1
|
Abbas AH, Silva Pereira S, D'Archivio S, Wickstead B, Morrison LJ, Hall N, Hertz-Fowler C, Darby AC, Jackson AP. The Structure of a Conserved Telomeric Region Associated with Variant Antigen Loci in the Blood Parasite Trypanosoma congolense. Genome Biol Evol 2018; 10:2458-2473. [PMID: 30165630 PMCID: PMC6152948 DOI: 10.1093/gbe/evy186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a vector-borne disease of humans and livestock caused by African trypanosomes (Trypanosoma spp.). Survival in the vertebrate bloodstream depends on antigenic variation of Variant Surface Glycoproteins (VSGs) coating the parasite surface. In T. brucei, a model for antigenic variation, monoallelic VSG expression originates from dedicated VSG expression sites (VES). Trypanosoma brucei VES have a conserved structure consisting of a telomeric VSG locus downstream of unique, repeat sequences, and an independent promoter. Additional protein-coding sequences, known as “Expression Site Associated Genes (ESAGs)”, are also often present and are implicated in diverse, bloodstream-stage functions. Trypanosoma congolense is a related veterinary pathogen, also displaying VSG-mediated antigenic variation. A T. congolense VES has not been described, making it unclear if regulation of VSG expression is conserved between species. Here, we describe a conserved telomeric region associated with VSG loci from long-read DNA sequencing of two T. congolense strains, which consists of a distal repeat, conserved noncoding elements and other genes besides the VSG; although these are not orthologous to T. brucei ESAGs. Most conserved telomeric regions are associated with accessory minichromosomes, but the same structure may also be associated with megabase chromosomes. We propose that this region represents the T. congolense VES, and through comparison with T. brucei, we discuss the parallel evolution of antigenic switching mechanisms, and unique adaptation of the T. brucei VES for developmental regulation of bloodstream-stage genes. Hence, we provide a basis for understanding antigenic switching in T. congolense and the origins of the African trypanosome VES.
Collapse
Affiliation(s)
- Ali Hadi Abbas
- Centre for Genomic Research, Biosciences Building, Liverpool, United Kingdom.,Department of Pathology, Faculty of Veterinary Medicine, University of Kufa, Najaf, Iraq
| | - Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Simon D'Archivio
- School of Life Sciences, University of Nottingham, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, United Kingdom
| | - Liam J Morrison
- Department of Infection and Immunity, The Roslin Institute, Easter Bush, Edinburgh, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Alistair C Darby
- Centre for Genomic Research, Biosciences Building, Liverpool, United Kingdom
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| |
Collapse
|
2
|
Hutchinson S, Glover L, Horn D. High-resolution analysis of multi-copy variant surface glycoprotein gene expression sites in African trypanosomes. BMC Genomics 2016; 17:806. [PMID: 27756224 PMCID: PMC5070307 DOI: 10.1186/s12864-016-3154-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background African trypanosomes cause lethal diseases in humans and animals and escape host immune attack by switching the expression of Variant Surface Glycoprotein (VSG) genes. The expressed VSGs are located at the ends of telomeric, polycistronic transcription units known as VSG expression sites (VSG-ESs). Each cell has many VSG-ESs but only one is transcribed in bloodstream-form parasites and all of them are inactive upon transmission to the insect vector mid-gut; a subset of monocistronic metacyclic VSG-ESs are then activated in the insect salivary gland. Deep-sequence analyses have been informative but assigning sequences to individual VSG-ESs has been challenging because they each contain closely related expression-site associated genes, or ESAGs, thought to contribute to virulence. Results We utilised ART, an in silico short read simulator to demonstrate the feasibility of accurately aligning reads to VSG-ESs. Then, using high-resolution transcriptomes from isogenic bloodstream and insect-stage Lister 427 Trypanosoma brucei, we uncover increased abundance in the insect mid-gut stage of mRNAs from metacyclic VSG-ESs and of mRNAs from the unusual ESAG, ESAG10. Further, we show that the silencing associated with allelic exclusion involves repression focussed at the ends of the VSG-ESs. We also use the approach to report relative fitness costs following ESAG RNAi from a genome-scale screen. Conclusions By assigning sequences to individual VSG-ESs we provide new insights into VSG-ES transcription control, allelic exclusion and impacts on fitness. Thus, deeper insights into the expression and function of regulated multi-gene families are more accessible than previously anticipated. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3154-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Hutchinson
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Lucy Glover
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.,Present address: Trypanosomes Molecular Biology, Institut Pasteur, 75015, Paris, France
| | - David Horn
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
3
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
4
|
Matsunaga S, Endo T, Yagita K, Hirukawa Y, Tomino S, Matsugo S, Tsuruhara T. Chromosome size polymorphisms in the genus acanthamoeba electrokaryotype by pulsed-field gel electrophoresis. Protist 2009. [PMID: 23194715 DOI: 10.1016/s1434-4610(98)70039-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twenty-eight strains from 12 species from the genus Acanthamoeba, including five isolates from amoebic keratitis patients, were subjected to molecular karyotyping by pulsed-field gel electrophoresis. 9 to 21 chromosome-sized DNA bands ranging from 200 kb to 3 Mb in size were detected. Molecular karyotypes also showed a wide multifariousness, i.e. there existed inter- and intraspecific heterogeneity. The five isolates from amoebic keratitis patients did not exhibit characteristic molecular karyotypes distinguishable from environmental isolates. Although karyotypic heterogeneity was observed within group I amoeba, they are distinguishable from those of group II and III. Strains having identical restriction fragment length polymorphism profiles of mtDNA did not have an identical molecular karyotype, i.e. weak correlation was found between molecular karyotypes and mtDNA restriction fragment length polymorphism profiles.
