1
|
Herrera SC, Martín R, Morata G. Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 2013; 9:e1003446. [PMID: 23633961 PMCID: PMC3636033 DOI: 10.1371/journal.pgen.1003446] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
All organisms have developed mechanisms to respond to organ or tissue damage that may appear during development or during the adult life. This process of regeneration is a major long-standing problem in Developmental Biology. We are using the Drosophila melanogaster wing imaginal disc to study the response to major damage inflicted during development. Using the Gal4/UAS/Gal80TS conditional system, we have induced massive cell killing by forcing activity of the pro-apoptotic gene hid in two major regions of the disc as defined by Gal4 inserts in the genes rotund (rn) and spalt (sal). The procedure ensures that at the end of a 40–48 hrs of ablation period the great majority of the cells of the original Rn or Sal domains have been eliminated. The results indicate that the damage provokes an immediate response aimed to keep the integrity of the epithelium and to repair the region under ablation. This includes an increase in cell proliferation to compensate for the cell loss and the replacement of the dead cells by others from outside of the damaged area. The response is almost contemporaneous with the damage, so that at the end of the ablation period the targeted region is already reconstructed. We find that the proliferative response is largely systemic, as the number of cells in division increases all over the disc. Furthermore, our results indicate that the Dpp and Wg pathways are not specifically involved in the regenerative response, but that activity of the JNK pathway is necessary both inside and outside the ablated domain for its reconstruction. The study of how organs or tissues regenerate after damage is a classic topic in Developmental Biology. We are studying this process in the developing wing imaginal disc of Drosophila melanogaster, using genetic methods to inflict massive damage in the region destined to form the wing blade. We find that the lesion provokes a very strong and rapid reaction in the remaining disc aimed to reconstruct the lost tissue, both in size and in shape. The response includes an increase of cell proliferation to compensate for the loss of cells and the immigration of cells from neighbouring areas to replace the dead ones. The immigrant cells change their original identity and acquire that of the cells they are replacing. We propose that these experiments reveal the existence of a powerful homeostatic mechanism that is able to cure massive injuries that may appear during development.
Collapse
Affiliation(s)
- Salvador C. Herrera
- Centro de Biología Molecular CSIC–UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Martín
- Centro de Biología Molecular CSIC–UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ginés Morata
- Centro de Biología Molecular CSIC–UAM, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
2
|
Lin YH, Lin YM, Kuo YC, Wang YY, Kuo PL. Identification and characterization of a novel Rab GTPase-activating protein in spermatids. ACTA ACUST UNITED AC 2010; 34:e358-67. [DOI: 10.1111/j.1365-2605.2010.01126.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Yang C, Kazanietz MG. Chimaerins: GAPs that bridge diacylglycerol signalling and the small G-protein Rac. Biochem J 2007; 403:1-12. [PMID: 17346241 DOI: 10.1042/bj20061750] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chimaerins are the only known RhoGAPs (Rho GTPase-activating proteins) that bind phorbol ester tumour promoters and the lipid second messenger DAG (diacylglycerol), and show specific GAP activity towards the small GTPase Rac. This review summarizes our knowledge of the structure, biochemical and biological properties of chimaerins. Recent findings have established that chimaerins are regulated by tyrosine kinase and GPCRs (G-protein-coupled receptors) via PLC (phospholipase C) activation and DAG generation to promote Rac inactivation. The finding that chimaerins, along with some other proteins, are receptors for DAG changed the prevalent view that PKC (protein kinase C) isoenzymes are the only cellular molecules regulated by DAG. In addition, vigorous recent studies have begun to decipher the critical roles of chimaerins in the central nervous system, development and tumour progression.
