1
|
Kimura T, Hirai S, Kujirai T, Fujita R, Ogasawara M, Ehara H, Sekine SI, Takizawa Y, Kurumizaka H. Cryo-EM structure and biochemical analyses of the nucleosome containing the cancer-associated histone H3 mutation E97K. Genes Cells 2024; 29:769-781. [PMID: 38972377 PMCID: PMC11448003 DOI: 10.1111/gtc.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
The Lys mutation of the canonical histone H3.1 Glu97 residue (H3E97K) is found in cancer cells. Previous biochemical analyses revealed that the nucleosome containing the H3E97K mutation is extremely unstable as compared to the wild-type nucleosome. However, the mechanism by which the H3E97K mutation causes nucleosome instability has not been clarified yet. In the present study, the cryo-electron microscopy structure of the nucleosome containing the H3E97K mutation revealed that the entry/exit DNA regions of the H3E97K nucleosome are disordered, probably by detachment of the nucleosomal DNA from the H3 N-terminal regions. This may change the intra-molecular amino acid interactions with the replaced H3 Lys97 residue, inducing structural distortion around the mutated position in the nucleosome. Consistent with the nucleosomal DNA end flexibility and the nucleosome instability, the H3E97K mutation exhibited reduced binding of linker histone H1 to the nucleosome, defective activation of PRC2 (the essential methyltransferase for facultative heterochromatin formation) with a poly-nucleosome, and enhanced nucleosome transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Tomoaki Kimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Hirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Risa Fujita
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Ehara
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| |
Collapse
|
2
|
Rössl A, Denoncourt A, Lin MS, Downey M. A synthetic non-histone substrate to study substrate targeting by the Gcn5 HAT and sirtuin HDACs. J Biol Chem 2019; 294:6227-6239. [PMID: 30804216 DOI: 10.1074/jbc.ra118.006051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Gcn5 and sirtuins are highly conserved histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes that were first characterized as regulators of gene expression. Although histone tails are important substrates of these enzymes, they also target many nonhistone proteins that function in diverse biological processes. However, the mechanisms used by these enzymes to choose their nonhistone substrates are unknown. Previously, we used SILAC-based MS to identify novel nonhistone substrates of Gcn5 and sirtuins in yeast and found a shared target consensus sequence. Here, we use a synthetic biology approach to demonstrate that this consensus sequence can direct acetylation and deacetylation targeting by these enzymes in vivo Remarkably, fusion of the sequence to a nonsubstrate confers de novo acetylation that is regulated by both Gcn5 and sirtuins. We exploit this synthetic fusion substrate as a tool to define subunits of the Gcn5-containing SAGA and ADA complexes required for nonhistone protein acetylation. In particular, we find a key role for the Ada2 and Ada3 subunits in regulating acetylations on our fusion substrate. In contrast, other subunits tested were largely dispensable, including those required for SAGA stability. In an extended analysis, defects in proteome-wide acetylation observed in ada3Δ mutants mirror those in ada2Δ mutants. Altogether, our work argues that nonhistone protein acetylation by Gcn5 is determined in part by specific amino acids surrounding target lysines but that even optimal sequences require both Ada2 and Ada3 for robust acetylation. The synthetic fusion substrate we describe can serve as a tool to further dissect the regulation of both Gcn5 and sirtuin activities in vivo.
Collapse
Affiliation(s)
- Anthony Rössl
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada, and
| | - Alix Denoncourt
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada, and
| | | | - Michael Downey
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, .,Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada, and
| |
Collapse
|
3
|
Rao AR, Pellegrini M. Regulation of the yeast metabolic cycle by transcription factors with periodic activities. BMC SYSTEMS BIOLOGY 2011; 5:160. [PMID: 21992532 PMCID: PMC3216092 DOI: 10.1186/1752-0509-5-160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/12/2011] [Indexed: 01/03/2023]
Abstract
Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.
Collapse
Affiliation(s)
- Aliz R Rao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, USA.
| | | |
Collapse
|
4
|
Venters BJ, Wachi S, Mavrich TN, Andersen BE, Jena P, Sinnamon AJ, Jain P, Rolleri NS, Jiang C, Hemeryck-Walsh C, Pugh BF. A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 2011; 41:480-92. [PMID: 21329885 DOI: 10.1016/j.molcel.2011.01.015] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/28/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
Hundreds of different proteins regulate and implement transcription in Saccharomyces. Yet their interrelationships have not been investigated on a comprehensive scale. Here we determined the genome-wide binding locations of 200 transcription-related proteins, under normal and acute heat-shock conditions. This study distinguishes binding between distal versus proximal promoter regions as well as the 3' ends of genes for nearly all mRNA and tRNA genes. This study reveals (1) a greater diversity and specialization of regulation associated with the SAGA transcription pathway compared to the TFIID pathway, (2) new regulators enriched at tRNA genes, (3) a global co-occupancy network of >20,000 unique regulator combinations that show a high degree of regulatory interconnections among lowly expressed genes, (4) regulators of the SAGA pathway located largely distal to the core promoter and regulators of the TFIID pathway located proximally, and (5) distinct mobilization of SAGA- versus TFIID-linked regulators during acute heat shock.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Transcription regulation by the noncoding RNA SRG1 requires Spt2-dependent chromatin deposition in the wake of RNA polymerase II. Mol Cell Biol 2011; 31:1288-300. [PMID: 21220514 DOI: 10.1128/mcb.01083-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spt2 is a chromatin component with roles in transcription and posttranscriptional regulation. Recently, we found that Spt2 travels with RNA polymerase II (RNAP II), is involved in elongation, and plays important roles in chromatin modulations associated with this process. In this work, we dissect the function of Spt2 in the repression of SER3. This gene is repressed by a transcription interference mechanism involving the transcription of an adjacent intergenic region, SRG1, that leads to the production of a noncoding RNA (ncRNA). We find that Spt2 and Spt6 are required for the repression of SER3 by SRG1 transcription. Intriguingly, we demonstrate that these effects are not mediated through modulations of the SRG1 transcription rate. Instead, we show that the SRG1 region overlapping the SER3 promoter is occluded by randomly positioned nucleosomes that are deposited behind RNAP II transcribing SRG1 and that their deposition is dependent on the presence of Spt2. Our data indicate that Spt2 is required for the major chromatin deposition pathway that uses old histones to refold nucleosomes in the wake of RNAP II at the SRG1-SER3 locus. Altogether, these observations suggest a new mechanism of repression by ncRNA transcription involving a repressive nucleosomal structure produced by an Spt2-dependent pathway following RNAP II passage.
Collapse
|
6
|
Sikdar N, Banerjee S, Zhang H, Smith S, Myung K. Spt2p defines a new transcription-dependent gross chromosomal rearrangement pathway. PLoS Genet 2008; 4:e1000290. [PMID: 19057669 PMCID: PMC2585797 DOI: 10.1371/journal.pgen.1000290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 11/03/2008] [Indexed: 01/18/2023] Open
Abstract
Large numbers of gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. High mobility group 1 (HMG1) protein is a non-histone DNA-binding protein and is highly expressed in different types of tumors. The high expression of HMG1 could alter DNA structure resulting in GCRs. Spt2p is a non-histone DNA binding protein in Saccharomyces cerevisiae and shares homology with mammalian HMG1 protein. We found that Spt2p overexpression enhances GCRs dependent on proteins for transcription elongation and polyadenylation. Excess Spt2p increases the number of cells in S phase and the amount of single-stranded DNA (ssDNA) that might be susceptible to cause DNA damage and GCR. Consistently, RNase H expression, which reduces levels of ssDNA, decreased GCRs in cells expressing high level of Spt2p. Lastly, high transcription in the chromosome V, the location at which GCR is monitored, also enhanced GCR formation. We propose a new pathway for GCR where DNA intermediates formed during transcription can lead to genomic instability. Transmitting genetic information without creating deleterious genetic alternations is one of the cell's most important tasks. When cells cannot repair DNA damage properly, it leads to genomic instability and results in genetic disorders, including cancer. Many studies, including ours, have started to uncover pathways suppressing one type of genomic instability, gross chromosomal rearrangement (GCR). However, the pathogenic mechanism to promote GCR that could mimic the hyper-activation of oncogenes during tumorigenesis is not clearly understood. The high expression of HMG1 has been documented many times as a putative oncogene. Therefore, we tested whether high expression of its yeast homologue, Spt2p, could induce pathogenic effect including GCR formation. Excess Spt2p expression indeed induced GCR formation dependent on its role in transcription elongation and polyadenylation. Further studies to find mechanisms resided in GCR formation by Spt2p revealed that excess Spt2p increased single-stranded DNA to produce GCR. Our studies provide a mechanistic bridge between transcription and genomic instability.