Collapse
Affiliation(s)
- S Matsunaga
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Sheader K, Berberof M, Isobe T, Borst P, Rudenko G. Delineation of the regulated Variant Surface Glycoprotein gene expression site domain of Trypanosoma brucei. Mol Biochem Parasitol 2003; 128:147-56. [PMID: 12742581 DOI: 10.1016/s0166-6851(03)00056-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The African trypanosome Trypanosoma brucei is protected in the bloodstream of the mammalian host by a dense Variant Surface Glycoprotein (VSG) coat. Although an individual cell has hundreds of VSG genes, the active VSG is transcribed in a mutually exclusive fashion from one of about twenty telomeric VSG expression sites. Expression sites are regulated domains flanked by 50 bp repeat arrays and extensive tracts of repetitive elements. We have integrated exogenous rDNA and expression site promoters upstream of the 50 bp repeats of the VO2 VSG expression site. Transcription from both types of exogenous promoter is downregulated and comparable to promoters targeted into the VSG Basic Copy arrays. We show that the upstream exogenous rDNA promoter escapes VSG expression site control, as switching the downstream VO2 VSG expression site on and off does not affect its activity. Therefore, the 50 bp repeat arrays appear to be the boundary of the regulated expression site domain.
Collapse
Affiliation(s)
- Karen Sheader
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | | | | | | | | |
Collapse
|
6
|
Berriman M, Hall N, Sheader K, Bringaud F, Tiwari B, Isobe T, Bowman S, Corton C, Clark L, Cross GAM, Hoek M, Zanders T, Berberof M, Borst P, Rudenko G. The architecture of variant surface glycoprotein gene expression sites in Trypanosoma brucei. Mol Biochem Parasitol 2002; 122:131-40. [PMID: 12106867 DOI: 10.1016/s0166-6851(02)00092-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei evades the immune system by switching between Variant Surface Glycoprotein (VSG) genes. The active VSG gene is transcribed in one of approximately 20 telomeric expression sites (ESs). It has been postulated that ES polymorphism plays a role in host adaptation. To gain more insight into ES architecture, we have determined the complete sequence of Bacterial Artificial Chromosomes (BACs) containing DNA from three ESs and their flanking regions. There was variation in the order and number of ES-associated genes (ESAGs). ESAGs 6 and 7, encoding transferrin receptor subunits, are the only ESAGs with functional copies in every ES that has been sequenced until now. A BAC clone containing the VO2 ES sequences comprised approximately half of a 330 kb 'intermediate' chromosome. The extensive similarity between this intermediate chromosome and the left telomere of T. brucei 927 chromosome I, suggests that this previously uncharacterised intermediate size class of chromosomes could have arisen from breakage of megabase chromosomes. Unexpected conservation of sequences, including pseudogenes, indicates that the multiple ESs could have arisen through a relatively recent amplification of a single ES.
Collapse
|
7
|
Fu G, Melville SE. Polymorphism in the subtelomeric regions of chromosomes of Kinetoplastida. Trans R Soc Trop Med Hyg 2002; 96 Suppl 1:S31-40. [PMID: 12055849 DOI: 10.1016/s0035-9203(02)90049-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Leishmania spp. and the related kinetoplastid Trypanosoma brucei are single-celled parasites. In Leishmania, the nuclear genome comprises 36 diploid chromosomes and occasional amplified minichromosomes, while the T. brucei nucleus contains 11 larger diploid chromosomes and a variable number of intermediate-sized and minichromosomes. This paper primarily describes the subtelomeric structure of the larger diploid chromosomes of L. major and T. brucei, although some aspects may also apply to smaller chromosomes. The diploid chromosomes contain most protein-coding genes and vary in size. The telomeric sequence is common to both species, but adjacent subtelomeric repeats vary between species and chromosomes. It is possible that some of the complex repeats described here play a role in stabilizing replication and copy number of the chromosomes. The subtelomeric regions of T. brucei chromosomes differ from those of other protozoan parasites, as they are dedicated to expression sites for variant surface glycoprotein genes, used by the parasite to evade immune destruction by antigenic variation. Variation in these sites creates segmental aneuploidy in many T. brucei chromosomes.
Collapse
Affiliation(s)
- Guoliang Fu
- Imperial College School of Medicine, Hammersmith Hospital, London, W12 0NN, UK
| | | |
Collapse
|
8
|
Vanhamme L, Pays E, McCulloch R, Barry JD. An update on antigenic variation in African trypanosomes. Trends Parasitol 2001; 17:338-43. [PMID: 11423377 DOI: 10.1016/s1471-4922(01)01922-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
African trypanosomes can spend a long time in the blood of their mammalian host, where they are exposed to the immune system and are thought to take advantage of it to modulate their own numbers. Their major immunogenic protein is the variant surface glycoprotein (VSG), the gene for which must be in one of the 20--40 specialized telomeric expression sites in order to be transcribed. Trypanosomes escape antibody-mediated destruction through periodic changes of the expressed VSG gene from a repertoire of approximately 1000. How do trypanosomes exclusively express only one VSG and how do they switch between them?
Collapse
Affiliation(s)
- L Vanhamme
- Laboratory of Molecular Parasitology, IBMM, Free University of Brussels, Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium.
| | | | | | | |
Collapse
|
9
|
Vanhamme L, Lecordier L, Pays E. Control and function of the bloodstream variant surface glycoprotein expression sites in Trypanosoma brucei. Int J Parasitol 2001; 31:523-31. [PMID: 11334937 DOI: 10.1016/s0020-7519(01)00143-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
African trypanosomes escape the host immune response through a periodical change of their surface coat made of one major type of protein, the variant surface glycoprotein. From a repertoire of a thousand variant surface glycoprotein genes available, only one is expressed at a time, and this takes place in a specialised expression site itself selected from a collection of an estimated 20-30 sites. As the specialised expression sites are long polycistronic transcription units, the variant surface glycoprotein is co-transcribed with several other genes termed expression site-associated genes. How do the trypanosomes only use a single specialised expression site at a time? Why are there two dozen specialised expression sites? What are the functions of the other genes of these transcription units? We review the currently available answers to these questions.
