1
|
Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbiol 2010; 76:4664-74. [PMID: 20472720 DOI: 10.1128/aem.00670-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To overcome the limited availability of antibiotic resistance markers in filamentous fungi, we adapted the FLP/FRT recombination system from the yeast Saccharomyces cerevisiae for marker recycling. We tested this system in the penicillin producer Penicillium chrysogenum using different experimental approaches. In a two-step application, we first integrated ectopically a nourseothricin resistance cassette flanked by the FRT sequences in direct repeat orientation (FRT-nat1 cassette) into a P. chrysogenum recipient. In the second step, the gene for the native yeast FLP recombinase, and in parallel, a codon-optimized P. chrysogenum flp (Pcflp) recombinase gene, were transferred into the P. chrysogenum strain carrying the FRT-nat1 cassette. The corresponding transformants were analyzed by PCR, growth tests, and sequencing to verify successful recombination events. Our analysis of several single- and multicopy transformants showed that only when the codon-optimized recombinase was present could a fully functional recombination system be generated in P. chrysogenum. As a proof of application of this system, we constructed a DeltaPcku70 knockout strain devoid of any heterologous genes. To further improve the FLP/FRT system, we produced a flipper cassette carrying the FRT sites as well as the Pcflp gene together with a resistance marker. This cassette allows the controlled expression of the recombinase gene for one-step marker excision. Moreover, the applicability of the optimized FLP/FRT recombination system in other fungi was further demonstrated by marker recycling in the ascomycete Sordaria macrospora. Here, we discuss the application of the optimized FLP/FRT recombination system as a molecular tool for the genetic manipulation of filamentous fungi.
Collapse
|
2
|
Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 2009; 73:300-9. [PMID: 19487729 DOI: 10.1128/mmbr.00038-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A classical feature of the tyrosine recombinase family of proteins catalyzing site-specific recombination, as exemplified by the phage lambda integrase and the Cre and Flp recombinases, is the ability to recombine substrates sharing very limited DNA sequence identity. Decades of research have established the importance of this short stretch of identity within the core regions of the substrates. Since then, several new enzymes that challenge this paradigm have been discovered and require the role of sequence identity in site-specific recombination to be reconsidered. The integrases of the conjugative transposons such as Tn916, Tn1545, and CTnDOT recombine substrates with heterologous core sequences. The integrase of the mobilizable transposon NBU1 performs recombination more efficiently with certain core mismatches. The integration of CTX phage and capture of gene cassettes by integrons also occur by altered mechanisms. In these systems, recombination occurs between mismatched sequences by a single strand exchange. In this review, we discuss literature that led to the formulation of the current strand-swapping isomerization model for tyrosine recombinases. The review then focuses on recent developments on the recombinases that challenged the paradigm that was derived from the studies of early systems.
Collapse
|
3
|
Abstract
Site-specific recombinases of the Integrase family utilize a common chemical mechanism to break DNA strands during recombination. A conserved Arg-His-Arg triad activates the scissile phosphodiester bond, and an active-site tyrosine provides the nucleophile to effect DNA cleavage. Is the tyrosine residue for the cleavage event derived from the same recombinase monomer which provides the RHR triad (DNA cleavage in cis), or are the triad and tyrosine derived from two separate monomers (cleavage in trans)? Do all members of the family follow the same cleavage rule, cis or trans? Solution studies and available structural data have provided conflicting answers. Experimental results with the Flp recombinase which strongly support trans cleavage have been derived either by pairing two catalytic mutants of Flp or by pairing wild-type Flp and a catalytic mutant. The inclusion of the mutant has raised new concerns, especially because of the apparent contradictions in their cleavage modes posed by other Int family members. Here we test the cleavage mode of Flp using an experimental design which excludes the use of the mutant protein, and show that the outcome is still only trans DNA cleavage.