Collapse
Affiliation(s)
- Nilabja Sikdar
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Soma Banerjee
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Han Zhang
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Dobi KC, Winston F. Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:5575-86. [PMID: 17526727 PMCID: PMC1952096 DOI: 10.1128/mcb.00459-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most fundamental aspects of transcription are conserved among eukaryotes. One striking difference between yeast Saccharomyces cerevisiae and metazoans, however, is the distance over which transcriptional activation occurs. In S. cerevisiae, upstream activation sequences (UASs) are generally located within a few hundred base pairs of a target gene, while in Drosophila and mammals, enhancers are often several kilobases away. To study the potential for long-distance activation in S. cerevisiae, we constructed and analyzed reporters in which the UAS-TATA distance varied. Our results show that UASs lose the ability to activate normal transcription as the UAS-TATA distance increases. Surprisingly, transcription does initiate, but proximally to the UAS, regardless of its location. To identify factors affecting long-distance activation, we screened for mutants allowing activation of a reporter when the UAS-TATA distance is 799 bp. These screens identified four loci, SIN4, SPT2, SPT10, and HTA1-HTB1, with sin4 mutations being the strongest. Our results strongly suggest that long-distance activation in S. cerevisiae is normally limited by Sin4 and other factors and that this constraint plays a role in ensuring UAS-core promoter specificity in the compact S. cerevisiae genome.
Collapse
Affiliation(s)
- Krista C Dobi
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
8
|
Hershkovits G, Bangio H, Cohen R, Katcoff DJ. Recruitment of mRNA cleavage/polyadenylation machinery by the yeast chromatin protein Sin1p/Spt2p. Proc Natl Acad Sci U S A 2006; 103:9808-13. [PMID: 16788068 PMCID: PMC1502535 DOI: 10.1073/pnas.0602014103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The yeast chromatin protein Sin1p/Spt2p has long been studied, but the understanding of its function has remained elusive. The protein has sequence similarity to HMG1, specifically binds crossing DNA structures, and serves as a negative transcriptional regulator of a small family of genes that are activated by the SWI/SNF chromatin-remodeling complex. Recently, it has been implicated in maintaining the integrity of chromatin during transcription elongation. Here we present experiments whose results indicate that Sin1p/Spt2 is required for, and is directly involved in, the efficient recruitment of the mRNA cleavage/polyadenylation complex. This conclusion is based on the following findings: Sin1p/Spt2 frequently binds specifically downstream of many ORFs but almost always upstream of the first polyadenylation site. It directly interacts with Fir1p, a component of the cleavage/polyadenylation complex. Disruption of Sin1p/Spt2p results in foreshortened poly(A) tracts on mRNA. It is synthetically lethal with Cdc73p, which is involved in the recruitment of the complex. This report shows that a chromatin component is involved in 3' end processing of RNA.
Collapse
Affiliation(s)
- Gitit Hershkovits
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Haim Bangio
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ronit Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Don J. Katcoff
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 2006; 34:2653-62. [PMID: 16714444 PMCID: PMC1464108 DOI: 10.1093/nar/gkl338] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Histone post-translational modifications occur, not only in the N-terminal tail domains, but also in the core domains. While modifications in the N-terminal tail function largely through the regulation of the binding of non-histone proteins to chromatin, based on their location in the nucleosome, core domain modifications may also function through distinct mechanisms involving structural alterations to the nucleosome. This article reviews the recent developments in regards to these novel histone modifications and discusses their important role in the regulation of chromatin structure.
Collapse
Affiliation(s)
| | - Mark R. Parthun
- To whom correspondence should be addressed. Tel: +1 614 292 6215; Fax: +1 614 292 4118;
| |
Collapse
|
10
|
Nourani A, Robert F, Winston F. Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:1496-509. [PMID: 16449659 PMCID: PMC1367203 DOI: 10.1128/mcb.26.4.1496-1509.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spt2/Sin1 is a DNA binding protein with HMG-like domains that has been suggested to play a role in chromatin-mediated transcription in Saccharomyces cerevisiae. Previous studies have suggested models in which Spt2 plays an inhibitory role in the initiation of transcription of certain genes. In this work, we have taken several approaches to study Spt2 in greater detail. Our results have identified previously unknown genetic interactions between spt2Delta and mutations in genes encoding transcription elongation factors, including members of the PAF and HIR/HPC complexes. In addition, genome-wide and gene-specific chromatin immunoprecipitation analyses suggest that Spt2 is primarily associated with coding regions in a transcription-dependent fashion. Furthermore, our results show that Spt2, like other elongation factors, is required for the repression of transcription from a cryptic promoter within a coding region and that Spt2 is also required for repression of recombination within transcribed regions. Finally, we provide evidence that Spt2 plays a role in regulating the levels of histone H3 over transcribed regions. Taken together, our results suggest a direct link for Spt2 with transcription elongation, chromatin dynamics, and genome stability.
Collapse
Affiliation(s)
- Amine Nourani
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | |
Collapse
|
11
|
Doan DN, Veal TM, Yan Z, Wang W, Jones SN, Imbalzano AN. Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 2004; 23:3462-73. [PMID: 14990991 DOI: 10.1038/sj.onc.1207472] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The INI1/hSNF5 tumor suppressor is an integral component of mammalian SWI/SNF chromatin remodeling enzymes that contain SNF2 family ATPases BRM (Brahma) or BRG1 (Brahma Related Gene 1) and that contribute to the regulation of many genes. Genetic studies of yeast SWI/SNF enzyme revealed similar phenotypes when single or multiple components of the enzyme were deleted, indicating a requirement for each subunit. To address the contribution of INI1 in the regulation of SWI/SNF-dependent genes in mammalian cells, we examined the expression of multiple BRG1-dependent, constitutively expressed genes in INI1-deficient cancer cell lines. At least one INI1-deficient line expressed each gene, and reintroduction of INI1 had negligible effects on expression levels. Lack of INI1 also did not prevent interferon gamma (IFNgamma)-mediated induction of CIITA, which is BRG1 dependent, and GBP-1, which is BRG1 enhanced, and reintroduction of INI1 had minimal effects. Chromatin immunoprecipitation experiments revealed that BRG1 inducibly binds to the CIITA promoter despite the absence of INI1. Unlike yeast deleted for the INI1 homologue, SWI/SNF enzymes in INI1-deficient cells were largely intact. Thus in human cells, SWI/SNF enzyme complex formation and the expression of many BRG1-dependent genes are independent of INI1.
Collapse
Affiliation(s)
- Diem N Doan
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
12
|
Muthurajan UM, Bao Y, Forsberg LJ, Edayathumangalam RS, Dyer PN, White CL, Luger K. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J 2004; 23:260-71. [PMID: 14739929 PMCID: PMC1271754 DOI: 10.1038/sj.emboj.7600046] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 11/24/2003] [Indexed: 11/09/2022] Open
Abstract
Here we describe 11 crystal structures of nucleosome core particles containing individual point mutations in the structured regions of histones H3 and H4. The mutated residues are located at the two protein-DNA interfaces flanking the nucleosomal dyad. Five of the mutations partially restore the in vivo effects of SWI/SNF inactivation in yeast. We find that even nonconservative mutations of these residues (which exhibit a distinct phenotype in vivo) have only moderate effects on global nucleosome structure. Rather, local protein-DNA interactions are disrupted and weakened in a subtle and complex manner. The number of lost protein-DNA interactions correlates directly with an increased propensity of the histone octamer to reposition with respect to the DNA, and with an overall destabilization of the nucleosome. Thus, the disruption of only two to six of the approximately 120 direct histone-DNA interactions within the nucleosome has a pronounced effect on nucleosome mobility and stability. This has implications for our understanding of how these structures are made accessible to the transcription and replication machinery in vivo.
Collapse
Affiliation(s)
- Uma M Muthurajan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yunhe Bao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lawrence J Forsberg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Pamela N Dyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Cindy L White
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Flaus A, Rencurel C, Ferreira H, Wiechens N, Owen-Hughes T. Sin mutations alter inherent nucleosome mobility. EMBO J 2004; 23:343-53. [PMID: 14726954 PMCID: PMC1271755 DOI: 10.1038/sj.emboj.7600047] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 11/26/2003] [Indexed: 11/09/2022] Open
Abstract
Previous studies have identified sin mutations that alleviate the requirement for the yeast SWI/SNF chromatin remodelling complex, which include point changes in the yeast genes encoding core histones. Here we characterise the biochemical properties of nucleosomes bearing these mutations. We find that sin mutant nucleosomes have a high inherent thermal mobility. As the SWI/SNF complex can alter nucleosome positioning, the higher mobility of sin mutant nucleosomes provides a means by which sin mutations may substitute for SWI/SNF function. The location of sin mutations also provides a new opportunity for insights into the mechanism for nucleosome mobilisation. We find that both mutations altering histone DNA contacts at the nucleosome dyad and mutations in the dimer-tetramer interface influence nucleosome mobility. Furthermore, incorporation of H2A.Z into nucleosomes, which also alters dimer-tetramer interactions, affects nucleosome mobility. Thus, variation of histone sequence or subtype provides a means by which eukaryotes may regulate access to chromatin through alterations to nucleosome mobility.