Collapse
Affiliation(s)
- L Vanhamme
- IBMM, Free University of Brussels, 12 rue des Professeurs Jeener et Brachet, B-6041, Gosselies, Belgium.
| | | | | |
Collapse
|
10
|
Pays E, Lips S, Nolan D, Vanhamme L, Pérez-Morga D. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol Biochem Parasitol 2001; 114:1-16. [PMID: 11356509 DOI: 10.1016/s0166-6851(01)00242-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The variant surface glycoprotein (VSG) genes of Trypanosoma brucei are transcribed in telomeric loci termed VSG expression sites (ESs). Despite permanent initiation of transcription in most if not all of these multiple loci, RNA elongation is abortive except in bloodstream forms where full transcription up to the VSG occurs only in a single ES at a time. The ESs active in bloodstream forms are polycistronic and contain several genes in addition to the VSG, named ES-associated genes (ESAGs). So far 12 ESAGs have been identified, some of which are present only in some ESs. Most of these genes encode surface proteins and this list includes different glycosyl phosphatidyl inositol (GPI)-anchored proteins such as the heterodimeric receptor for the host transferrin (ESAG7/6), integral membrane proteins such as the receptor-like transmembrane adenylyl cyclase (ESAG4) and a surface transporter (ESAG10). An interesting exception is ESAG8, which may encode a cell cycle regulator involved in the differentiation of long slender into short stumpy bloodstream forms. Several ESAGs belong to multigene families including pseudogenes and members transcribed out of the ESs, named genes related to ESAGs (GRESAGs). However, some ESAGs (7, 6 and 8) appear to be restricted to the ESs. Most of these genes can be deleted from the active ES without apparently affecting the phenotype of bloodstream form trypanosomes, probably either due to the expression of ESAGs from 'inactive' ESs (ESAG7/6) or due to the expression of GRESAGs (in particular, GRESAGs4 and GRESAGs1). At least three ESAGs (ESAG7, ESAG6 and SRA) share the evolutionary origin of VSGs. The presence of these latter genes in ESs may confer an increased capacity of the parasite for adaptation to various mammalian hosts, as suggested in the case of ESAG7/6 and proven for SRA, which allows T. brucei to infect humans. Similarly, the existence of a collection of slightly different ESAG4s in the multiple ESs might provide the parasite with adenylyl cyclase isoforms that may regulate growth in response to different environmental conditions. The high transcription rate and high recombination level that prevail in VSG ESs may have favored the generation and/or recruitment in these sites of genes whose hyper-evolution allows adaptation to a larger variety of hosts.
Collapse
Affiliation(s)
- E Pays
- Laboratory of Molecular Parasitology, IBMM, Department of Molecular Biology, Free University of Brussels, 12, rue des Professeurs Jeener et Brachet, B-6041, Gosselies, Belgium.
| | | | | | | | | |
Collapse
|
11
|
Laufer G, Günzl A. In-vitro competition analysis of procyclin gene and variant surface glycoprotein gene expression site transcription in Trypanosoma brucei. Mol Biochem Parasitol 2001; 113:55-65. [PMID: 11254954 DOI: 10.1016/s0166-6851(00)00380-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In Trypanosoma brucei, alpha-amanitin-resistant transcription characteristic of RNA polymerase I is initiated at ribosomal RNA gene (RRNA), procyclin gene (GPEET or EP1), and variant surface glycoprotein gene expression site (VSG ES) promoters. The three promoter types do not share obvious sequence homologies, but contain a proximal domain I and a distal domain II within 80 bp upstream of the transcription initiation site. RRNA, GPEET and EP1, but not the VSG ES promoter, require additional upstream sequences for full activity. In the present study, we competed in-vitro transcription of circular template DNA with linear DNA fragments to identify promoter domains responsible for binding and sequestering essential trans-acting transcription factors. For the GPEET promoter, we found that domain III, located between positions -141 and -92, was most important for the DNA fragment to exert a transcription competition effect, whereas domain I, the only element absolutely required for transcription, was not. Moreover, insertions between promoter domains II and III reduced both transcription from the GPEET promoter and competition with the GPEET promoter fragment, suggesting that these two domains cooperate in the formation of a stable DNA-protein complex. Taken together, these results indicate a promoter structure very similar to that of the Saccharomyces cerevisiae RRNA promoter. In contrast, VSG ES promoter analysis showed that domains I and II are both necessary and sufficient to compete transcription. Despite this structural difference, our analysis provide evidence that GPEET and VSG ES promoters interact with a common factor that is also important for RRNA promoter transcription.
