variant surface glycoprotein gene expression sites, although many members of this diverse family are also transcribed elsewhere in the genome. ESAG9 genes are among the most highly regulated genes in transmissible stumpy forms, encoding a group of secreted proteins of cryptic function. To understand their developmental silencing in slender forms and activation in stumpy forms, the post-transcriptional control signals for a well conserved ESAG9 gene have been mapped. This identified a precise RNA sequence element of 34 nucleotides that contributes to gene expression silencing in slender forms but also acts positively, activating gene expression in stumpy forms. We predict that this bifunctional RNA sequence element is targeted by competing negative and positive regulatory factors in distinct developmental forms of the parasite. Analysis of the 3'UTR regulatory regions flanking the highly diverse ESAG9 family reveals that the linear regulatory sequence is not highly conserved, suggesting that RNA structure is important for interactions with regulatory proteins.
Collapse
Affiliation(s)
- Stephanie L Monk
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | |
Collapse
|
4
|
MacGregor P, Szöőr B, Savill NJ, Matthews KR. Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 2012; 10:431-8. [PMID: 22543519 PMCID: PMC3834543 DOI: 10.1038/nrmicro2779] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During their life cycle, trypanosomes must overcome conflicting demands to ensure their survival and transmission. First, they must evade immunity without overwhelming the host. Second, they must generate and maintain transmission stages at sufficient levels to allow passage into their tsetse vector. Finally, they must rapidly commit to onward development when they enter the tsetse fly. On the basis of recent quantification and modelling of Trypanosoma brucei infection dynamics, we propose that the interplay between immune evasion and development achieves both infection chronicity and transmissibility. Moreover, we suggest that a novel form of bistable regulation ensures developmental commitment on entry into the tsetse fly midgut.
Collapse
Affiliation(s)
- Paula MacGregor
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | | | |
Collapse
|
5
|
Barnwell EM, van Deursen FJ, Jeacock L, Smith KA, Maizels RM, Acosta-Serrano A, Matthews K. Developmental regulation and extracellular release of a VSG expression-site-associated gene product from Trypanosoma brucei bloodstream forms. J Cell Sci 2010; 123:3401-11. [PMID: 20826456 DOI: 10.1242/jcs.068684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosomes evade host immunity by exchanging variant surface glycoprotein (VSG) coats. VSG genes are transcribed from telomeric expression sites, which contain a diverse family of expression-site-associated genes (ESAGs). We have discovered that the mRNAs for one ESAG family, ESAG9, are strongly developmentally regulated, being enriched in stumpy forms, a life-cycle stage in the mammalian bloodstream that is important for the maintenance of chronic parasite infections and for tsetse transmission. ESAG9 gene sequences are highly diverse in the genome and encode proteins with weak similarity to the massively diverse MASP proteins in Trypanosoma cruzi. We demonstrate that ESAG9 proteins are modified by N-glycosylation and can be shed to the external milieu, this being dependent upon coexpression with at least one other family member. The expression profile and extracellular release of ESAG9 proteins represents a novel and unexpected aspect of the transmission biology of trypanosomes in their mammalian host. We suggest that these molecules might interact with the external environment, with possible implications for infection chronicity or parasite transmission.
Collapse
Affiliation(s)
- Eleanor M Barnwell
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, Kings' Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Jensen BC, Sivam D, Kifer CT, Myler PJ, Parsons M. Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics 2009; 10:482. [PMID: 19840382 PMCID: PMC2771046 DOI: 10.1186/1471-2164-10-482] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 10/19/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma brucei, the causative agent of African sleeping sickness, undergoes a complex developmental cycle that takes place in mammalian and insect hosts and is accompanied by changes in metabolism and cellular morphology. While differences in mRNA expression have been described for many genes, genome-wide expression analyses have been largely lacking. Trypanosomatids represent a unique case in eukaryotes in that they transcribe protein-coding genes as large polycistronic units, and rarely regulate gene expression at the level of transcription initiation. RESULTS Here we present a comprehensive analysis of mRNA expression in several stages of parasite development. Utilizing microarrays that have multiple copies of multiple probes for each gene, we were able to demonstrate with a high degree of statistical confidence that approximately one-fourth of genes show differences in mRNA expression levels in the stages examined. These include complex patterns of gene expression within gene families, including the large family of variant surface glycoproteins (VSGs) and their relatives, where we have identified a number of constitutively expressed family members. Furthermore, we were able to assess the relative abundance of all transcripts in each stage, identifying the genes that are either weakly or highly expressed. Very few genes show no evidence of expression. CONCLUSION Despite the lack of gene regulation at the level of transcription initiation, our results reveal extensive regulation of mRNA abundance associated with different life cycle and growth stages. In addition, analysis of variant surface glycoprotein gene expression reveals a more complex picture than previously thought. These data provide a valuable resource to the community of researchers studying this lethal agent.