Collapse
Affiliation(s)
- Andrew Flaus
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chantal Rencurel
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Helder Ferreira
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola Wiechens
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tom Owen-Hughes
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Tel.: +44 1382 345796; Fax: +44 1382 348072; E-mail:
| |
Collapse
|
14
|
Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W, Smith TW, Imbalzano AN, Jones SN. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 2001; 21:3598-603. [PMID: 11313485 PMCID: PMC100281 DOI: 10.1128/mcb.21.10.3598-3603.2001] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 02/14/2001] [Indexed: 01/29/2023] Open
Abstract
SNF5/INI1 is a component of the ATP-dependent chromatin remodeling enzyme family SWI/SNF. Germ line mutations of INI1 have been identified in children with brain and renal rhabdoid tumors, indicating that INI1 is a tumor suppressor. Here we report that disruption of Ini1 expression in mice results in early embryonic lethality. Ini1-null embryos die between 3.5 and 5.5 days postcoitum, and Ini1-null blastocysts fail to hatch, form the trophectoderm, or expand the inner cell mass when cultured in vitro. Furthermore, we report that approximately 15% of Ini1-heterozygous mice present with tumors, mostly undifferentiated or poorly differentiated sarcomas. Tumor formation is associated with a loss of heterozygocity at the Ini1 locus, characterizing Ini1 as a tumor suppressor in mice. Thus, Ini1 is essential for embryo viability and for repression of oncogenesis in the adult organism.
Collapse
Affiliation(s)
- C J Guidi
- Departments of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The state of chromatin (the packaging of DNA in eukaryotes) has long been recognized to have major effects on levels of gene expression, and numerous chromatin-altering strategies-including ATP-dependent remodeling and histone modification-are employed in the cell to bring about transcriptional regulation. Of these, histone acetylation is one of the best characterized, as recent years have seen the identification and further study of many histone acetyltransferase (HAT) proteins and their associated complexes. Interestingly, most of these proteins were previously shown to have coactivator or other transcription-related functions. Confirmed and putative HAT proteins have been identified from various organisms from yeast to humans, and they include Gcn5-related N-acetyltransferase (GNAT) superfamily members Gcn5, PCAF, Elp3, Hpa2, and Hat1: MYST proteins Sas2, Sas3, Esa1, MOF, Tip60, MOZ, MORF, and HBO1; global coactivators p300 and CREB-binding protein; nuclear receptor coactivators SRC-1, ACTR, and TIF2; TATA-binding protein-associated factor TAF(II)250 and its homologs; and subunits of RNA polymerase III general factor TFIIIC. The acetylation and transcriptional functions of these HATs and the native complexes containing them (such as yeast SAGA, NuA4, and possibly analogous human complexes) are discussed. In addition, some of these HATs are also known to modify certain nonhistone transcription-related proteins, including high-mobility-group chromatin proteins, activators such as p53, coactivators, and general factors. Thus, we also detail these known factor acetyltransferase (FAT) substrates and the demonstrated or potential roles of their acetylation in transcriptional processes.
Collapse
Affiliation(s)
- D E Sterner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
16
|
Yu Y, Eriksson P, Stillman DJ. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Mol Cell Biol 2000; 20:2350-7. [PMID: 10713159 PMCID: PMC85404 DOI: 10.1128/mcb.20.7.2350-2357.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent work has shown that transcription of the yeast HO gene involves the sequential recruitment of a series of transcription factors. We have performed a functional analysis of HO regulation by determining the ability of mutations in SIN1, SIN3, RPD3, and SIN4 negative regulators to permit HO expression in the absence of certain activators. Mutations in the SIN1 (=SPT2) gene do not affect HO regulation, in contrast to results of other studies using an HO:lacZ reporter, and our data show that the regulatory properties of an HO:lacZ reporter differ from that of the native HO gene. Mutations in SIN3 and RPD3, which encode components of a histone deacetylase complex, show the same pattern of genetic suppression, and this suppression pattern differs from that seen in a sin4 mutant. The Sin4 protein is present in two transcriptional regulatory complexes, the RNA polymerase II holoenzyme/mediator and the SAGA histone acetylase complex. Our genetic analysis allows us to conclude that Swi/Snf chromatin remodeling complex has multiple roles in HO activation, and the data suggest that the ability of the SBF transcription factor to bind to the HO promoter may be affected by the acetylation state of the HO promoter. We also demonstrate that the Nhp6 architectural transcription factor, encoded by the redundant NHP6A and NHP6B genes, is required for HO expression. Suppression analysis with sin3, rpd3, and sin4 mutations suggests that Nhp6 and Gcn5 have similar functions. A gcn5 nhp6a nhp6b triple mutant is extremely sick, suggesting that the SAGA complex and the Nhp6 architectural transcription factors function in parallel pathways to activate transcription. We find that disruption of SIN4 allows this strain to grow at a reasonable rate, indicating a critical role for Sin4 in detecting structural changes in chromatin mediated by Gcn5 and Nhp6. These studies underscore the critical role of chromatin structure in regulating HO gene expression.
Collapse
Affiliation(s)
- Y Yu
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
17
|
Abstract
Chromatin presents a significant obstacle to transcription, but two means of overcoming its repressive effects, histone acetylation and the activities of the Swi-Snf complex, have been proposed. Histone acetylation and Swi-Snf activity have been shown to be crucial for transcriptional induction and to facilitate binding of transcription factors to DNA. By regulating the activity of the Swi-Snf complex in vivo, we found that active transcription requires continuous Swi-Snf function, demonstrating a role for this complex beyond the induction of transcription. Despite the presumably generalized packaging of genes into chromatin, previous studies have indicated that the transcriptional requirements for the histone acetyltransferase, Gcn5, and the Swi-Snf complex are limited to a handful of genes. However, inactivating Swi-Snf function in cells also lacking GCN5 revealed defects in transcription of several genes previously thought to be SWI-SNF- and GCN5-independent. These findings suggest that chromatin remodeling plays a widespread role in gene expression and that these two chromatin remodeling activities perform independent and overlapping functions during transcriptional activation.
Collapse
Affiliation(s)
- S R Biggar
- Departments of Developmental Biology and Pathology, Stanford University Medical School, Stanford, CA 94305, USA
| | | |
Collapse
|
18
|
Baxter BK, Craig EA. Suppression of an Hsp70 mutant phenotype in Saccharomyces cerevisiae through loss of function of the chromatin component Sin1p/Spt2p. J Bacteriol 1998; 180:6484-92. [PMID: 9851990 PMCID: PMC107749 DOI: 10.1128/jb.180.24.6484-6492.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ssa subfamily of Hsp70 molecular chaperones in the budding yeast Saccharomyces cerevisiae has four members, encoded by SSA1, SSA2, SSA3, and SSA4. Deletion of the two constitutively expressed genes, SSA1 and SSA2, results in cells which are slow growing and temperature sensitive. In this study, we demonstrate that an extragenic suppressor of the temperature sensitivity of ssa1 ssa2 strains, EXA1-1, is a loss-of-function mutation in SIN1/SPT2, which encodes a nonhistone component of chromatin. Loss of function of Sin1p leads to overexpression of SSA3 in the ssa1 ssa2 mutant background, at a level which is sufficient to mediate suppression. In a strain which is wild type for SSA genes, we detected no effect of Sin1p on Ssa3p expression except under conditions of heat shock. Existing data indicate that expression of SSA3 in the ssa1 ssa2 mutant background as well as in heat-shocked wild-type strains is mediated by the heat shock transcription factor HSF. Our findings suggest that it is HSF-mediated induction of SSA3 which is modulated by Sin1p. The EXA1-1 suppressor mutation thus improves the growth of ssa1 ssa2 strains by selectively increasing HSF-mediated expression of SSA3.
Collapse
Affiliation(s)
- B K Baxter
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
19
|
Pérez-Martín J, Johnson AD. The C-terminal domain of Sin1 interacts with the SWI-SNF complex in yeast. Mol Cell Biol 1998; 18:4157-64. [PMID: 9632800 PMCID: PMC109000 DOI: 10.1128/mcb.18.7.4157] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the SWI-SNF complex has been proposed to antagonize the repressive effects of chromatin by disrupting nucleosomes. The SIN genes were identified as suppressors of defects in the SWI-SNF complex, and the SIN1 gene encodes an HMG1-like protein that has been proposed to be a component of chromatin. Specific mutations (sin mutations) in both histone H3 and H4 genes produce the same phenotypic effects as do mutations in the SIN1 gene. In this study, we demonstrate that Sin1 and the H3 and H4 histones interact genetically and that the C terminus of Sin1 physically associates with components of the SWI-SNF complex. In addition, we demonstrate that this interaction is blocked in the full-length Sin1 protein by the N-terminal half of the protein. Based on these and additional results, we propose that Sin1 acts as a regulatable bridge between the SWI-SNF complex and the nucleosome.