Collapse
Affiliation(s)
- G Laufer
- Zoologisches Institut der Universität Tübingen, Abteilung Zellbiologie, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | |
Collapse
|
12
|
Melville SE, Leech V, Navarro M, Cross GA. The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427. Mol Biochem Parasitol 2000; 111:261-73. [PMID: 11163435 DOI: 10.1016/s0166-6851(00)00316-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present the molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427, clone 221a. This cloned stock is most commonly used in research laboratories in genetic manipulation experiments and in studies of antigenic variation. Using 116 previously characterised chromosome-specific markers, we identify 11 diploid pairs of megabase chromosomes and detect no loss of synteny in EST and gene marker distribution between this stock and the genome project reference stock TREU 927/4. Nevertheless, the chromosomes of 427 are all larger than their homologues in 927, except chromosomes IIa and IXa. The greatest size variation is seen in chromosome I, the smallest of which is 1.1 Mb (927-Ia) and the largest 3.6 Mb (427-Ib). The total nuclear DNA content of both stocks has been estimated by comparison of the mobility of T. brucei and yeast chromosomes. Trypanosomes of stock 427 contain approximately 16.5 Mb more megabase chromosomal DNA than those of stock 927. We have detected the presence of bloodstream-form expression-site-associated sequences on eight or more megabase chromosomes. These sequences are not found on the same chromosomes in each stock. We have determined the chromosomal band location of nine characterised variant surface glycoprotein genes, including the currently expressed VSG 221. Our results demonstrate both the stability of the T. brucei genome, as illustrated by the conservation of syntenic groups of genes in the two stocks, and the polymorphic nature of the genomic regions involved in antigenic variation. We propose that the chromosomes of stock 427 be numbered to correspond to their homologues in the genome project reference stock TREU 927/4.
Collapse
Affiliation(s)
- S E Melville
- Department of Pathology, University of Cambridge, UK.
| | | | | | | |
Collapse
|
13
|
Abstract
African trypanosomes combine antigenic variation of their surface coat with the ability to take up nutrients from their mammalian hosts. Uptake of small molecules such as glucose or nucleosides is mediated by translocators hidden from host antibodies by the surface coat. The multiple glucose transporters and transporters for nucleobases and nucleosides have been characterized. Receptors for host macromolecules such as transferrin and lipoproteins are visible to antibodies but hidden from the cellular arm of the host immune system in an invagination of the trypanosome surface, the flagellar pocket. The trypanosomal transferrin receptor is a heterodimer that resembles the major component of the surface coat of Trypanosoma brucei. The ability to make several versions of this receptor allows T. brucei to bind transferrins from a range of mammals with high affinity. The proteins required for uptake of nutrients by trypanosomes provide a target for chemotherapy that remains to be fully exploited.
Collapse
Affiliation(s)
- P Borst
- The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Blundell PA, Borst P. Analysis of a variant surface glycoprotein gene expression site promoter of Trypanosoma brucei by remodelling the promoter region. Mol Biochem Parasitol 1998; 94:67-85. [PMID: 9719511 DOI: 10.1016/s0166-6851(98)00051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trypanosoma brucei survives in the mammalian bloodstream by antigenic variation of its variant surface glycoprotein (VSG) coat. VSG genes are found in telomeric expression sites (ESs), and only one ES is fully transcribed at a time. The parasite changes its coat by either bringing another VSG gene into the active ES, or by switching on another ES and silencing the first. It has previously been shown that the promoter of an active ES can be replaced by a ribosomal promoter without affecting the function of the ES. This study has now analysed the conserved sequences flanking the ES promoter by deletion or replacement of these sequences in intact trypanosomes. The results show that the sequences 3' of the promoter and extending down to the first protein-coding gene, ESAG 7, are not required in the bloodstream-form parasite either for high-level transcription or for switching of the ES. Transformants in which the sequences 5' of the promoter extending up to simple-sequence 50-bp repeats had been removed were not obtained unless the 5' ES sequences were replaced with exogenous DNA, or unless the ES promoter was replaced by a ribosomal promoter, and even these transformants were rare. Transformants lacking the 5' ES sequences displayed a less complete transcriptional repression of silent ESs. These results indicate that the area 5' of an ES promoter is required for optimal functioning of an ES.
Collapse
Affiliation(s)
- P A Blundell
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
15
|
Navarro M, Cross GA. In situ analysis of a variant surface glycoprotein expression-site promoter region in Trypanosoma brucei. Mol Biochem Parasitol 1998; 94:53-66. [PMID: 9719510 DOI: 10.1016/s0166-6851(98)00049-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In Trypanosoma brucei, the active variant surface glycoprotein genes (vsg) are located at telomeric expression sites (ES), whose expression is highly regulated during the life cycle. In the procyclic form, all ESs are repressed. In the bloodstream form, where antigenic variation occurs, only one of approximately 20 ESs is active at a given time. We have investigated chromatin structure and DNA sequence around the ES promoter to identify cis-acting regulatory regions. A marker gene, inserted 1 kb downstream of the ES promoter, was used as a specific probe to map the position of nuclease hypersensitive sites. A prominent hypersensitive site was detected within the core promoter. This site was present in both active and inactive ES promoters, suggesting that a protein complex is bound to the promoter irrespective of its transcriptional state. However, none of the regions showed differential nuclease sensitivity between active and inactive transcriptional states. A systematic deletion analysis of the sequences surrounding the active ES promoter in situ confirmed the absence of cis-regulatory elements. We find that only 70 bp within the ES promoter are necessary to support ES regulation. Analysis of the reporter activities in an inactive bloodstream-form ES revealed the existence of an intermediate promoter activity in some clones, but we never observed full activation of more than one ES. The vsg mRNA from this intermediate ES was expressed less efficiently.