Collapse
Affiliation(s)
- Chengfeng Yang
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA.
| | | |
Collapse
|
4
|
Abstract
Among the key protein regulators of the various and numerous small GTPases are the GTPase activating proteins (GAPs). Experimental studies of some of the approximately 170 GAPs predicted by the human genome indicate that their catalytic GAP activity is regulated by a variety of mechanisms, including phosphorylation, protein-protein interactions, proteolysis, and interactions with lipids. Most reported biochemical studies to address the specificity of GAPs for particular GTPases have been conducted in vitro with bacterially produced GTPases. Thus, the potential influence of these various regulatory mechanisms in the context of GAP-GTPase specificity may be overlooked in such assays. Here, we present experimental studies that highlight the role of lipids in modulating the GTPase specificity for some of the Rho GAPs. We find that particular phospholipids can substantially alter the substrate "preference" for the p190 GAPs. We find that C-terminal prenylation of GTPases can influence the specificity of GAP interactions as well. These observations emphasize the limitations of standard in vitro GAP assays in definitively establishing the physiologically relevant GTPase targets for particular GAPs.
Collapse
Affiliation(s)
- Erzsébet Ligeti
- Semmelweis University, Department of Physiology, Budapest, Hungary
| | | |
Collapse
|
5
|
Oceguera-Yanez F, Kimura K, Yasuda S, Higashida C, Kitamura T, Hiraoka Y, Haraguchi T, Narumiya S. Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis. ACTA ACUST UNITED AC 2005; 168:221-32. [PMID: 15642749 PMCID: PMC2171585 DOI: 10.1083/jcb.200408085] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although Rho regulates cytokinesis, little was known about the functions in mitosis of Cdc42 and Rac. We recently suggested that Cdc42 works in metaphase by regulating bi-orient attachment of spindle microtubules to kinetochores. We now confirm the role of Cdc42 by RNA interference and identify the mechanisms for activation and down-regulation of Cdc42. Using a pull-down assay, we found that the level of GTP-Cdc42 elevates in metaphase, whereas the level of GTP-Rac does not change significantly in mitosis. Overexpression of dominant-negative mutants of Ect2 and MgcRacGAP, a Rho GTPase guanine nucleotide exchange factor and GTPase activating protein, respectively, or depletion of Ect2 by RNA interference suppresses this change of GTP-Cdc42 in mitosis. Depletion of Ect2 also impairs microtubule attachment to kinetochores and causes prometaphase delay and abnormal chromosomal segregation, as does depletion of Cdc42 or expression of the Ect2 and MgcRacGAP mutants. These results suggest that Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis.
Collapse
Affiliation(s)
- Fabian Oceguera-Yanez
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mäkelä S, Eklund R, Lähdetie J, Mikkola M, Hovatta O, Kere J. Mutational analysis of the human SLC26A8 gene: exclusion as a candidate for male infertility due to primary spermatogenic failure. Mol Hum Reprod 2004; 11:129-32. [PMID: 15579655 DOI: 10.1093/molehr/gah140] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SLC26A8 is an anion transporter that is solely expressed in the testes. It interacts with MgcRacGAP that shows strong structural similarity with the Drosophila protein RotundRacGAP, which is established to have an essential role for male fertility in the fruit fly. To explore whether the SLC26A8 gene has a role in human male infertility, we performed mutational analysis in the coding region of the SLC26A8 gene in 83 male infertility patients and two groups of controls using single-strand conformational polymorphism and direct sequencing methods. We found six novel coding sequence variations, of which five lead to amino acid substitutions. All variants were found with similar frequencies in both patients and controls, thus suggesting that none of them may be causally associated with infertility. We conclude that the SLC26A8 mutations are not a common cause of male infertility.