Collapse
Affiliation(s)
- J Pérez-Martín
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA
| | | |
Collapse
|
20
|
Côté J, Peterson CL, Workman JL. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci U S A 1998; 95:4947-52. [PMID: 9560208 PMCID: PMC20193 DOI: 10.1073/pnas.95.9.4947] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To investigate the mechanism of SWI/SNF action, we have analyzed the pathway by which SWI/SNF stimulates formation of transcription factor-bound nucleosome core complexes. We report here that the SWI/SNF complex binds directly to nucleosome cores and uses the energy of ATP hydrolysis to disrupt histone/DNA interactions, altering the preferred path of DNA bending around the histone octamer. This disruption occurs without dissociating the DNA from the surface of the histone octamer. ATP-dependent disruption of nucleosomal DNA by SWI/SNF generates an altered nucleosome core conformation that can persist for an extended period after detachment of the SWI/SNF complex. This disrupted conformation retains an enhanced affinity for the transcription factor GAL4-AH. Thus, ATP-dependent nucleosome core disruption and enhanced binding of the transcription factor can be temporally separated. These results indicate that SWI/SNF can act transiently in the remodeling of chromatin structure, even before interactions of transcription factors.
Collapse
Affiliation(s)
- J Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec, Quebec City, Qc G1R 2J6, Canada.
| | | | | |
Collapse
|
21
|
Pérez-Martín J, Johnson AD. Mutations in chromatin components suppress a defect of Gcn5 protein in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:1049-54. [PMID: 9448002 PMCID: PMC108817 DOI: 10.1128/mcb.18.2.1049] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The yeast GCN5 gene encodes the catalytic subunit of a nuclear histone acetyltransferase and is part of a high-molecular-weight complex involved in transcriptional regulation. In this paper we show that full activation of the HO promoter in vivo requires the Gcn5 protein and that defects in this protein can be suppressed by deletion of the RPD3 gene, which encodes a histone deacetylase. These results suggest an interplay between acetylation and deacetylation of histones in the regulation of the HO gene. We also show that mutations in either the H4 or the H3 histone gene, as well as mutations in the SIN1 gene, which encodes an HMG1-like protein, strongly suppress the defects produced by the gcn5 mutant. These results suggest a hierarchy of action in the process of chromatin remodeling.
Collapse
Affiliation(s)
- J Pérez-Martín
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA
| | | |
Collapse
|
22
|
Kurumizaka H, Wolffe AP. Sin mutations of histone H3: influence on nucleosome core structure and function. Mol Cell Biol 1997; 17:6953-69. [PMID: 9372928 PMCID: PMC232553 DOI: 10.1128/mcb.17.12.6953] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sin mutations in Saccharomyces cerevisiae alleviate transcriptional defects that result from the inactivation of the yeast SWVI/SNF complex. We have investigated the structural and functional consequences for the nucleosome of Sin mutations in histone H3. We directly test the hypothesis that mutations in histone H3 leading to a SWI/SNF-independent (Sin) phenotype in yeast lead to nucleosomal destabilization. In certain instances this is shown to be true; however, nucleosomal destabilization does not always occur. Topoisomerase I-mediated relaxation of minichromosomes assembled with either mutant histone H3 or wild-type H3 together with histones H2A, H2B, and H4 indicates that DNA is constrained into nucleosomal structures containing either mutant or wild-type proteins. However, nucleosomes containing particular mutant H3 molecules (R116-H and T118-I) are more accessible to digestion by micrococcal nuclease and do not constrain DNA in a precise rotational position, as revealed by digestion with DNase I. This result establishes that Sin mutations in histone H3 located close to the dyad axis can destabilize histone-DNA contacts at the periphery of the nucleosome core. Other nucleosomes containing a distinct mutant H3 molecule (E105-K) associated with a Sin phenotype show very little change in nucleosome structure and stability compared to wild-type nucleosomes. Both mutant and wild-type nucleosomes continue to restrict the binding of either TATA-binding protein/transcription factor IIA (TFIIA) or the RNA polymerase III transcription machinery. Thus, different Sin mutations in histone H3 alter the stability of histone-DNA interactions to various extents in the nucleosome while maintaining the fundamental architecture of the nucleosome and contributing to a common Sin phenotype.
Collapse
Affiliation(s)
- H Kurumizaka
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-5431, USA
| | | |
Collapse
|
23
|
Pollard KJ, Peterson CL. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol Cell Biol 1997; 17:6212-22. [PMID: 9343382 PMCID: PMC232472 DOI: 10.1128/mcb.17.11.6212] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Saccharomyces cerevisiae SWI/SNF complex is a 2-MDa multimeric assembly that facilitates transcriptional enhancement by antagonizing chromatin-mediated transcriptional repression. We show here that mutations in ADA2, ADA3, and GCN5, which are believed to encode subunits of a nuclear histone acetyltransferase complex, cause phenotypes strikingly similar to that of swi/snf mutants. ADA2, ADA3, and GCN5 are required for full expression of all SWI/SNF-dependent genes tested, including HO, SUC2, INO1, and Ty elements. Furthermore, mutations in the SIN1 gene, which encodes a nonhistone chromatin component, or mutations in histone H3 or H4 partially alleviate the transcriptional defects caused by ada/gcn5 or swi/snf mutations. We also find that ada2 swi1, ada3 swi1, and gcn5 swi1 double mutants are inviable and that mutations in SIN1 allow viability of these double mutants. We have partially purified three chromatographically distinct GCN5-dependent acetyltransferase activities, and we show that these enzymes can acetylate both histones and Sin1p. We propose a model in which the ADA/GCN5 and SWI/SNF complexes facilitate activator function by acting in concert to disrupt or modify chromatin structure.
Collapse
Affiliation(s)
- K J Pollard
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01605, USA
| | | |
Collapse
|
24
|
Roberts SM, Winston F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 1997; 147:451-65. [PMID: 9335585 PMCID: PMC1208170 DOI: 10.1093/genetics/147.2.451] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Saccharomyces cerevisiae transcription factor Spt20/Ada5 was originally identified by mutations that suppress Ty insertion alleles and by mutations that suppress the toxicity caused by Gal4-VP16 overexpression. Here we present evidence for physical associations between Spt20/Ada5 and three other Spt proteins, suggesting that they exist in a complex. A related study demonstrates that this complex also contains the histone acetyltransferase, Gcn5, and Ada2. This complex has been named SAGA (Spt/Ada/Gcn5 acetyltransferase). To identify functions that genetically interact with SAGA, we have screened for mutations that cause lethality in an spt20 delta/ada5 delta mutant. Our screen identified mutations in SNF2, SIN4, and GAL11. These mutations affect two known transcription complexes: Snf/Swi, which functions in nucleosome remodeling, and Srb/mediator, which is required for regulated transcription by RNA polymerase II. Systematic analysis has demonstrated that spt20 delta/ada5 delta and spt7 delta mutations cause lethality with every snf/swi and srb/mediator mutation tested. Furthermore, a gcn5 delta mutation causes severe sickness with snf/swi mutations, but not with srb/mediator mutations. These findings suggest that SAGA has multiple activities and plays critical roles in transcription by RNA polymerase II.
Collapse
Affiliation(s)
- S M Roberts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
25
|
Burns LG, Peterson CL. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol Cell Biol 1997; 17:4811-9. [PMID: 9234737 PMCID: PMC232333 DOI: 10.1128/mcb.17.8.4811] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Saccharomyces cerevisiae SWI-SNF complex is a 2-MDa protein assembly that is required for the function of many transcriptional activators. Here we describe experiments on the role of the SWI-SNF complex in activation of transcription by the yeast activator GAL4. We find that while SWI-SNF activity is not required for the GAL4 activator to bind to and activate transcription from nucleosome-free binding sites, the complex is required for GAL4 to bind to and function at low-affinity, nucleosomal binding sites in vivo. This SWI-SNF dependence can be overcome by (i) replacing the low-affinity sites with higher-affinity, consensus GAL4 binding sequences or (ii) placing the low-affinity sites into a nucleosome-free region. These results define the criteria for the SWI-SNF dependence of gene expression and provide the first in vivo evidence that the SWI-SNF complex can regulate gene expression by modulating the DNA binding of an upstream activator protein.