Collapse
Affiliation(s)
- M Navarro
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, NY 10021-6399, USA
| | | |
Collapse
|
16
|
Lee MG, Van der Ploeg LH. Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu Rev Microbiol 1997; 51:463-89. [PMID: 9343357 DOI: 10.1146/annurev.micro.51.1.463] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In eukaryotes, RNA polymerase (pol) II transcribes the protein-coding genes, whereas RNA pol I transcribes the genes that encode the three RNA species of the ribosome [the ribosomal RNAs (rRNAs)] at the nucleolus. Protozoan parasites of the order Kinetoplastida may represent an exception, because pol I can mediate the expression of exogenously introduced protein-coding genes in these single-cell organisms. A unique molecular mechanism, which leads to pre-mRNA maturation by trans-splicing, facilitates pol I-mediated protein-coding gene expression in trypanosomes. Trans-splicing adds a capped 39-nucleotide mini-exon, or spliced leader transcript, to the 5' end of the main coding exon posttranscriptionally. In other eukaryotes, the addition of a 5' cap, which is essential for mRNA function, occurs exclusively as a result of RNA pol II-mediated transcription. Given the assumption that cap addition represents the limiting factor, trans-splicing may have uncoupled the requirement for RNA pol II-mediated mRNA production. A comparison of the alpha-amanitin sensitivity of transcription in naturally occurring trypanosome protein-coding genes reveals that a unique subset of protein-coding genes-the variant surface glycoprotein (VSG) expression sites and the procyclin or the procyclic acidic repetitive protein (PARP) genes-are transcribed by an RNA polymerase that is resistant to the mushroom toxin alpha-amanitin, a characteristic of transcription by RNA pol I. Promoter analysis and a pharmacological characterization of the RNA polymerase that transcribes these genes have strengthened the proposal that the VSG expression sites and the PARP genes represent naturally occurring protein-coding genes that are transcribed by RNA pol I.
Collapse
Affiliation(s)
- M G Lee
- Department of Pathology, New York University, New York 10016, USA
| | | |
Collapse
|
17
|
Pham VP, Rothman PB, Gottesdiener KM. Binding of trans-acting factors to the double-stranded variant surface glycoprotein (VSG) expression site promoter of Trypanosoma brucei. Mol Biochem Parasitol 1997; 89:11-23. [PMID: 9297697 DOI: 10.1016/s0166-6851(97)00094-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Trypanosoma brucei evades its host's immune response by utilizing the system of antigenic variation, whereby the organism sequentially expresses antigenically distinct variant surface glycoproteins (VSGs). Actively expressed VSG genes are found in VSG expression sites (ESs), and transcription of these ESs is directed by a small promoter composed of two essential cis-acting elements, the VSG ES promoter upstream element (VUE) and VSG ES promoter downstream element (VDE). Using electrophoretic mobility shift assays, we have identified double-stranded DNA binding activity in bloodstream-form trypanosome nuclear extracts. This activity, the VEP complex, is specific for the VSG ES promoter, and requires the intact sequences of the VUE and VDE in the appropriate spacing. These requirements of VEP Complex formation parallel the requirements for promoter function, suggesting that the VEP complex may be composed of functionally significant trans-acting factors. Furthermore, the requirement of both elements suggests that the binding of factors to the promoter may be cooperative. However, subtly different binding characteristics were observed when we used nuclear extracts derived from procyclic trypanosomes.
Collapse
Affiliation(s)
- V P Pham
- Department of Microbiology, Columbia College of Physicians and Surgeons, New York 10032, USA
| | | | | |
Collapse
|
18
|
Kim KS, Donelson JE. Co-duplication of a variant surface glycoprotein gene and its promoter to an expression site in African trypanosomes. J Biol Chem 1997; 272:24637-45. [PMID: 9305933 DOI: 10.1074/jbc.272.39.24637] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of the metacyclic variant antigen type 7 (MVAT7) variant surface glycoprotein (VSG) gene in bloodstream Trypanosoma brucei rhodesiense involves a duplicative transposition of the gene. The DNA transposition unit extends from a site approximately 3.0 kilobases upstream of the VSG gene through the coding region and includes a 73-base pair sequence that possesses promoter activity in transient transfections. This MVAT7 promoter has 80% identity to a previously characterized promoter for the MVAT4 VSG gene. Nuclear run-on assays demonstrate that the MVAT7 promoter is active in MVAT7 bloodstream organisms and that its transcript is synthesized by an RNA polymerase resistant to alpha-amanitin, consistent with previously published reports regarding VSG gene transcription. The transcription start site was identified by primer extension studies and a modified rapid amplification of cDNA ends protocol. Selective mutational analysis of the MVAT7 promoter showed that two conserved trinucleotide regions are important for full promoter function. This study demonstrates that the MVAT7 VSG gene is co-duplicated with its promoter and transcribed into a monocistronic precursor RNA.
Collapse
Affiliation(s)
- K S Kim
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
19
|
Davies KP, Carruthers VB, Cross GA. Manipulation of the vsg co-transposed region increases expression-site switching in Trypanosoma brucei. Mol Biochem Parasitol 1997; 86:163-77. [PMID: 9200123 DOI: 10.1016/s0166-6851(97)02853-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Disruption of a region of DNA in Trypanosoma brucei immediately upstream of the expressed telomere-proximal variant surface glycoprotein gene (vsg), known as the co-transposed region (CTR), can cause a dramatic increase in the rate at which the active expression site (ES) is switched off and a new ES is switched on. Deletion of most of the CTR in two ESs caused a greater than 100-fold increase in the rate of ES switching, to about 1.3 x 10(-4) per generation. A more dramatic effect was observed when the entire CTR and the 5' coding region of the expressed vsg221 were deleted. In this case a new ES was activated within a few cell divisions. This switch also occurred in cell lines where a second vsg had been inserted into the ES, prior to CTR deletion. These cell lines, which stably co-expressed the inserted and endogenous Vsgs, in equal amounts, did not differ from the wild-type in growth rate or switching frequency, suggesting that simultaneous expression of two Vsgs has no intrinsic effect. CTR deletion did not disturb the inserted vsg117. We tentatively conclude that it was not the disruption of the vsg221 in itself that destabilized the ES. All of the observed switches occurred without additional detectable DNA rearrangements in the switched ES. Deletion of the 70-bp repeats and/or a vsg pseudogene upstream of the CTR did not affect ES stability. Several speculative interpretations of these observation are offered, the most intriguing of which is that the CTR plays some role in modulating chromatin conformation at an ES.