Collapse
Affiliation(s)
- S Mäkelä
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
7
|
Raymond K, Bergeret E, Avet-Rochex A, Griffin-Shea R, Fauvarque MO. A screen for modifiers of RacGAP(84C) gain-of-function in theDrosophilaeye revealed the LIM kinase Cdi/TESK1 as a downstream effector of Rac1 during spermatogenesis. J Cell Sci 2004; 117:2777-89. [PMID: 15169836 DOI: 10.1242/jcs.01123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila, RotundRacGAP/RacGAP(84C) is critical to retinal organisation and spermatogenesis. We show that eye-directed expression of RacGAP(84C) or its GTPase activating protein (GAP) domain induces a dominant rough eye phenotype which we used as a starting point in a gain-of-function screen to identify new partners of RacGAP(84C). Proteins known to function in Ras, Rho and Rac signalling were identified confirming the essential role of RacGAP(84C) in crosstalk between GTPases. Other potential RacGAP(84C) partners identified by the screen are implicated in signal transduction, DNA remodelling, cytoskeletal organisation, membrane trafficking and spermatogenesis. This latter class includes the serine/threonine kinase Center divider (Cdi), which is homologous to the human LIM kinase, Testis specific kinase 1 (TESK1), involved in cytoskeleton control through Cofilin phosphorylation. Eye-directed expression of cdi strongly suppressed the phenotypes induced by either RacGAP(84C) gain-of-function or by the dominant negative form of Rac1, Rac1N17. These results are consistent with Cdi being a specific downstream target of Rac1. We showed that Rac1 and cdi are both expressed in Drosophila testis and that homozygous Rac1 mutants exhibit poor fertility that is further reduced by introducing a cdi loss-of-function mutation in trans. Thus, results from a misexpression screen in the eye led us to a putative novel Rac1-Cdi-Cofilin pathway, regulated by RacGAP(84C), coordinating Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Karine Raymond
- CEA-Grenoble, Département de Réponse et Dynamique Cellulaires, UMR 5092, 17 rue des Martyrs, 38054 Grenoble CEDEX 9, France
| | | | | | | | | |
Collapse
|
8
|
Bernards A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1603:47-82. [PMID: 12618308 DOI: 10.1016/s0304-419x(02)00082-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Typical members of the Ras superfamily of small monomeric GTP-binding proteins function as regulators of diverse processes by cycling between biologically active GTP- and inactive GDP-bound conformations. Proteins that control this cycling include guanine nucleotide exchange factors or GEFs, which activate Ras superfamily members by catalyzing GTP for GDP exchange, and GTPase activating proteins or GAPs, which accelerate the low intrinsic GTP hydrolysis rate of typical Ras superfamily members, thus causing their inactivation. Two among the latter class of proteins have been implicated in common genetic disorders associated with an increased cancer risk, neurofibromatosis-1, and tuberous sclerosis. To facilitate genetic analysis, I surveyed Drosophila and human sequence databases for genes predicting proteins related to GAPs for Ras superfamily members. Remarkably, close to 0.5% of genes in both species (173 human and 64 Drosophila genes) predict proteins related to GAPs for Arf, Rab, Ran, Rap, Ras, Rho, and Sar family GTPases. Information on these genes has been entered into a pair of relational databases, which can be used to identify evolutionary conserved proteins that are likely to serve basic biological functions, and which can be updated when definitive information on the coding potential of both genomes becomes available.
Collapse
Affiliation(s)
- André Bernards
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129-2000, USA.
| |
Collapse
|
9
|
Abstract
Rho GTPases, such as Rho, Rac and Cdc42, are known to regulate many cellular processes including cell movement and cell adhesion. While the cellular events of germ cell movement are crucial to spermatogenesis since developing germ cells must migrate progressively from the basal to the adluminal compartment but remain attached to the seminiferous epithelium, the physiological significance of Rho GTPases in spermatogenesis remains largely unexplored. This paper reviews some recent findings on Rho GTPases in the field with emphasis on the studies in the testis, upon which future studies can be designed to delineate the role of Rho GTPases in spermatogenesis.
Collapse
Affiliation(s)
- Wing-Yee Lui
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
10
|
St Pierre SE, Galindo MI, Couso JP, Thor S. Control ofDrosophilaimaginal disc development byrotundandroughened eye: differentially expressed transcripts of the same gene encoding functionally distinct zinc finger proteins. Development 2002; 129:1273-81. [PMID: 11874922 DOI: 10.1242/dev.129.5.1273] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Drosophila rotund gene is required in the wings, antenna, haltere, proboscis and legs. A member of the Rac family of GTPases, denoted the rotund racGAP gene, was previously identified in the rotund region. However, previous studies indicated that rotund racGAP was not responsible for the rotund phenotypes and that the rotund gene had yet to be identified. We have isolated the rotund gene and show that it is a member of the Krüppel family of zinc finger genes. The adjacent roughened eye locus specifically affects the eye and is genetically separable from rotund. However, roughened eye and rotund are tightly linked, and we have therefore also isolated the roughened eye transcript. Intriguingly, we show that roughened eye is part of the rotund gene but is represented by a different transcript. The rotund and roughened eye transcripts result from the utilization of two different promoters that direct expression in non-overlapping domains in the larval imaginal discs. The predicted Rotund and Roughened Eye proteins share the same C-terminal region, including the zinc finger domain, but differ in their N-terminal regions. Each cDNA can rescue only the corresponding mutation and show negative effects when expressed in each others domain of expression. These results indicate that in addition to the differential expression of rotund and roughened eye, their proteins have distinct activities. rotund and roughened eye act downstream of early patterning genes such as dachshund and appear to be involved in Notch signaling by regulating Delta, scabrous and Serrate.