Collapse
Affiliation(s)
- L G Burns
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01605, USA
| | | |
Collapse
|
26
|
Cao Y, Cairns BR, Kornberg RD, Laurent BC. Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol Cell Biol 1997; 17:3323-34. [PMID: 9154831 PMCID: PMC232185 DOI: 10.1128/mcb.17.6.3323] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several eukaryotic multiprotein complexes, including the Saccharomyces cerevisiae Snf/Swi complex, remodel chromatin for transcription. In contrast to the Snf/Swi proteins, Sfh1p, a new Snf5p paralog, is essential for viability. The evolutionarily conserved domain of Sfh1p is sufficient for normal function, and Sfh1p interacts functionally and physically with an essential Snf2p paralog in a novel nucleosome-restructuring complex called RSC (for remodels the structure of chromatin). A temperature-sensitive sfh1 allele arrests cells in the G2/M phase of the cell cycle, and the Sfh1 protein is specifically phosphorylated in the G1 phase. Together, these results demonstrate a link between chromatin remodeling and progression through the cell division cycle, providing genetic clues to possible targets for RSC function.
Collapse
Affiliation(s)
- Y Cao
- Department of Microbiology and Immunology and Morse Institute of Molecular Biology and Genetics, State University of New York, Brooklyn 11203, USA
| | | | | | | |
Collapse
|
27
|
Jeon SH, Kang MG, Kim YH, Jin YH, Lee C, Chung HY, Kwon H, Park SD, Seong RH. A new mouse gene, SRG3, related to the SWI3 of Saccharomyces cerevisiae, is required for apoptosis induced by glucocorticoids in a thymoma cell line. J Exp Med 1997; 185:1827-36. [PMID: 9151708 PMCID: PMC2196310 DOI: 10.1084/jem.185.10.1827] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/1997] [Revised: 03/17/1997] [Indexed: 02/04/2023] Open
Abstract
We isolated a new mouse gene that is highly expressed in thymocytes, testis, and brain. This gene, SRG3, showed a significant sequence homology to SWI3, a yeast transcriptional activator, and its human homolog BAF155. SRG3 encodes 1,100 amino acids and has 33-47% identity with SWI3 protein over three regions. The SRG3 protein contains an acidic NH2 terminus, a myb-like DNA binding domain, a leucine-zipper motif, and a proline- and glutamine-rich region at its COOH terminus. Rabbit antiserum raised against a COOH-terminal polypeptide of the SRG3 recognized a protein with an apparent molecular mass of 155 kD. The serum also detected a 170-kD protein that seems to be a mouse homologue of human BAF170. Immunoprecipitation of cell extract with the antiserum against the mouse SRG3 also brought down a 195-kD protein that could be recognized by an antiserum raised against human SWI2 protein. The results suggest that the SRG3 protein associates with a mouse SWI2. The SRG3 protein is expressed about three times higher in thymocytes than in peripheral lymphocytes. The expression of anti-sense RNA to SRG3 mRNA in a thymoma cell line, S49.1, reduced the expression level of the SRG3 protein, and decreased the apoptotic cell death induced by glucocorticoids. These results suggest that the SRG3 protein is involved in the glucocorticoid-induced apoptosis in the thymoma cell line. This implicates that the SRG3 may play an important regulatory role during T cell development in thymus.
Collapse
Affiliation(s)
- S H Jeon
- Institute for Molecular Biology and Genetics and Department of Molecular Biology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
McBride HJ, Brazas RM, Yu Y, Nasmyth K, Stillman DJ. Long-range interactions at the HO promoter. Mol Cell Biol 1997; 17:2669-78. [PMID: 9111337 PMCID: PMC232117 DOI: 10.1128/mcb.17.5.2669] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SWI5 gene encodes a zinc finger DNA-binding protein required for the transcriptional activation of the yeast HO gene. There are two Swi5p binding sites in the HO promoter, site A at -1800 and site B at -1300. Swi5p binding at site B has been investigated in some detail, and we have shown that Swi5p binds site B in a mutually cooperative fashion with Pho2p, a homeodomain protein. In this report, we demonstrate that Swi5p and Pho2p bind cooperatively to both sites A and B but that there are differences in binding to these two promoter sites. It has been shown previously that point mutations in either Swi5p binding site only modestly reduce HO expression in a PHO2 strain. We show that these mutant promoters are completely inactive in a pho2 mutant. We have created stronger point mutations at the two Swi5p binding sites within the HO promoter, and we show that the two binding sites, separated by 500 bp, are both absolutely required for HO expression, independent of PHO2. These results create an apparent dilemma, as the strong mutations at the Swi5p binding sites show that both binding sites are required for HO expression, but the earlier binding site mutations allow Swi5p to activate HO, but only in the presence of Pho2p. To explain these results, a model is proposed in which physical interaction between Swi5p proteins bound to these two sites separated by 500 bp is required for activation of the HO promoter. Experimental evidence is presented that supports the model. In addition, through deletion analysis we have identified a region near the amino terminus of Swi5p that is required for PHO2-independent activation of HO, suggesting that this region mediates the long-range interactions between Swi5p molecules bound at the distant sites.
Collapse
Affiliation(s)
- H J McBride
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City 84132, USA
| | | | | | | | | |
Collapse
|
29
|
Wechser MA, Kladde MP, Alfieri JA, Peterson CL. Effects of Sin- versions of histone H4 on yeast chromatin structure and function. EMBO J 1997; 16:2086-95. [PMID: 9155034 PMCID: PMC1169811 DOI: 10.1093/emboj/16.8.2086] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous studies have identified single amino acid changes within either histone H3 or H4 (Sin- versions) that allow transcription in the absence of the yeast SWI-SNF complex. The histone H4 mutants are competent for nucleosome assembly in vivo, and the residues that are altered appear to define a discrete domain on the surface of the histone octamer. We have analyzed the effects of the Sin- versions of histone H4 on transcription and chromatin structure in vivo. These histone H4 mutants cause an increased accessibility of nucleosomal DNA to Dam methyltransferase and to micrococcal nuclease. Sin- derivatives of histone H4 also grossly impair the ability of nucleosomes to constrain supercoils in vivo. Nucleosome-mediated repression of the PHO5 gene is severely impaired by these histone H4 mutants; PHO5 expression is derepressed to 31% of the wild-type induced level. In contrast to the induction caused by nucleosome depletion, full PHO5 derepression by Sin- versions of histone H4 requires upstream regulatory elements. In addition, Sin- derivatives of histone H4 do not activate expression from CYC1 or GAL1 promoters that lack UAS elements. We propose that these Sin- mutations alter histone-DNA contact residues that play key roles in restricting the accessibility of nucleosomal DNA to transcription factors.
Collapse
Affiliation(s)
- M A Wechser
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01605, USA
| | | | | | | |
Collapse
|
30
|
Ostlund Farrants AK, Blomquist P, Kwon H, Wrange O. Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol Cell Biol 1997; 17:895-905. [PMID: 9001244 PMCID: PMC231816 DOI: 10.1128/mcb.17.2.895] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The organization of DNA in chromatin is involved in repressing basal transcription of a number of inducible genes. Biochemically defined multiprotein complexes such as SWI/SNF (J. Côté, J. Quinn, J. L. Workman, and C. L. Peterson, Science 265:53-60, 1994) and nucleosome remodeling factor (T. Tsukiyama and C. Wu, Cell 83:1011-1020, 1995) disrupt nucleosomes in vitro and are thus candidates for complexes which cause chromatin decondensation during gene induction. In this study we show that the glucocorticoid receptor (GR), a hormone-inducible transcription factor, stimulates the nucleosome-disrupting activity of the SWI/SNF complex partially purified either from HeLa cells or from rat liver tissue. This GR-mediated stimulation of SWI/SNF nucleosome disruption depended on the presence of a glucocorticoid response element. The in vitro-reconstituted nucleosome probes used in these experiments harbored 95 bp of synthetic DNA-bending sequence in order to rotationally position the DNA. The GR-dependent stimulation of SWI/SNF-mediated nucleosome disruption, as evaluated by DNase I footprinting, was 2.7- to 3.8-fold for the human SWI/SNF complex and 2.5- to 3.2-fold for the rat SWI/SNF complex. When nuclear factor 1 (NF1) was used instead of GR, there was no stimulation of SWI/SNF activity in the presence of a mononucleosome containing an NF1 binding site. On the other hand, the SWI/SNF nucleosome disruption activity increased the access of NF1 for its nucleosomal binding site. No such effect was seen on binding of GR to its response element. Our results suggest that GR, but not NF1, is able to target the nucleosome-disrupting activity of the SWI/SNF complex.