Collapse
Affiliation(s)
- K P Davies
- Laboratory of Molecular Parasitology, Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
20
|
Abstract
Trypanosoma brucei can undergo antigenic variation by switching between distinct telomeric variant surface glycoprotein gene (vsg) expression sites (ESs) or by replacing the active vsg. DNA rearrangements have often been associated with ES switching, but it is unclear if such rearrangements are necessary or whether ES inactivation always accompanies ES activation. To explore these issues, we derived ten independent clones, from the same parent, that had undergone a similar vsg activation event. This was achieved in the absence of an immune response, in vitro, using cells with selectable markers integrated into an ES. Nine of the ten clones had undergone ES switching. Such heritable changes in transcription state occurred at a frequency of approximately 6 x 10(-7). Comparison of switched and un-switched clones highlighted the dynamic nature of T. brucei telomeres, but changes in telomere length were not specifically associated with ES switching. Mapping within and beyond the ESs revealed no detectable DNA rearrangements, indicating that rearrangements are not necessary for ES activation/inactivation. Examination of individual cells indicated that ES activation consistently accompanied inactivation of the previously active ES. In some cases, however, we found cells that appeared to have efficiently established the switched state but which subsequently, at a frequency of approximately 2 x 10(-3), generated cells expressing both pre- and post-switch vsgs. These results show that ES activation/inactivation is usually a coupled process but that cells can inherit a propensity to uncouple these events.
Collapse
Affiliation(s)
- D Horn
- Laboratory of Molecular Parasitology, Rockefeller University, New York, NY 10021-6399, USA
| | | |
Collapse
|
21
|
Li F, Hua SB, Wang CC, Gottesdiener KM. Procyclic Trypanosoma brucei cell lines deficient in ornithine decarboxylase activity. Mol Biochem Parasitol 1996; 78:227-36. [PMID: 8813692 DOI: 10.1016/s0166-6851(96)02630-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ornithine decarboxylase (ODC) is a rate limiting enzyme in the biosynthesis of polyamines. We report here the construction of ODC gene deficient Trypanosoma brucei brucei cell lines by homologous recombination and disruption of the two alleles of the ODC gene. With our first stable transfection vector, we replaced the 2.8 kb SacII ODC gene-containing fragment with a hygromycin-B-phosphotransferase gene (hph) cassette transcribed under the control of the endogenous promoter. For the second ODC allele knock-out, we stably transfected similar constructs that contained either the phleomycin or G418 resistance gene cassette, and included 1 mM putrescine in the media. These experiments resulted in two separate ODC- lines: one hygromycin and phleomycin resistant, the other hygromycin and G418 resistant. The two ODC gene knockout lines were verified by Southern and Northern hybridization, and confirmed by Western blot and enzymatic activity assay. There is no ODC expression in the two ODC- lines and the ODC messages in the single ODC gene knockouts were only half of that of the wild type. When grown in the presence of putrescine, the ODC- lines showed little difference, morphologically, from wild type trypanosomes. The growth rate of these lines varied greatly, depending on the concentration of the putrescine. Interestingly, when putrescine was completely withdrawn from the media, the ODC- trypanosomes soon reached a plateau phase and some cells remained viable for 7-8 weeks. The starved cells could be rescued by the addition of putrescine or introducing back the ODC gene. Cell cycle analysis suggested that putrescine is required for G1-S transition in the procyclic form T. brucei.
Collapse
Affiliation(s)
- F Li
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
22
|
Qi CC, Urményi T, Gottesdiener KM. Analysis of a hybrid PARP/VSG ES promoter in procyclic trypanosomes. Mol Biochem Parasitol 1996; 77:147-59. [PMID: 8813661 DOI: 10.1016/0166-6851(96)02588-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The parasite Trypanosoma brucei changes its variant surface glycoprotein (VSG) coat to escape the host immune system. At a chromosomal locus, we analyzed the promoter that controls expression of VSG genes, using a system developed in collaboration with Urményi and Van der Ploeg (Urményi, T.P. and Van der Ploeg, L.H.T. (1995) Nucleic Acids Res. 23,1010-1016), and showed that the variant surface glycoprotein expression site (VSG ES) promoter directed < 6% the CAT activity produced by the procyclic acidic repetitive protein (PARP) promoter at the same locus. We identified a fragment from the PARP promoter (bp -743 to -111) that contained no intrinsic promoter activity. However, when this fragment was cloned 5' to 3' upstream of the VSG ES promoter, and this hybrid PARP/VSG ES promoter was stably integrated at the RNA polymerase (Pol) II largest subunit gene locus, expression from a CAT gene cassette increased 10-fold. Nascent RNA analysis independently showed that the relative efficiency of alpha-amanitin-resistant transcription directed by the hybrid PARP/VSG ES promoter was more than 6-fold higher than that directed by the wild-type VSG ES promoter. Furthermore, using nascent RNA protection assays, we mapped the transcription start site of the hybrid PARP/VSG ES promoter to the same initiation site as that of the wild-type VSG ES promoter. Finally, we evaluated the functional activity of the hybrid PARP/VSG ES mutant promoter at the dominant VSG gene expression site on the 1.5-Mb chromosome. At this locus, as well, the hybrid PARP/VSG ES promoter directed almost 3-times as much CAT activity as that of the wild-type VSG ES promoter.