Collapse
Affiliation(s)
- Susan E St Pierre
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
11
|
Billuart P, Winter CG, Maresh A, Zhao X, Luo L. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 2001; 107:195-207. [PMID: 11672527 DOI: 10.1016/s0092-8674(01)00522-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mechanisms that regulate axon branch stability are largely unknown. Genome-wide analyses of Rho GTPase activating protein (RhoGAP) function in Drosophila using RNA interference identified p190 RhoGAP as essential for axon stability in mushroom body neurons, the olfactory learning and memory center. p190 inactivation leads to axon branch retraction, a phenotype mimicked by activation of GTPase RhoA and its effector kinase Drok and modulated by the level and phosphorylation of myosin regulatory light chain. Thus, there exists a retraction pathway from RhoA to myosin in maturing neurons, which is normally repressed by p190. Local regulation of p190 could control the structural plasticity of neurons. Indeed, genetic evidence supports negative regulation of p190 by integrin and Src, both implicated in neural plasticity.
Collapse
Affiliation(s)
- P Billuart
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
12
|
Raymond K, Bergeret E, Dagher MC, Breton R, Griffin-Shea R, Fauvarque MO. The Rac GTPase-activating protein RotundRacGAP interferes with Drac1 and Dcdc42 signalling in Drosophila melanogaster. J Biol Chem 2001; 276:35909-16. [PMID: 11468292 DOI: 10.1074/jbc.m105779200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RhoGTPases are negatively regulated by GTPase-activating proteins (GAPs). Here we demonstrate that Drosophila RotundRacGAP is active in vitro on Drac1 and Dcdc42 but not Drho1. Similarly, in yeast, RotundRacGAP interacts specifically with Drac1 and Dcdc42, as well as with their activated V12 forms, showing a particularly strong interaction with Dcdc42V12. In the fly, lowering RotundRacGAP dosage specifically modifies eye defects induced by expressing Drac1 or Dcdc42 but not Drho1, confirming that Drac1 and Dcdc42 are indeed in vivo targets of RotundRacGAP. Furthermore, embryonic-directed expression of either RotundRacGAP, or dominant negative Drac1N17, transgenes induces similar defects in dorsal closure and inhibits Drac1-dependent cytoskeleton assembly at the leading edge. Expression of truncated forms of RotundRacGAP shows that the GAP domain of RotundRacGAP is essential for its function. Unexpectedly, transgenes encoding Drac1N17, Dcdc42N17, or RotundRacGAP do not affect the c-Jun N-terminal kinase-dependent gene expression of decapentaplegic and puckered, indicating that another Drac1-independent signal redundantly activates this pathway. Finally, in a situation where Drac1 is constitutively activated, RotundRacGAP greatly reduces the ectopic expression of decapentaplegic, possibly by negatively regulating Dcdc42.