Collapse
Affiliation(s)
- A K Ostlund Farrants
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Gotta M, Gasser SM. Nuclear organization and transcriptional silencing in yeast. EXPERIENTIA 1996; 52:1136-47. [PMID: 8988257 DOI: 10.1007/bf01952113] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcriptional repression at the yeast silent mating type loci requires the formation of a nucleoprotein complex at specific cis-acting elements called silencers, which in turn promotes the binding of a histone-associated Sir-protein complex to adjacent chromatin. A similar mechanism of long-range transcriptional repression appears to function near telomeric repeat sequences, where it has been demonstrated that Sir3p is a limiting factor for the propagation of silencing. A combined immunofluorescence/in situ hybridization method for budding yeast was developed that maintains the three-dimensional structure of the nucleus. In wild-type cells the immunostaining of Sir3p, Sir4p and Rap1 colocalizes with Y' subtelomeric sequences detected by in situ hybridization. All three antigens and the subtelomeric in situ hybridization signals are clustered in foci, which are often adjacent to, but not coincident with, nuclear pores. This colocalization of Rap1, Sir3p and Sir4p with telomeres is lost in sir mutants, and also when Sir4p is overexpressed. To test whether the natural positioning of the two HM loci, located roughly 10 and 25 kb from the ends of chromosome III, is important for silencer function, a reporter gene flanked by wild-type silencer elements was integrated at various internal sites on other yeast chromosomes. We find that integration at internal loci situated far from telomeres abrogates the ability of silencers to repress the reporter gene. Silencing can be restored by creation of a telomere at 13 kb from the reporter construct, or by insertion of 340 bp of yeast telomeric repeat sequence at this site without chromosomal truncation. Elevation of the internal nuclear pools of Sir1p, Sir3p and Sir4p can relieve the lack of repression at the LYS2 locus in an additive manner, suggesting that in wild-type cells silencer function is facilitated by its juxtaposition to a pool of highly concentrated Sir proteins, such as those created by telomere clustering.
Collapse
Affiliation(s)
- M Gotta
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges/Lausanne, Switzerland
| | | |
Collapse
|
32
|
Richmond E, Peterson CL. Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res 1996; 24:3685-92. [PMID: 8871545 PMCID: PMC146154 DOI: 10.1093/nar/24.19.3685] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The yeast SWI2/SNF2 polypeptide is a subunit of the SWI/SNF protein complex that is required for many transcriptional activators to function in a chromatin context. SWI2 is believed to be the founding member of a new subfamily of DNA-stimulated ATPases/DNA helicases that includes proteins that function in DNA repair (RAD5, RAD16, ERCC6), recombination (RAD54), transcription (MOT1, ISWI, brm, BRG1, hBRM) and cell cycle control (STH1). We have created a set of 16 mutations within the SWI2 ATPase domain and have analyzed the functional consequences of these mutations in vivo. We have identified residues within each of the seven ATPase motifs that are required for SWI2 function. We have also identified crucial residues that are interspersed between the known ATPase motifs. In contrast, we identify other highly conserved residues that appear to be dispensable for SWI2 function. We also find that single amino acid changes in ATPase motifs IV and VI lead to a dominant negative phenotype. None of the 12 SWI2 mutations that disrupt SWI2 activity in vivo alter the assembly of the SWI/SNF complex. These studies provide an invaluable framework for biochemical analysis of the SWI2 ATPase and for functional analysis of other SWI2 family members.
Collapse
Affiliation(s)
- E Richmond
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01605, USA
| | | |
Collapse
|
33
|
Shpungin S, Liberzon A, Bangio H, Yona E, Katcoff DJ. Association of yeast SIN1 with the tetratrico peptide repeats of CDC23. Proc Natl Acad Sci U S A 1996; 93:8274-7. [PMID: 8710860 PMCID: PMC38660 DOI: 10.1073/pnas.93.16.8274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The yeast SIN1 protein is a nuclear protein that together with other proteins behaves as a transcriptional repressor of a family of genes. In addition, sin1 mutants are defective in proper mitotic chromosome segregation. In an effort to understand the basis for these phenotypes, we employed the yeast two-hybrid system to identify proteins that interact with SIN1 in vivo. Here we demonstrate that CDC23, a protein known to be involved in sister chromatid separation during mitosis, is able to directly interact with SIN1. Furthermore, using recombinant molecules in vitro, we show that the N terminal of SIN1 is sufficient to bind a portion of CDC23 consisting solely of tetratrico peptide repeats. Earlier experiments identified the C-terminal domain of SIN1 to be responsible for interaction with a protein that binds the regulatory region of HO, a gene whose transcription is repressed by SIN1. Taken together with the results presented here, we suggest that SIN1 is a chromatin protein having at least a dual function: The N terminal of SIN1 interacts with the tetratrico peptide repeat domains of CDC23, a protein involved in chromosome segregation, whereas the C terminal of SIN1 binds proteins involved in transcriptional regulation.
Collapse
Affiliation(s)
- S Shpungin
- Department of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
34
|
Cairns BR, Henry NL, Kornberg RD. TFG/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol Cell Biol 1996; 16:3308-16. [PMID: 8668146 PMCID: PMC231325 DOI: 10.1128/mcb.16.7.3308] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products are all required for proper transcriptional control of many genes in the yeast Saccharomyces cerevisiae. Genetic studies indicated that these gene products might form a multiprotein SWI/SNF complex important for chromatin transitions preceding transcription from RNA polymerase II promoters. Biochemical studies identified a SWI/SNF complex containing these and at least six additional polypeptides. Here we show that the 29-kDa component of the SWI/SNF complex is identical to TFG3/TAF30/ANC1. Thus, a component of the SWI/SNF complex is also a member of the TFIIF and TFIID transcription complexes. TFG3 interacted with the SNF5 component of the SWI/SNF complex in protein interaction blots. TFG3 is significantly similar to ENL and AF-9, two proteins implicated in human acute leukemia. These results suggest that ENL and AF-9 proteins interact with the SNF5 component of the human SWI/SNF complex and raise the possibility that the SWI/SNF complex is involved in acute leukemia.
Collapse
Affiliation(s)
- B R Cairns
- Department of Structural Biology, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|
35
|
Castaño IB, Heath-Pagliuso S, Sadoff BU, Fitzhugh DJ, Christman MF. A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res 1996; 24:2404-10. [PMID: 8710513 PMCID: PMC145947 DOI: 10.1093/nar/24.12.2404] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We recently reported the identification of a gene, TRF4 (for DNA topoisomerase related function), in a screen for mutations that are synthetically lethal with mutations in DNA topoisomerase I (top1). Here we describe the isolation of a second member of the TRF4 gene family, TRF5. Overexpression of TRF5 complements the inviability of top1 trf4 double mutants. The predicted Trf5 protein is 55% identical and 72% similar to Trf4p. As with Trf4p, a region of Trf5p is homologous to the catalytically dispensable N-terminus of Top1p. The TRF4/5 function is essential as trf4 trf5 double mutants are inviable. A trf4 (ts) trf5 double mutant is hypersensitive to the anti-microtubule agent thiabendazole at a semi-permissive temperature, suggesting that TRF4/5 function is required at the time of mitosis. Examination of nuclear morphology in a trf4 (ts) trf5 mutant at a restrictive temperature reveals the presence of many cells undergoing aberrant nuclear division, as well as many anucleate cells, demonstrating that the TRF4/5 function is required for proper mitosis. Database searches reveal the existence of probable Schizosaccharomyces pombe and human homologs of Trf4p, indicating that TRF4 is the canonical member of a gene family that is highly conserved evolutionarily.
Collapse
Affiliation(s)
- I B Castaño
- Department of Radiation Oncology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
36
|
Chávez S, Candau R, Truss M, Beato M. Constitutive repression and nuclear factor I-dependent hormone activation of the mouse mammary tumor virus promoter in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:6987-98. [PMID: 8524266 PMCID: PMC230954 DOI: 10.1128/mcb.15.12.6987] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To study the influence of various transactivators and the role of nucleosomal structure in gene regulation by steroid hormones, we have introduced mouse mammary tumor virus (MMTV) promoter sequences along with expression vectors for the glucocorticoid receptor (GR) and nuclear factor I (NFI) in Saccharomyces cerevisiae, an organism amenable to genetic manipulation. Both in the context of an episomal multicopy vector and in a centromeric single-copy plasmid, the MMTV promoter was virtually silent in the absence of inducer, even in yeast strains expressing GR and NFI. Induction was optimal with deacylcortivazol and required both GR and NFI. The transactivation function AF1 in the N-terminal half of GR is required for ligand-dependent induction and acts constitutively in truncated GR lacking the ligand binding domain. A piece of the MMTV long terminal repeat extending from -236 to +111 is sufficient to position a nucleosome, B, over the regulatory region of the promoter from -45 to -190 and another nucleosome over the transcription start region. The rotational orientation of the DNA on the surface of nucleosome B is the same as that previously found in animal cells and in reconstitution experiments. This orientation is compatible with binding of GR to two sites, while it should preclude binding of NFI and hence be responsible for constitutive repression. Upon ligand induction, there is no major chromatin rearrangement, but the proximal linker DNA, including the TATA box, becomes hypersensitive to nucleases. The transcriptional behavior of the MMTV promoter was unaffected by deletions of the genes for zuotin or SIN1/SPT2, two proteins which have been claimed to assume some of the functions of linker histones. Thus, despite the lack of histone H1, yeast cells could be a suitable system to study the contribution of nucleosomal organization to the regulated expression of the MMTV promoter.