Collapse
MESH Headings
- Amanitins/pharmacology
- Animals
- Chloramphenicol O-Acetyltransferase/biosynthesis
- Chloramphenicol O-Acetyltransferase/genetics
- DNA, Protozoan/genetics
- DNA, Recombinant/genetics
- Gene Expression Regulation/genetics
- Genes, Reporter/genetics
- Membrane Glycoproteins/genetics
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Promoter Regions, Genetic/genetics
- Protozoan Proteins/genetics
- RNA Polymerase II/genetics
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Protozoan/analysis
- RNA, Protozoan/biosynthesis
- Transcription, Genetic/genetics
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/growth & development
- Variant Surface Glycoproteins, Trypanosoma/genetics
Collapse
Affiliation(s)
- C C Qi
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
23
|
Abstract
Among pathogenic micro-organisms that evade the mammalian immune responses. Trypanosoma brucei has developed the most elaborate capacity for antigenic variation. Trypanosomes branched early during eukaryotic evolution. They are characterized by many aberrations, ranging from the unusual compartmentation of metabolic pathways to the heresy of RNA editing. The ubiquitous phenomenon of glycosylphosphatidylinositol-anchoring of eukaryotic plasma membrane proteins and RNA trans-splicing (trypanosome genes contain no introns), which adds an identical leader sequence to all trypanosome mRNAs, were first defined during studies of antigenic variation. Genetic transformation of trypanosomes and the high efficiency of gene targeting provide new opportunities to investigate the regulation of antigenic variation. There is every reason to expect trypanosomes to provide further surprises and insights into the evolution of genetic regulatory mechanisms.
Collapse
Affiliation(s)
- G A Cross
- Rockefeller University, New York, NY 10021-6399, USA
| |
Collapse
|
24
|
Blundell PA, Rudenko G, Borst P. Targeting of exogenous DNA into Trypanosoma brucei requires a high degree of homology between donor and target DNA. Mol Biochem Parasitol 1996; 76:215-29. [PMID: 8920008 DOI: 10.1016/0166-6851(95)02560-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Integration of exogenous DNA into the trypanosome genome occurs by homologous recombination only. To test whether a high degree of homology between donor and target DNA is required, we have inserted marker genes for drug resistance into the promoter area of variant surface glycoprotein (VSG) gene expression sites of Trypanosoma brucei, using targeting fragments from two expression sites that are 92% identical. We observed integrations into expression sites that are known to be perfectly matched to the donor flanks, and into subsets of uncharacterized expression sites that are specific for each type of targeting fragment, and that could be similar or identical to the donor flanks. This requirement for very high homology was found in both procyclic and bloodstream-form trypanosomes. We speculate that trypanosomes have a mismatch repair system that suppresses recombination between divergent DNA sequences, and we discuss ways in which the trypanosome might circumvent the requirement for perfect DNA homology in the duplicative transposition of a VSG gene into a VSG gene expression site.
Collapse
Affiliation(s)
- P A Blundell
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam
| | | | | |
Collapse
|
25
|
Pham VP, Qi CC, Gottesdiener KM. A detailed mutational analysis of the VSG gene expression site promoter. Mol Biochem Parasitol 1996; 75:241-54. [PMID: 8992322 DOI: 10.1016/0166-6851(95)02513-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The African trypanosome Trypanosoma brucei is a protozoan parasite that causes the disease African sleeping sickness. The parasite avoids the host's immune response by the process of antigenic variation, or by sequentially expressing antigenically different cell-surface coat proteins. These proteins, called variant surface glycoproteins (VSGs), are expressed from a specific locus, the VSG gene expression site (ES). In an attempt to understand expression of VSG genes, we expanded on earlier investigations of the promoter that controls the large VSG gene expression site transcription unit. We studied VSG ES promoter function both in transient transfection assays, and after stable integration at a chromosomal locus. Analysis of closely spaced deletion mutants showed that the minimum VSG ES promoter fragment that gives full activity is extremely small, and mapped precisely to a fragment that contains no more than -67 bp 5' to the putative transcription initiation site. The promoter lacked an upstream control element, or UCE, an element found at the PARP promoter, and at most eukaryotic Pol I promoters. Furthermore, linker scanning mutagenesis demonstrated that the VSG ES promoter contains at least two essential regulatory elements, including sequences within the region -67/-60 and the region -35/-20, both numbered relative to the initiation site. An altered promoter with mutated nucleotides surrounding the transcription initiation site still directed wild-type levels of expression. In this study, the results were similar for both insect and bloodstream form trypanosomes, suggesting that the same basic machinery for expression from the VSG ES promoter is found in both stages of the parasite.
Collapse
Affiliation(s)
- V P Pham
- Department of Microbiology, Columbia College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
26
|
Nagoshi YL, Alarcon CM, Donelson JE. The putative promoter for a metacyclic VSG gene in African trypanosomes. Mol Biochem Parasitol 1995; 72:33-45. [PMID: 8538698 DOI: 10.1016/0166-6851(95)00062-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During their metacyclic developmental stage, African trypanosomes are coated with one of 12-15 variant surface glycoproteins (VSGs) that define different metacyclic variant antigen types (MVATs). The MVAT VSG genes are located near telomeres of large chromosomes and are expressed without rearrangement in the metacyclic stage. We have cloned and examined the telomere-linked MVAT5 VSG gene and its upstream expression site associated gene (ESAG I) which are separated by 4.5 kb. Within this 4.5-kb intergenic region is an 87-bp sequence that serves as a strong promoter for a luciferase reporter gene in transient transfection assays. This 87-bp sequence is similar, but not identical, to the promoter for another MVAT VSG gene. UV irradiation experiments were used to detect RNA synthesis from this MVAT5 promoter in bloodstream trypanosomes expressing an unrelated VSG. We propose that this sequence is a specific promoter for the MVAT5 VSG mRNA that occurs in about 10% of the trypanosome population during the metacyclic stage of the parasites' life cycle.