Collapse
Affiliation(s)
- Bryan C Jensen
- Seattle Biomedical Research Institute, 307 Westlake Ave. North, Seattle, WA 98109, USA.
| | | | | | | | | |
Collapse
|
7
|
McCulloch R, Horn D. What has DNA sequencing revealed about the VSG expression sites of African trypanosomes? Trends Parasitol 2009; 25:359-63. [DOI: 10.1016/j.pt.2009.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/27/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
|
8
|
Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, Brooks K, Churcher C, Fahkro S, Goodhead I, Heath P, Kartvelishvili M, Mungall K, Harris D, Hauser H, Sanders M, Saunders D, Seeger K, Sharp S, Taylor JE, Walker D, White B, Young R, Cross GAM, Rudenko G, Barry JD, Louis EJ, Berriman M. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS One 2008; 3:e3527. [PMID: 18953401 PMCID: PMC2567434 DOI: 10.1371/journal.pone.0003527] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 09/23/2008] [Indexed: 11/27/2022] Open
Abstract
Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.
Collapse
|
9
|
Vanhamme L, Lecordier L, Pays E. Control and function of the bloodstream variant surface glycoprotein expression sites in Trypanosoma brucei. Int J Parasitol 2001; 31:523-31. [PMID: 11334937 DOI: 10.1016/s0020-7519(01)00143-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
African trypanosomes escape the host immune response through a periodical change of their surface coat made of one major type of protein, the variant surface glycoprotein. From a repertoire of a thousand variant surface glycoprotein genes available, only one is expressed at a time, and this takes place in a specialised expression site itself selected from a collection of an estimated 20-30 sites. As the specialised expression sites are long polycistronic transcription units, the variant surface glycoprotein is co-transcribed with several other genes termed expression site-associated genes. How do the trypanosomes only use a single specialised expression site at a time? Why are there two dozen specialised expression sites? What are the functions of the other genes of these transcription units? We review the currently available answers to these questions.
Collapse
Affiliation(s)
- L Vanhamme
- IBMM, Free University of Brussels, 12 rue des Professeurs Jeener et Brachet, B-6041, Gosselies, Belgium.
| | | | | |
Collapse
|
10
|
Pays E, Lips S, Nolan D, Vanhamme L, Pérez-Morga D. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol Biochem Parasitol 2001; 114:1-16. [PMID: 11356509 DOI: 10.1016/s0166-6851(01)00242-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The variant surface glycoprotein (VSG) genes of Trypanosoma brucei are transcribed in telomeric loci termed VSG expression sites (ESs). Despite permanent initiation of transcription in most if not all of these multiple loci, RNA elongation is abortive except in bloodstream forms where full transcription up to the VSG occurs only in a single ES at a time. The ESs active in bloodstream forms are polycistronic and contain several genes in addition to the VSG, named ES-associated genes (ESAGs). So far 12 ESAGs have been identified, some of which are present only in some ESs. Most of these genes encode surface proteins and this list includes different glycosyl phosphatidyl inositol (GPI)-anchored proteins such as the heterodimeric receptor for the host transferrin (ESAG7/6), integral membrane proteins such as the receptor-like transmembrane adenylyl cyclase (ESAG4) and a surface transporter (ESAG10). An interesting exception is ESAG8, which may encode a cell cycle regulator involved in the differentiation of long slender into short stumpy bloodstream forms. Several ESAGs belong to multigene families including pseudogenes and members transcribed out of the ESs, named genes related to ESAGs (GRESAGs). However, some ESAGs (7, 6 and 8) appear to be restricted to the ESs. Most of these genes can be deleted from the active ES without apparently affecting the phenotype of bloodstream form trypanosomes, probably either due to the expression of ESAGs from 'inactive' ESs (ESAG7/6) or due to the expression of GRESAGs (in particular, GRESAGs4 and GRESAGs1). At least three ESAGs (ESAG7, ESAG6 and SRA) share the evolutionary origin of VSGs. The presence of these latter genes in ESs may confer an increased capacity of the parasite for adaptation to various mammalian hosts, as suggested in the case of ESAG7/6 and proven for SRA, which allows T. brucei to infect humans. Similarly, the existence of a collection of slightly different ESAG4s in the multiple ESs might provide the parasite with adenylyl cyclase isoforms that may regulate growth in response to different environmental conditions. The high transcription rate and high recombination level that prevail in VSG ESs may have favored the generation and/or recruitment in these sites of genes whose hyper-evolution allows adaptation to a larger variety of hosts.