Collapse
Affiliation(s)
- J Lee
- Department of Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
4
|
Kimball AS, Kimball ML, Jayaram M, Tullius TD. Chemical probe and missing nucleoside analysis of Flp recombinase bound to the recombination target sequence. Nucleic Acids Res 1995; 23:3009-17. [PMID: 7659525 PMCID: PMC307143 DOI: 10.1093/nar/23.15.3009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Flp protein catalyzes a site-specific recombination reaction between two 47 bp DNA sites without the assistance of any other protein or cofactor. The Flp recognition target (FRT) site consists of three nearly identical sequences, two of which are separated by an 8 bp spacer sequence. In order to gain insight into this remarkable protein-DNA interaction we used a variety of chemical probe methods and the missing nucleoside experiment to examine Flp binding. Hydroxyl radical footprints of Flp bound to a recombinationally-competent site fall on opposite faces of canonical B-DNA. The 8 bp spacer region between the two Flp binding sites becomes reactive towards 5-phenyl-1,10-phenanthroline.copper upon Flp binding, indicating that once bound by Flp, this segment of DNA is not in the B-form. Missing nucleoside analysis reveals that within each binding site the presence of two nucleosides on the top strand and four on the bottom, are required for formation of a fully-occupied FRT site. In contrast, loss of any nucleoside in the three binding sites in the FRT interferes with formation of lower-occupancy complexes. DNA molecules with gaps in the 8 bp spacer region are over-represented in complexes with either two or three binding sites occupied by Flp, evidence that DNA flexibility facilitates the cooperative interaction of Flp protomers bound to a recombinationally-active site.
Collapse
Affiliation(s)
- A S Kimball
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
5
|
Active-site assembly and mode of DNA cleavage by Flp recombinase during full-site recombination. Mol Cell Biol 1994. [PMID: 7935464 DOI: 10.1128/mcb.14.11.7492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combination of half-site substrates and step arrest mutants of Flp, a site-specific recombinase of the integrase family, had earlier revealed the following features of the half-site recombination reaction. (i) The Flp active site is assembled by sharing of catalytic residues from at least two monomers of the protein. (ii) A Flp monomer does not cleave the half site to which it is bound (DNA cleavage in cis); rather, it cleaves a half site bound by a second Flp monomer (DNA cleavage in trans). For the lambda integrase (Int protein), the prototype member of the Int family, catalytic complementation between two active-site mutants has been observed in reactions with a suicide attL substrate. By analogy with Flp, this observation is strongly suggestive of a shared active site and of trans DNA cleavage. However, reactions with linear suicide attB substrates and synthetic Holliday junctions are more compatible with cis than with trans DNA cleavage. These Int results either argue against a common mode of active-site assembly within the Int family or challenge the validity of Flp half sites as mimics of the normal full-site substrates. We devised a strategy to assay catalytic complementation between Flp monomers in full sites. We found that the full-site reaction follows the shared active-site paradigm and the trans mode of DNA cleavage. These results suggest that within the Int family, a unitary chemical mechanism of recombination is achieved by more than one mode of physical interaction among the recombinase monomers.
Collapse
|
6
|
Whang I, Lee J, Jayaram M. Active-site assembly and mode of DNA cleavage by Flp recombinase during full-site recombination. Mol Cell Biol 1994; 14:7492-8. [PMID: 7935464 PMCID: PMC359285 DOI: 10.1128/mcb.14.11.7492-7498.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A combination of half-site substrates and step arrest mutants of Flp, a site-specific recombinase of the integrase family, had earlier revealed the following features of the half-site recombination reaction. (i) The Flp active site is assembled by sharing of catalytic residues from at least two monomers of the protein. (ii) A Flp monomer does not cleave the half site to which it is bound (DNA cleavage in cis); rather, it cleaves a half site bound by a second Flp monomer (DNA cleavage in trans). For the lambda integrase (Int protein), the prototype member of the Int family, catalytic complementation between two active-site mutants has been observed in reactions with a suicide attL substrate. By analogy with Flp, this observation is strongly suggestive of a shared active site and of trans DNA cleavage. However, reactions with linear suicide attB substrates and synthetic Holliday junctions are more compatible with cis than with trans DNA cleavage. These Int results either argue against a common mode of active-site assembly within the Int family or challenge the validity of Flp half sites as mimics of the normal full-site substrates. We devised a strategy to assay catalytic complementation between Flp monomers in full sites. We found that the full-site reaction follows the shared active-site paradigm and the trans mode of DNA cleavage. These results suggest that within the Int family, a unitary chemical mechanism of recombination is achieved by more than one mode of physical interaction among the recombinase monomers.