Collapse
Affiliation(s)
- Y L Nagoshi
- Genetics Ph.D. Program, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
27
|
Gottesdiener KM. A new VSG expression site-associated gene (ESAG) in the promoter region of Trypanosoma brucei encodes a protein with 10 potential transmembrane domains. Mol Biochem Parasitol 1994; 63:143-51. [PMID: 8183314 DOI: 10.1016/0166-6851(94)90017-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In Trypanosoma brucei bloodstream variants 118 cl 1, 118a and 118b, the actively transcribed VSG gene expression site (ES) is located on a 1.5 Mb chromosome. The promoter region for this polycistronic transcription unit is unusual in that there are two, tandemly located, promoter repeats, each 2.1 kb in size, separated by 13 kb of intervening DNA. As previously shown, at inactivation of this ES, the promoter region was rearranged with the deletion of 15 kb of DNA. This result prompted us to search through the deleted DNA sequences to identify additional genes that might play a role in the inactivation of ESs. In this report, we identify a gene, encoding a putative transmembrane protein, that was deleted at this locus by the rearrangement event. This gene, which we tentatively call expression-site-associated-gene 10 (ESAG10), contains 10 potential transmembrane domains and had been located to T. brucei stock 427-60, ES-containing chromosomes.
Collapse
Affiliation(s)
- K M Gottesdiener
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
28
|
Aly R, Argaman M, Pinelli E, Shapira M. Intergenic sequences from the heat-shock protein 83-encoding gene cluster in Leishmania mexicana amazonensis promote and regulate reporter gene expression in transfected parasites. Gene 1993; 127:155-63. [PMID: 8500758 DOI: 10.1016/0378-1119(93)90714-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Regulation of expression from hsp83 gene cluster encoding heat-shock protein (HSP) 83 of the protozoan parasite Leishmania mexicana amazonensis (L.m.a) was examined. The first gene from this cluster, along with 8 kb of flanking sequences, was cloned, and intergenic region (IR) sequences were found upstream from the cluster. L.m.a. parasites were electroporated with a plasmid (pICI) in which the chloramphenicol acetyltransferase (CAT)-encoding gene (cat) was cloned between two IRs derived from an internal repeat unit of the hsp83 cluster, resulting in CAT activity at 26 degrees C. Exposure of cells transfected with this plasmid to a 35 degrees C heat shock led to an increase in CAT activity, within a range similar to that observed for the accumulation of hsp83 steady-state mRNA at 35 degrees C. S1 analysis of the hsp83 mRNA showed that the major part of the IR was transcribed and mostly present as 3' non-translated extensions. Deletion analysis of the flanking regions indicated that the presence of IR sequences, both upstream and downstream from cat, was critical to its expression. Partial deletions that removed the original AG splice acceptor site (leaving 289 bp upstream) and downstream IR sequences (leaving 200 bp) did not eliminate CAT activity. However, this combined deletion altered the effect of temperature on cat expression in transfected cells, as compared with the activity measured in cells transfected with the original plasmid.
Collapse
Affiliation(s)
- R Aly
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
29
|
Abstract
Several species of the genus Trypanosoma cause parasitic diseases of considerable medical and veterinary importance throughout Africa, Asia and the Americas. These parasites exhibit considerable intra-species genetic diversity and variation, which has complicated their taxonomic classification. This diversity and variation can be defined at the level of both the genome and of individual genes. The nuclear genome shows considerable inter- and intra-species plasticity in terms of chromosome number and size (molecular karyotype). The mitochondrial (kDNA) genome also varies considerably between species, especially in terms of minicircle size and organization. There is also considerable intra-specific sequence diversity in minicircles and within the Variable Region of the maxicircle. Restriction enzyme analysis of this diversity has lead to the concept of 'schizodemes'. At the gene level, isoenzyme analysis has proven very useful for strain and isolate identification, with the classification into numerous 'zymodemes'. Considerable antigenic diversity has also been identified in T. cruzi and T. brucei, with the development of 'serodemes' in the latter. In addition to this inter-strain diversity, African trypanosomes (T. brucei, T. congolense, and T. vivax) exhibit the phenomenon of antigenic variation, where individual parasites are able to express any one of hundreds of different copies of the Variant Surface Glycoprotein gene at any particular time. The molecular mechanisms underlying antigenic variation are now understood in considerable detail. The implication of this molecular diversity and variation are discussed in terms of trypanosome taxonomy and disease control.
Collapse
Affiliation(s)
- P J Myler
- Seattle Biomedical Research Institute, WA 98109-1651
| |
Collapse
|
30
|
Abstract
African trypanosomes evade the humoral immune response by periodically changing the antigenic identity of their variant cell-surface glycoprotein (VSG) coat. Antigenic variation relies on DNA rearrangement events that can translocate a silent VSG gene to a telomerically located VSG gene expression site. Antigenic switches can also be brought about by the differential transcriptional control of the expression sites, only one of which is transcribed at any time.
Collapse
Affiliation(s)
- L H Van der Ploeg
- Department of Genetics and Molecular Biology, Merck Research Laboratories, Rahway, NJ 07065
| | | | | |
Collapse
|
31
|
Clayton C. Developmental regulation of nuclear gene expression in Trypanosoma brucei. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 43:37-66. [PMID: 1410447 DOI: 10.1016/s0079-6603(08)61043-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C Clayton
- Zentrum für Molekulare Biologie, Heidelberg, Germany
| |
Collapse
|