Collapse
Affiliation(s)
- E Pays
- Laboratory of Molecular Parasitology, IBMM, Department of Molecular Biology, Free University of Brussels, 12, rue des Professeurs Jeener et Brachet, B-6041, Gosselies, Belgium.
| | | | | | | | | |
Collapse
|
11
|
Redpath MB, Windle H, Nolan D, Pays E, Voorheis HP, Carrington M. ESAG11, a new VSG expression site-associated gene from Trypanosoma brucei. Mol Biochem Parasitol 2000; 111:223-8. [PMID: 11087933 DOI: 10.1016/s0166-6851(00)00305-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M B Redpath
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
12
|
Graham SV, Terry S, Barry JD. A structural and transcription pattern for variant surface glycoprotein gene expression sites used in metacyclic stage Trypanosoma brucei. Mol Biochem Parasitol 1999; 103:141-54. [PMID: 10551359 DOI: 10.1016/s0166-6851(99)00128-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
African trypanosomes first express the variant surface glycoprotein (VSG) at the metacyclic stage in the tsetse fly vector, in preparation for transfer into the mammal. Metacyclic (M)VSGs comprise a specific VSG repertoire subset and their expression is regulated differently from that of bloodstream VSGs, involving exclusively transcriptional regulation during the life cycle. To identify basic structural and functional features that may be common to MVSG telomeric transcription units, we have characterized the anatomy and transcription of the telomere containing the ILTat 1.61 MVSG gene. This telomere contains pseudogenes of the ESAG1 and ESAG9 families found in bloodstream VSG transcription units. The 1.61 MVSG occupies a monocistronic transcription unit and is transcriptionally controlled through the life cycle. The 1.61, and also the 1.22, MVSG transcription initiation site sequences resemble eukaryotic initiator elements. Sequence comparison reveals that four out of five characterized MVSG expression sites have a conserved region 2.0-4.7 kb long upstream of the MVSG. In some cases, this region contains not only the transcription initiation site that we have observed to be active in fly-transmitted trypanosomes but also, upstream, another sequence, described elsewhere as a 'putative promoter' for the MVAT set of M/VSGs (Nagoshi YL, Alarcon CM, Donelson JE. A monocistronic transcript for a trypanosome variant surface glycoprotein, Mol Biochem Parasitol 1995;72:33-45). In fly-transmitted trypanosomes, the latter element is transcriptionally silent. Our analysis of the structure of MVSG telomeres suggests that metacyclic expression sites arose from bloodstream expression sites.
Collapse
Affiliation(s)
- S V Graham
- Wellcome Centre for Molecular Parasitology, The Anderson College, University of Glasgow, Scotland, UK
| | | | | |
Collapse
|
13
|
Abstract
African trypanosomes combine antigenic variation of their surface coat with the ability to take up nutrients from their mammalian hosts. Uptake of small molecules such as glucose or nucleosides is mediated by translocators hidden from host antibodies by the surface coat. The multiple glucose transporters and transporters for nucleobases and nucleosides have been characterized. Receptors for host macromolecules such as transferrin and lipoproteins are visible to antibodies but hidden from the cellular arm of the host immune system in an invagination of the trypanosome surface, the flagellar pocket. The trypanosomal transferrin receptor is a heterodimer that resembles the major component of the surface coat of Trypanosoma brucei. The ability to make several versions of this receptor allows T. brucei to bind transferrins from a range of mammals with high affinity. The proteins required for uptake of nutrients by trypanosomes provide a target for chemotherapy that remains to be fully exploited.