Collapse
Affiliation(s)
- K Raymond
- Département de Biologie Moléculaire et Structurale, CEA-CNRS-UJF, UMR 5092, 17 rue des Martyrs, Grenoble 38054, France
| | | | | | | | | | | |
Collapse
|
13
|
Toure A, Morin L, Pineau C, Becq F, Dorseuil O, Gacon G. Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. J Biol Chem 2001; 276:20309-15. [PMID: 11278976 DOI: 10.1074/jbc.m011740200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoGTPases (Rho, Rac, and Cdc42) are known to regulate multiple functions, including cell motility, adhesion, and proliferation; however, the signaling pathways underlying these pleiotropic effects are far from fully understood. We have recently described a new RhoGAP (GTPase activating protein for RhoGTPases) gene, MgcRacGAP, primarily expressed in male germ cells, at the spermatocyte stage. We report here the isolation, through two-hybrid cloning, of a new partner of MgcRacGAP, very specifically expressed in the male germ line and showing structural features of anion transporters. This large protein (970 amino acids and a predicted size of 109 kDa), we provisionally designated Tat1 (for testis anion transporter 1), is closely related to a sulfate permease family comprising three proteins in human (DRA, Pendrin, and DTD); it is predicted to be an integral membrane protein with 14 transmembrane helices and intracytoplasmic NH(2) and COOH termini. In situ hybridization studies demonstrate that Tat1 and MgcRacGAP genes are coexpressed in male germ cells at the spermatocyte stage. On testis sections, Tat1 protein can be immunodetected in spermatocytes and spermatids associated with plasma membrane. Two-hybrid and in vitro binding assays demonstrate that MgcRacGAP stably interacts through its NH(2)-terminal domain with the Tat1 COOH-terminal region. Expression of Tat1 protein in COS7 cells generates a 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene and chloride-sensitive sulfate transport. Therefore we conclude that Tat1 is a novel sulfate transporter specifically expressed in spermatocytes and spermatids and interacts with MgcRacGAP in these cells. These observations raise the possibility of a new regulatory pathway linking sulfate transport to Rho signaling in male germ cells.
Collapse
Affiliation(s)
- A Toure
- Institut Cochin de Génétique Moléculaire, Département de Génétique, Développement et Pathologie Moléculaire, INSERM Unité 257, 24 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Sotillos S, Campuzano S. DRacGAP, a novel Drosophila gene, inhibits EGFR/Ras signalling in the developing imaginal wing disc. Development 2000; 127:5427-38. [PMID: 11076763 DOI: 10.1242/dev.127.24.5427] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have identified a novel Drosophila gene, DRacGAP, which behaves as a negative regulator of Ρ-family GTPases DRac1 and DCdc42. Reduced function of DRacGAP or increased expression of DRac1 in the wing imaginal disc cause similar effects on vein and sensory organ development and cell proliferation. These effects result from enhanced activity of the EGFR/Ras signalling pathway. We find that in the wing disc, DRac1 enhances EGFR/Ras-dependent activation of MAP Kinase in the prospective veins. Interestingly, DRacGAP expression is negatively regulated by the EGFR/Ras pathway in these regions. During vein formation, local DRacGAP repression would ensure maximal activity of Rac and, in turn, of Ras pathways in vein territories. Additionally, maximal expression of DRacGAP at the vein/intervein boundaries would help to refine the width of the veins. Hence, control of DRacGAP expression by the EGFR/Ras pathway is a previously undescribed feedback mechanism modulating the intensity and/or duration of its signalling during Drosophila development.
Collapse
Affiliation(s)
- S Sotillos
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM Cantoblanco, Spain
| | | |
Collapse
|
15
|
Wu G, Li H, Yang Z. Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for rop-specific GTPase stimulation. PLANT PHYSIOLOGY 2000; 124:1625-36. [PMID: 11115880 PMCID: PMC59861 DOI: 10.1104/pp.124.4.1625] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2000] [Revised: 06/21/2000] [Accepted: 07/19/2000] [Indexed: 05/19/2023]
Abstract
The plant-specific Rop subfamily of Rho GTPases, most closely related to the mammalian Cdc42 and Rac GTPases, plays an important role in the regulation of calcium-dependent pollen tube growth, H(2)O(2)-mediated cell death, and many other processes in plants. In a search for Rop interactors using the two-hybrid method, we identified a family of Rho GTPase-activating proteins (GAP) from Arabidopsis, termed RopGAPs. In addition to a GAP catalytic domain, RopGAPs contain a Cdc42/Rac-interactive binding (CRIB) motif known to allow Cdc42/Rac effector proteins to bind activated Cdc42/Rac. This novel combination of a GAP domain with a CRIB motif is widespread in higher plants and is unique to the regulation of the Rop GTPase. A critical role for CRIB in the regulation of in vitro RopGAP activity was demonstrated using point and deletion mutations. Both types of mutants have drastically reduced capacities to stimulate the intrinsic Rop GTPase activity and to bind Rop. Furthermore, RopGAPs preferentially stimulate the GTPase activity of Rop, but not Cdc42 in a CRIB-dependent manner. In vitro binding assays show that the RopGAP CRIB domain interacts with GTP- and GDP-bound forms of Rop, as well as the transitional state of Rop mimicked by aluminum fluoride. The CRIB domain also promotes the association of the GAP domain with the GDP-bound Rop, as does aluminum fluoride. These results reveal a novel CRIB-dependent mechanism for the regulation of the plant-specific family of Rho GAPs. We propose that the CRIB domain facilitates the formation of or enhanced GAP-mediated stabilization of the transitional state of the Rop GTPase.