Collapse
Affiliation(s)
- I Whang
- Department of Microbiology, University of Texas at Austin 78712
| | | | | |
Collapse
|
7
|
Mechanism of cleavage and ligation by FLP recombinase: classification of mutations in FLP protein by in vitro complementation analysis. Mol Cell Biol 1993. [PMID: 8497247 DOI: 10.1128/mcb.13.6.3167] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FLP recombinase of the 2 microns plasmid of Saccharomyces cerevisiae is a member of the integrase family of site-specific recombinases. Recombination catalyzed by members of this family proceeds via the ordered cleavage and religation of four strands of DNA. Although the amino acid sequences of integrase family members are quite different, each recombinase maintains an absolutely conserved tetrad of amino acids (R-191, H-305, R-308, Y-343; numbers are those of the FLP protein). This tetrad is presumed to reflect a common chemical mechanism for cleavage and ligation that has evolved among all family members. The tyrosine is the nucleophile that causes phosphodiester bond cleavage and covalently attaches to the 3'-PO4 terminus, whereas the other three residues have been implicated in ligation of strands. It has recently been shown that cleavage by FLP takes place in trans; that is, a FLP molecule binds adjacent to the site of cleavage but receives the nucleophilic tyrosine from a molecule of FLP that is bound to another FLP-binding element (J.-W. Chen, J. Lee, and M. Jayaram, Cell 69:647-658, 1992). These studies led us to examine whether the ligation step of the FLP reaction is performed by the FLP molecule bound adjacent to the cleavage site (ligation in cis). We have found that FLP promotes ligation in cis. Furthermore, using in vitro complementation analysis, we have classified several mutant FLP proteins into one of two groups: those proteins that are cleavage competent but ligation deficient (group I) and those that are ligation competent but cleavage defective (group II). This observation suggests that the active site of FLP is composed of several amino acid residues from each of two FLP molecules.
Collapse
|
8
|
Pan G, Luetke K, Sadowski PD. Mechanism of cleavage and ligation by FLP recombinase: classification of mutations in FLP protein by in vitro complementation analysis. Mol Cell Biol 1993; 13:3167-75. [PMID: 8497247 PMCID: PMC359755 DOI: 10.1128/mcb.13.6.3167-3175.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The FLP recombinase of the 2 microns plasmid of Saccharomyces cerevisiae is a member of the integrase family of site-specific recombinases. Recombination catalyzed by members of this family proceeds via the ordered cleavage and religation of four strands of DNA. Although the amino acid sequences of integrase family members are quite different, each recombinase maintains an absolutely conserved tetrad of amino acids (R-191, H-305, R-308, Y-343; numbers are those of the FLP protein). This tetrad is presumed to reflect a common chemical mechanism for cleavage and ligation that has evolved among all family members. The tyrosine is the nucleophile that causes phosphodiester bond cleavage and covalently attaches to the 3'-PO4 terminus, whereas the other three residues have been implicated in ligation of strands. It has recently been shown that cleavage by FLP takes place in trans; that is, a FLP molecule binds adjacent to the site of cleavage but receives the nucleophilic tyrosine from a molecule of FLP that is bound to another FLP-binding element (J.-W. Chen, J. Lee, and M. Jayaram, Cell 69:647-658, 1992). These studies led us to examine whether the ligation step of the FLP reaction is performed by the FLP molecule bound adjacent to the cleavage site (ligation in cis). We have found that FLP promotes ligation in cis. Furthermore, using in vitro complementation analysis, we have classified several mutant FLP proteins into one of two groups: those proteins that are cleavage competent but ligation deficient (group I) and those that are ligation competent but cleavage defective (group II). This observation suggests that the active site of FLP is composed of several amino acid residues from each of two FLP molecules.
Collapse
Affiliation(s)
- G Pan
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
9
|
Burgin AB, Nash HA. Symmetry in the mechanism of bacteriophage lambda integrative recombination. Proc Natl Acad Sci U S A 1992; 89:9642-6. [PMID: 1409677 PMCID: PMC50188 DOI: 10.1073/pnas.89.20.9642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During the strand-exchange events of bacteriophage lambda integration, pairs of phosphodiester bonds are broken and then rejoined to form novel DNA linkages. The reaction proceeds in vitro in the absence of an external energy source; the bond energy needed to rejoin broken strands of DNA must therefore be conserved during cleavage. Although some of this conservation involves a covalent intermediate between DNA and the recombinase Int, it is possible that such an intermediate is formed with only one of the two phosphodiesters. In such an asymmetric mechanism, the second phosphodiester would be attacked by a nucleophile that is exposed by cleavage of the first DNA strand. In contrast, a symmetric mechanism hypothesizes nucleophilic attack by Int on both phosphodiesters. We have distinguished these two mechanisms by removing potential nucleophiles from the integrative recombination reaction. Our data are inconsistent with an asymmetric mechanism. We conclude that during strand exchange both phosphodiesters proceed through a covalent protein-DNA intermediate.