Collapse
Affiliation(s)
- P Borst
- The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Lee MG, Van der Ploeg LH. Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu Rev Microbiol 1997; 51:463-89. [PMID: 9343357 DOI: 10.1146/annurev.micro.51.1.463] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In eukaryotes, RNA polymerase (pol) II transcribes the protein-coding genes, whereas RNA pol I transcribes the genes that encode the three RNA species of the ribosome [the ribosomal RNAs (rRNAs)] at the nucleolus. Protozoan parasites of the order Kinetoplastida may represent an exception, because pol I can mediate the expression of exogenously introduced protein-coding genes in these single-cell organisms. A unique molecular mechanism, which leads to pre-mRNA maturation by trans-splicing, facilitates pol I-mediated protein-coding gene expression in trypanosomes. Trans-splicing adds a capped 39-nucleotide mini-exon, or spliced leader transcript, to the 5' end of the main coding exon posttranscriptionally. In other eukaryotes, the addition of a 5' cap, which is essential for mRNA function, occurs exclusively as a result of RNA pol II-mediated transcription. Given the assumption that cap addition represents the limiting factor, trans-splicing may have uncoupled the requirement for RNA pol II-mediated mRNA production. A comparison of the alpha-amanitin sensitivity of transcription in naturally occurring trypanosome protein-coding genes reveals that a unique subset of protein-coding genes-the variant surface glycoprotein (VSG) expression sites and the procyclin or the procyclic acidic repetitive protein (PARP) genes-are transcribed by an RNA polymerase that is resistant to the mushroom toxin alpha-amanitin, a characteristic of transcription by RNA pol I. Promoter analysis and a pharmacological characterization of the RNA polymerase that transcribes these genes have strengthened the proposal that the VSG expression sites and the PARP genes represent naturally occurring protein-coding genes that are transcribed by RNA pol I.
Collapse
Affiliation(s)
- M G Lee
- Department of Pathology, New York University, New York 10016, USA
| | | |
Collapse
|
15
|
Carruthers VB, Navarro M, Cross GA. Targeted disruption of expression site-associated gene-1 in bloodstream-form Trypanosoma brucei. Mol Biochem Parasitol 1996; 81:65-79. [PMID: 8892306 DOI: 10.1016/0166-6851(96)02672-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Each variant surface glycoprotein (Vsg) expression site (ES) in bloodstream-form Trypanosoma brucei is a polycistronic transcription unit containing several distinct expression site-associated genes (esag), in addition to a single vsg gene. esag1 genes from different ESs encode a highly polymorphic family of membrane-associated glycoproteins, whose function is unknown. In the hope of producing a phenotype that could indicate a function, we disrupted the esag1 genes in two ESs by targeted insertion of a hygromycin phosphotransferase gene. Our failure to produce an obvious phenotype prompted us to search for other esag1 transcripts. RNA from the mutant trypanosomes hybridized with an esag1-specific oligonucleotide. Cloning and sequencing of mRNA from both mutant and wild-type cells showed that several esag1 family members were expressed, each at a much lower level than the esag1 transcript from the active ES in wild-type trypanosomes. Long-range DNA mapping showed that these additional esag1 genes, some of which contained premature translation-termination codons, most probably originate from chromosomal-internal genes and pseudogenes. We have therefore been unable to determine whether esag1 is an essential gene, or what function it fulfils, or whether any competent Esag1 protein is expressed in the mutant trypanosomes.