Collapse
Affiliation(s)
- G Wu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
16
|
Sagnier T, Grienenberger A, Mariol M, Bérenger H, Pradel J, Graba Y. Dynamic expression of d-CdGAPr, a novel Drosophila melanogaster gene encoding a GTPase activating protein. Mech Dev 2000; 94:267-70. [PMID: 10842085 DOI: 10.1016/s0925-4773(00)00291-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small GTPases of the rho family function as signal transducer for extra-cellular stimuli to control cytoskeletal re-organization and a variety of other cellular processes including adhesion, proliferation and transcriptional regulation (Hall, A., 1998. RhoGTPases and the actin cytoskeleton. Science 279, 509-514). Usually widely expressed, their activities are tightly controlled by conformational changes induced by hydrolysis of the GTP bound molecule (Bourne H.R., Sanders D.A., 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125-132). Conversion of GTP to GDP relies on a rho intrinsic GTPase domain that requires GTPase activating proteins (GAPs) for potent activity (Lamarche, N., Hall. A., 1994. GAPs for rho-related GTPases. Trends Genet. 10, 436-440). Here we report on the identification of a novel Drosophila GAP gene, d-CdGAPr, encoding a protein related to mammalian CdGAPs. The gene is expressed throughout development as well as in adults. Spatio-temporal transcription pattern of d-CdGAPr during embryogenesis is highly dynamic. Abundant in the pre-blastoderm embryo prior to the onset of zygotic transcription, messengers accumulate at the blastoderm posterior pole after cellularisation. During gastrulation and subsequent development, all cells accumulate low levels of d-CdGAPr RNA, while a few territories transiently display stronger expression. Sites of preferential expression include the posterior pole of the early cellular blastoderm, the neuro-ectoderm prior to neuroblast delamination, rows of epidermal cells in the most posterior part of thoracic and first abdominal segments and a ring of epidermal cells at the posterior end of the embryo.
Collapse
Affiliation(s)
- T Sagnier
- Laboratoire de Génétique et Physiologie du Développement, Institut de Biologie du Développement de Marseille, CNRS/INSERM/Université de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
| | | | | | | | | | | |
Collapse
|
17
|
Arar C, Ott MO, Touré A, Gacon G. Structure and expression of murine mgcRacGAP: its developmental regulation suggests a role for the Rac/MgcRacGAP signalling pathway in neurogenesis. Biochem J 1999; 343 Pt 1:225-30. [PMID: 10493933 PMCID: PMC1220545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Rho-family GTPases regulate a wide range of biological functions including cell migration, cell adhesion and cell growth. Recently, results from studies in vivo in Drosophila, mouse and humans have demonstrated the involvement of these GTPases in mechanisms controlling neuronal differentiation and the development of the central nervous system (CNS). However, the signalling pathways underlying these functions and the proteins directly regulating RhoGTPases in developing neurons are poorly defined. Here we report the structure and expression pattern of the murine orthologue of mgcRacGAP, a human gene encoding a RacGTPase partner expressed in male germ cells [Touré, Dorseuil, Morin, Timmons, Jegou, Reibel and Gacon (1998) J. Biol. Chem. 273, 6019-6023]. In contrast with that from humans, murine mgcRacGAP encodes two distinct transcripts. Both are developmentally regulated. A 2.2 kb transcript is strongly expressed in mature testis and is up-regulated with spermatogenesis. A 3 kb RNA is predominant in the embryo and is expressed primarily in the CNS during the neurogenic phase, decreasing after birth. In situ hybridization analysis in embryonic-day 14.5 mouse embryos demonstrates a preferential expression of mgcRacGAP in the proliferative ventricular zone of the cortex. In addition to the expression of mgcRacGAP in male germ cells already reported in humans and suggesting an involvement in spermatogenesis, we characterize an embryonic transcript whose expression is closely correlated with neurogenesis. This result addresses the question of the role of Rac/MgcRacGAP pathway in neuronal proliferation.