Collapse
Affiliation(s)
- A B Burgin
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD 20892
| | | |
Collapse
|
10
|
Functional analysis of box I mutations in yeast site-specific recombinases Flp and R: pairwise complementation with recombinase variants lacking the active-site tyrosine. Mol Cell Biol 1992. [PMID: 1508181 DOI: 10.1128/mcb.12.9.3757] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that belong to the yeast family of site-specific recombinases. They share approximately 30% amino acid matches and exhibit a common reaction mechanism that appears to be conserved within the larger integrase family of site-specific recombinases. Two regions of the proteins, designated box I and box II, also harbor a significantly high degree of homology at the nucleotide sequence level. We have analyzed the properties of Flp and R variants carrying point mutations within the box I segment in substrate-binding, DNA cleavage, and full-site and half-site strand transfer reactions. All mutations abolish or seriously diminish recombinase function either at the substrate-binding step or at the catalytic steps of strand cleavage or strand transfer. Of particular interest are mutations of Arg-191 of Flp and R, residues which correspond to one of the two invariant arginine residues of the integrase family. These variant proteins bind substrate with affinities comparable to those of the corresponding wild-type recombinases. Among the binding-competent variants, only Flp(R191K) is capable of efficient substrate cleavage in a full recombination target. However, this protein does not cleave a half recombination site and fails to complete strand exchange in a full site. Strikingly, the Arg-191 mutants of Flp and R can be rescued in half-site strand transfer reactions by a second point mutant of the corresponding recombinase that lacks its active-site tyrosine (Tyr-343). Similarly, Flp and R variants of Cys-189 and Flp variants at Asp-194 and Asp-199 can also be complemented by the corresponding Tyr-343-to-phenylalanine recombinase mutant.
Collapse
|
11
|
Chen JW, Evans BR, Yang SH, Araki H, Oshima Y, Jayaram M. Functional analysis of box I mutations in yeast site-specific recombinases Flp and R: pairwise complementation with recombinase variants lacking the active-site tyrosine. Mol Cell Biol 1992; 12:3757-65. [PMID: 1508181 PMCID: PMC360238 DOI: 10.1128/mcb.12.9.3757-3765.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that belong to the yeast family of site-specific recombinases. They share approximately 30% amino acid matches and exhibit a common reaction mechanism that appears to be conserved within the larger integrase family of site-specific recombinases. Two regions of the proteins, designated box I and box II, also harbor a significantly high degree of homology at the nucleotide sequence level. We have analyzed the properties of Flp and R variants carrying point mutations within the box I segment in substrate-binding, DNA cleavage, and full-site and half-site strand transfer reactions. All mutations abolish or seriously diminish recombinase function either at the substrate-binding step or at the catalytic steps of strand cleavage or strand transfer. Of particular interest are mutations of Arg-191 of Flp and R, residues which correspond to one of the two invariant arginine residues of the integrase family. These variant proteins bind substrate with affinities comparable to those of the corresponding wild-type recombinases. Among the binding-competent variants, only Flp(R191K) is capable of efficient substrate cleavage in a full recombination target. However, this protein does not cleave a half recombination site and fails to complete strand exchange in a full site. Strikingly, the Arg-191 mutants of Flp and R can be rescued in half-site strand transfer reactions by a second point mutant of the corresponding recombinase that lacks its active-site tyrosine (Tyr-343). Similarly, Flp and R variants of Cys-189 and Flp variants at Asp-194 and Asp-199 can also be complemented by the corresponding Tyr-343-to-phenylalanine recombinase mutant.
Collapse
Affiliation(s)
- J W Chen
- Department of Microbiology, University of Texas, Austin 78712
| | | | | | | | | | | |
Collapse
|