Collapse
Affiliation(s)
- S Chávez
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität, Marburg, Germany
| | | | | | | |
Collapse
|
37
|
Treich I, Cairns BR, de los Santos T, Brewster E, Carlson M. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2. Mol Cell Biol 1995; 15:4240-8. [PMID: 7623818 PMCID: PMC230663 DOI: 10.1128/mcb.15.8.4240] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The yeast SNF-SWI complex is required for transcriptional activation of diverse genes and has been shown to alter chromatin structure. The complex has at least 10 components, including SNF2/SWI2, SNF5, SNF6, SWI1/ADR6, and SWI3, and has been widely conserved in eukaryotes. Here we report the characterization of a new component. We identified proteins that interact in the two-hybrid system with the N-terminal region of SNF2, preceding the ATPase domain. In addition to SWI3, we recovered a new 19-kDa protein, designated SNF11. Like other SNF/SWI proteins, SNF11 functions as a transcriptional activator in genetic assays. SNF11 interacts with SNF2 in vitro and copurifies with the SNF-SWI complex from yeast cells. Using a specific antibody, we showed that SNF11 coimmunoprecipitates with members of the SNF-SWI complex and that SNF11 is tightly and stoichiometrically associated with the complex. Furthermore, SNF11 was detected in purified SNF-SWI complex by staining with Coomassie blue dye; its presence previously went unrecognized because it does not stain with silver. SNF11 interacts with a 40-residue sequence of SNF2 that is highly conserved, suggesting that SNF11 homologs exist in other organisms.
Collapse
Affiliation(s)
- I Treich
- Institute of Cancer Research, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
38
|
Baxevanis AD, Arents G, Moudrianakis EN, Landsman D. A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res 1995; 23:2685-91. [PMID: 7651829 PMCID: PMC307093 DOI: 10.1093/nar/23.14.2685] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The histone fold motif has previously been identified as a structural feature common to all four core histones and is involved in both histone-histone and histone-DNA interactions. Through the use of a novel motif searching method, a group of proteins containing the histone fold motif has been established. The proteins in this group are involved in a wide variety of functions related mostly to DNA metabolism. Most of these proteins engage in protein-protein or protein-DNA interactions, as do their core histone counterparts. Among these, CCAAT-specific transcription factor CBF and its yeast homologue HAP are two examples of multimeric complexes with different component subunits that contain the histone fold motif. The histone fold proteins are distantly related, with a relatively small degree of absolute sequence similarity. It is proposed that these proteins may share a similar three-dimensional conformation despite the lack of significant sequence similarity.
Collapse
Affiliation(s)
- A D Baxevanis
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
39
|
Harashima S, Mizuno T, Mabuchi H, Yoshimitsu S, Ramesh R, Hasebe M, Tanaka A, Oshima Y. Mutations causing high basal level transcription that is independent of transcriptional activators but dependent on chromosomal position in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:716-25. [PMID: 7616963 DOI: 10.1007/bf00290403] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two single (bel2 and bel4) and two double (bel3 bel7 and bel5 be16) mutations causing enhanced transcription of a gene fusion, consisting of the open reading frame of PHO5 connected to the HIS5 promoter (HIS5p) integrated at the ura3 or leu2 locus, were isolated from a gcn4-disrupted mutant of Saccharomyces cerevisiae. The PHO5 gene, encoding repressible acid phosphatase, in the HIS5p-PHO5 construct was derepressed under amino acid starved conditions by the action of the transcriptional activator Gcn4p. The bel mutants showed temperature-sensitive cell growth and/or cell aggregation. All the mutants except bel4 also showed high levels of transcription of an intact PHO5 DNA integrated at the URA3 locus in the absence of the cognate transcriptional activator, Pho4p, and in the absence of upstream activating sequences of PHO5. The HIS5 and PHO5 genes at their original chromosomal positions were, however, not affected by the bel2 mutation. The BEL2 gene was found to be identical with SIN4/TSF3, mutations in which cause high levels of transcription of the HO and GAL genes in the absence of their respective transcriptional activators, Swi5p and Gal4p. The effect of the bel2/sin4/tsf3 mutation on PHO5 transcription was additive with the Pho4p function. Thus the effect of the bel2/sin4/tsf3 mutation is dependent on the position of PHO5 in the chromosome and independent of Pho4p and Gen4p activation.
Collapse
Affiliation(s)
- S Harashima
- Department of Biotechnology, Faculty of Engineering, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Swift S, McGraw P. INO1-100: an allele of the Saccharomyces cerevisiae INO1 gene that is transcribed without the action of the positive factors encoded by the INO2, INO4, SWI1, SWI2 and SWI3 genes. Nucleic Acids Res 1995; 23:1426-33. [PMID: 7753636 PMCID: PMC306872 DOI: 10.1093/nar/23.8.1426] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A dominant allele of the INO1 locus, INO1-100, does not require the positive regulators encoded by INO2 and INO4 for expression. Sequence analysis showed that INO1-100 had a 239 bp deletion in the INO1 promoter. INO1-100 suppressed the inositol auxotrophy of ino2, ino4, swi1, swi2 and swi3 mutants. Transcription of INO1-100 was constitutive and independent of these regulators. A 20 bp deletion from -247 to -228 caused a similar phenotype. A 38 bp deletion from -245 to -208 suppressed the inositol auxotrophy of an ino2 mutant, but not an ino4 mutant, indicating that Ino2p and Ino4p may function alone as well as in a complex. A 40 bp deletion from -287 to -248 that removed a URS1 site caused constitutive transcription that required INO2 and INO4. A deletion from -167 to -128 suppressed the inositol auxotrophy of swi, ino2 and ino4 mutants, indicating the presence of a previously unidentified URS1. Mutation of the specific negative regulator of phospholipid synthesis encoded by OPI1 suppressed the inositol auxotrophy of swi2 mutants. This study indicates that negative regulation of INO1 is chromatin mediated and provides in vivo information on the interaction of both general and specific regulatory factors that function to accomplish negative and positive regulation of the INO1 promoter in response to inositol.
Collapse
Affiliation(s)
- S Swift
- Department of Biological Sciences, University of Maryland (UMBC), Catonsville 21228, USA
| | | |
Collapse
|
41
|
Baxevanis AD, Bryant SH, Landsman D. Homology model building of the HMG-1 box structural domain. Nucleic Acids Res 1995; 23:1019-29. [PMID: 7731789 PMCID: PMC306800 DOI: 10.1093/nar/23.6.1019] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nucleoproteins belonging to the HMG-1/2 family possess homologous domains approximately 75 amino acids in length. These domains, termed HMG-1 boxes, are highly structured, compact, and mediate the interaction between HMG-1 box-containing proteins and DNA in a variety of biological contexts. Homology model building experiments on HMG-1 box sequences 'threaded' through the 1H-NMR structure of an HMG-1 box from rat indicate that the domain does not have rigid sequence requirements for its formation. Energy calculations indicate that the structure of all HMG-1 box domains is stabilized primarily through hydrophobic interactions. We have found structural relationships in the absence of statistically significant sequence similarity, identifying several candidate proteins which could possibly assume the same three-dimensional conformation as the rat HMG-1 box motif. The threading technique provides a method by which significant structural similarities in a diverse protein family can be efficiently detected, and the 'structural alignment' derived by this method provides a rational basis through which phylogenetic relationships and the precise sites of interaction between HMG-1 box proteins and DNA can be deduced.
Collapse
Affiliation(s)
- A D Baxevanis
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
42
|
Yona E, Bangio H, Erlich P, Tepper SH, Katcoff DJ. The C-terminal domain of SIN1 in yeast interacts with a protein that binds the URS1 region of the yeast HO gene. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:774-7. [PMID: 7898448 DOI: 10.1007/bf00290726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A protein or protein complex has previously been identified in Saccharomyces cerevisiae which both binds a short DNA sequence in URS1 of HO and interacts with SIN1. SIN1, which has some sequence similarity to mammalian HMG1, is an abundant chromatin protein in yeast and is thought to participate in the transcriptional repression of a specific family of genes. SIN1 binds DNA weakly, though it has no DNA binding specificity. Here we address the nature of the interaction between SIN1 and the specific DNA binding protein(s) to HO DNA. We show that the isolated C-terminal region of SIN1 can interact in vitro with the DNA binding protein, causing a supershift in a gel mobility shift assay. Interestingly, inclusion of the region in SIN1 which contains two acidic sequences, precludes the binding of recombinant protein to the DNA/protein complex.