Collapse
Affiliation(s)
- V B Carruthers
- Laboratory of Molecular Parasitology, Rockefeller University, New York, NY 10021-6399, USA.
| | | | | |
Collapse
|
16
|
Gottesdiener KM. A new VSG expression site-associated gene (ESAG) in the promoter region of Trypanosoma brucei encodes a protein with 10 potential transmembrane domains. Mol Biochem Parasitol 1994; 63:143-51. [PMID: 8183314 DOI: 10.1016/0166-6851(94)90017-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In Trypanosoma brucei bloodstream variants 118 cl 1, 118a and 118b, the actively transcribed VSG gene expression site (ES) is located on a 1.5 Mb chromosome. The promoter region for this polycistronic transcription unit is unusual in that there are two, tandemly located, promoter repeats, each 2.1 kb in size, separated by 13 kb of intervening DNA. As previously shown, at inactivation of this ES, the promoter region was rearranged with the deletion of 15 kb of DNA. This result prompted us to search through the deleted DNA sequences to identify additional genes that might play a role in the inactivation of ESs. In this report, we identify a gene, encoding a putative transmembrane protein, that was deleted at this locus by the rearrangement event. This gene, which we tentatively call expression-site-associated-gene 10 (ESAG10), contains 10 potential transmembrane domains and had been located to T. brucei stock 427-60, ES-containing chromosomes.
Collapse
Affiliation(s)
- K M Gottesdiener
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
17
|
Abstract
Several species of the genus Trypanosoma cause parasitic diseases of considerable medical and veterinary importance throughout Africa, Asia and the Americas. These parasites exhibit considerable intra-species genetic diversity and variation, which has complicated their taxonomic classification. This diversity and variation can be defined at the level of both the genome and of individual genes. The nuclear genome shows considerable inter- and intra-species plasticity in terms of chromosome number and size (molecular karyotype). The mitochondrial (kDNA) genome also varies considerably between species, especially in terms of minicircle size and organization. There is also considerable intra-specific sequence diversity in minicircles and within the Variable Region of the maxicircle. Restriction enzyme analysis of this diversity has lead to the concept of 'schizodemes'. At the gene level, isoenzyme analysis has proven very useful for strain and isolate identification, with the classification into numerous 'zymodemes'. Considerable antigenic diversity has also been identified in T. cruzi and T. brucei, with the development of 'serodemes' in the latter. In addition to this inter-strain diversity, African trypanosomes (T. brucei, T. congolense, and T. vivax) exhibit the phenomenon of antigenic variation, where individual parasites are able to express any one of hundreds of different copies of the Variant Surface Glycoprotein gene at any particular time. The molecular mechanisms underlying antigenic variation are now understood in considerable detail. The implication of this molecular diversity and variation are discussed in terms of trypanosome taxonomy and disease control.
Collapse
Affiliation(s)
- P J Myler
- Seattle Biomedical Research Institute, WA 98109-1651
| |
Collapse
|
18
|
Koenig-Martin E, Yamage M, Roditi I. A procyclin-associated gene in Trypanosoma brucei encodes a polypeptide related to ESAG 6 and 7 proteins. Mol Biochem Parasitol 1992; 55:135-45. [PMID: 1435865 DOI: 10.1016/0166-6851(92)90134-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The procyclin genes of Trypanosoma brucei encode a family of glycoproteins expressed on the surface of procyclic forms of the parasite. These genes are present at different loci in tandem arrays of two or three copies depending on the strain. It has previously been shown that procyclin genes are transcribed from a promotor immediately upstream of the first procyclin gene in each cluster by an RNA polymerase that is resistant to high levels of alpha-amanitin. Here we show that additional genes, which we term procyclin-associated genes (PAGs), are located downstream of the procyclin genes and belong to the same alpha-amanitin-resistant polycistronic transcription units. A gene in the pro A locus, PAG 1, encodes a polypeptide that is related to the ESAG 6 and 7 proteins encoded in the VSG expression site. An unexpected feature of PAG 1 is that the major open reading frame of 405 amino acids only starts at position 1283 in the cDNA sequence and extends to the poly(A) tail. Sequences related to the 5' untranslated region of PAG 1 are also found downstream of procyclin genes in other loci, but the 3' coding region is unique to Pro A. This suggests that there are related PAGs which are coordinately transcribed with procyclin genes from different loci.
Collapse
Affiliation(s)
- E Koenig-Martin
- Kernforschungszentrum Karlsruhe, Institut für Genetik und Toxikologie, FRG
| | | | | |
Collapse
|
19
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:3765-89. [PMID: 1852627 PMCID: PMC328441 DOI: 10.1093/nar/19.13.3765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|