Collapse
Affiliation(s)
- E Yona
- Department of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
43
|
Zhu Y, Peterson CL, Christman MF. HPR1 encodes a global positive regulator of transcription in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:1698-708. [PMID: 7862161 PMCID: PMC230394 DOI: 10.1128/mcb.15.3.1698] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Hpr1 protein has an unknown function, although it contains a region of homology to DNA topoisomerase I. We have found that hpr1 null mutants are defective in the transcription of many physiologically unrelated genes, including GAL1, HO, ADH1, and SUC2, by using a combination of Northern (RNA) blot analysis, primer extension, and upstream activation sequence-lacZ fusions. Many of the genes positively regulated by HPR1 also require SWI1, SWI2-SNF2, SWI3, SNF5, and SNF6. The transcriptional defect at HO and the CCB::lacZ upstream activation sequence in hpr1 mutants is partially suppressed by a deletion of SIN1, which encodes an HMG1p-like protein. Elevated gene dosage of either histones H3 and H4 or H2A and H2B results in a severe growth defect in combination with an hpr1 null mutation. However, increased gene dosage of all four histones simultaneously restores near-normal growth in hpr1 mutants. Altered in vivo Dam methylase sensitivity is observed at two HPR1-dependent promoters (GAL1 and SUC2). Most of the Hpr1 protein present in the cell is in a large complex (10(6) Da) that is distinct from the SWI-SNF protein complex. We propose that HPR1 affects transcription and recombination by altering chromatin structure.
Collapse
Affiliation(s)
- Y Zhu
- Department of Radiation Oncology, University of California, San Francisco 94143
| | | | | |
Collapse
|
44
|
Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 7935460 DOI: 10.1128/mcb.14.11.7455] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swi4 and Swi6 form a complex which is required for Start-dependent activation of HO and for high-level expression of G1 cyclin genes CLN1 and CLN2. To identify other regulators of this pathway, we screened for dominant, recessive, conditional, and allele-specific suppressors of swi4 mutants. We isolated 16 recessive suppressors that define three genes, SSF1, SSF5, and SSF9 (suppressor of swi four). Mutations in all three genes bypass the requirement for both Swi4 and Swi6 for HO transcription and activate transcription from reporter genes lacking upstream activating sequences (UASs). SSF5 is allelic with SIN4 (TSF3), a gene implicated in global repression of transcription and chromatin structure, and SSF9 is likely to be a new global repressor of transcription. SSF1 is allelic with CDC68 (SPT16). cdc68 mutations have been shown to increase expression from defective promoters, while preventing transcription from other intact promoters, including CLN1 and CLN2. We find that CDC68 is a required activator of both SWI4 and SWI6, suggesting that CDC68's role at the CLN promoters may be indirect. The target of CDC68 within the SWI4 promoter is complex in that known activating elements (MluI cell cycle boxes) in the SWI4 promoter are required for CDC68 dependence but only within the context of the full-length promoter. This result suggests that there may be both a chromatin structure and a UAS-specific component to Cdc68 function at SWI4. We suggest that Cdc68 functions both in the assembly of repressive complexes that form on many intact promoters in vivo and in the relief of this repression during gene activation.
Collapse
|
45
|
Lycan D, Mikesell G, Bunger M, Breeden L. Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:7455-65. [PMID: 7935460 PMCID: PMC359281 DOI: 10.1128/mcb.14.11.7455-7465.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Swi4 and Swi6 form a complex which is required for Start-dependent activation of HO and for high-level expression of G1 cyclin genes CLN1 and CLN2. To identify other regulators of this pathway, we screened for dominant, recessive, conditional, and allele-specific suppressors of swi4 mutants. We isolated 16 recessive suppressors that define three genes, SSF1, SSF5, and SSF9 (suppressor of swi four). Mutations in all three genes bypass the requirement for both Swi4 and Swi6 for HO transcription and activate transcription from reporter genes lacking upstream activating sequences (UASs). SSF5 is allelic with SIN4 (TSF3), a gene implicated in global repression of transcription and chromatin structure, and SSF9 is likely to be a new global repressor of transcription. SSF1 is allelic with CDC68 (SPT16). cdc68 mutations have been shown to increase expression from defective promoters, while preventing transcription from other intact promoters, including CLN1 and CLN2. We find that CDC68 is a required activator of both SWI4 and SWI6, suggesting that CDC68's role at the CLN promoters may be indirect. The target of CDC68 within the SWI4 promoter is complex in that known activating elements (MluI cell cycle boxes) in the SWI4 promoter are required for CDC68 dependence but only within the context of the full-length promoter. This result suggests that there may be both a chromatin structure and a UAS-specific component to Cdc68 function at SWI4. We suggest that Cdc68 functions both in the assembly of repressive complexes that form on many intact promoters in vivo and in the relief of this repression during gene activation.
Collapse
Affiliation(s)
- D Lycan
- Lewis and Clark College, Portland, Oregon 97219
| | | | | | | |
Collapse
|
46
|
Chiba H, Muramatsu M, Nomoto A, Kato H. Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res 1994; 22:1815-20. [PMID: 8208605 PMCID: PMC308079 DOI: 10.1093/nar/22.10.1815] [Citation(s) in RCA: 268] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A set of genes (SWI1, SWI2/SNF2, SWI3, SNF5 and SNF6) in Saccharomyces cerevisiae are required for transcription of a variety of yeast genes. It was recently reported that the mammalian glucocorticoid receptor failed to activate transcription when transiently expressed in swi1-, swi2- or swi3- yeast strains. We report here that two highly related human cDNAs, hSNF2 alpha and -beta, encode amino acid sequences homologous to both the yeast SWI2/SNF2 and the Drosophila brahma. Similar to their yeast and Drosophila counterparts, both human cDNAs contain helicase motifs, a bromodomain, a highly charged C-terminal sequence and an N-terminal sequence rich in proline, glutamine and glycine. Tissue distribution of the mRNAs varied slightly. Transcriptional activation by the estrogen receptor and the retinoic acid receptor was enhanced by co-expression of either hSNF2 cDNA. No enhancement was observed for promoters which do not respond to nuclear receptors. We suggest that global transcriptional coactivators equivalent to the yeast SWI/SNF complex exist in mammalian cells.
Collapse
Affiliation(s)
- H Chiba
- Department of Microbiology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- K LaMarco
- Tularik, Inc., South San Francisco, CA 94080
| |
Collapse
|
48
|
Cairns BR, Kim YJ, Sayre MH, Laurent BC, Kornberg RD. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci U S A 1994; 91:1950-4. [PMID: 8127913 PMCID: PMC43282 DOI: 10.1073/pnas.91.5.1950] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A complex containing the products of the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 genes and four additional polypeptides has been purified from extracts of the yeast Saccharomyces cerevisiae. Physical association of these proteins was demonstrated by copurification and coimmunoprecipitation. A potent DNA-dependent ATPase copurified with the complex, and this activity was evidently associated with SWI2/SNF2.
Collapse
Affiliation(s)
- B R Cairns
- Department of Cell Biology, Stanford University School of Medicine, CA 94305
| | | | | | | | | |
Collapse
|
49
|
Hörz W. [Chromatin structure and gene regulation]. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1994; 81:74-8. [PMID: 8145858 DOI: 10.1007/s001140050032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is becoming increasingly clear that the nucleosome, the basic repeat unit of eukaryotic chromatin, is involved also in gene regulation. In particular, the study of inducible genes has shown that nucleosomes contribute to the repressed basal state, and that they can be rearranged in response to induction. The role of the nucleosomes in gene regulation and possible mechanisms for their structural modulation are discussed.
Collapse
Affiliation(s)
- W Hörz
- Institut für Physiologische Chemie der Universität, München
| |
Collapse
|
50
|
The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing. Mol Cell Biol 1994. [PMID: 8246972 DOI: 10.1128/mcb.13.12.7553] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CDC68 gene (also called SPT16) encodes a transcription factor for the expression of a diverse set of genes in the budding yeast Saccharomyces cerevisiae. To identify other proteins that are functionally related to the Cdc68 protein, we searched for genetic suppressors of a cdc68 mutation. Four suppressor genes in which mutations reverse the temperature sensitivity imposed by the cdc68-1 mutation were found. We show here that one of the suppressor genes is the previously reported SAN1 gene; san1 mutations were originally identified as suppressors of a sir4 mutation, implicated in the chromatin-mediated transcriptional silencing of the two mating-type loci HML and HMR. Each san1 mutation, including a san1 null allele, reversed all aspects of the cdc68 mutant phenotype. Conversely, increased copy number of the wild-type SAN1 gene lowered the restrictive temperature for the cdc68-1 mutation. Our findings suggest that the San1 protein antagonizes the transcriptional activator function of the Cdc68 protein. The identification of san1 mutations as suppressors of cdc68 mutations suggests a role for Cdc68 in chromatin structure.
Collapse
|