Collapse
Affiliation(s)
- C Arar
- Institut Cochin de Génétique Moléculaire, INSERM Unité 257, 24 Rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | |
Collapse
|
18
|
Zalcman G, Dorseuil O, Garcia-Ranea JA, Gacon G, Camonis J. RhoGAPs and RhoGDIs, (His)stories of two families. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 22:85-113. [PMID: 10081066 DOI: 10.1007/978-3-642-58591-3_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- G Zalcman
- Institut Curie, INSERM U-248, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Lamarche-Vane N, Hall A. CdGAP, a novel proline-rich GTPase-activating protein for Cdc42 and Rac. J Biol Chem 1998; 273:29172-7. [PMID: 9786927 DOI: 10.1074/jbc.273.44.29172] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc42 mediates several signaling pathways leading to actin reorganization, transcriptional activation, and cell cycle control. Mutational analysis of Cdc42 has revealed that actin reorganization and transcriptional activation are induced through independent signaling pathways. The Y40C effector mutant of Cdc42 no longer interacts with many of its known target proteins, such as p65(PAK) and WASP, yet this mutant can still induce filopodia formation. To identify Cdc42 targets involved in actin rearrangements, we have screened a yeast two-hybrid cDNA library using the Y40C mutant of Cdc42 as a bait. We report here the identification of a novel serine- and proline-rich GTPase-activating protein, CdGAP, which is active in vitro on both Cdc42 and Rac. Microinjection of CdGAP into serum-starved fibroblasts inhibits both platelet-derived growth factor-induced lamellipodia and bradykinin-induced filopodia mediated by Rac and Cdc42, respectively. CdGAP does not show in vitro activity toward Rho, and it has no effect on lysophosphatidic acid-induced stress fiber formation when microinjected into fibroblasts. The carboxyl terminus of CdGAP reveals potential protein kinase C phosphorylation sites and five SH3 binding motifs. Thus, CdGAP is a novel GAP that is likely to participate in Cdc42- and Rac-induced signaling pathways leading to actin reorganization.
Collapse
Affiliation(s)
- N Lamarche-Vane
- Medical Research Council Laboratory for Molecular Cell Biology, CRC Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
20
|
Touré A, Dorseuil O, Morin L, Timmons P, Jégou B, Reibel L, Gacon G. MgcRacGAP, a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product, is expressed in male germ cells. J Biol Chem 1998; 273:6019-23. [PMID: 9497316 DOI: 10.1074/jbc.273.11.6019] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a search for new partners of the activated form of Rac GTPase, we have isolated through a two-hybrid cloning procedure a human cDNA encoding a new GTPase-activating protein (GAP) for Rho family GTPases. A specific mRNA of 3.2 kilobases was detected in low abundance in many cell types and found highly expressed in testis. A protein of the predicted size 58 kDa, which we call MgcRacGAP, was detected in human testis as well as in germ cell tumor extracts by immunoblotting with antibodies specific to recombinant protein. In vitro, the GAP domain of MgcRacGAP strongly stimulates Rac1 and Cdc42 GTPase activity but is almost inactive on RhoA. N-terminal to its GAP domain, MgcRacGAP contains a cysteine-rich zinc finger-like motif characteristic of the Chimaerin family of RhoGAPs. The closest homolog of MgcRacGAP is RotundRacGAP, a product of the Drosophila rotund locus. In situ hybridization experiments in human testis demonstrate a specific expression of mgcRacGAP mRNA in spermatocytes similar to that of rotundRacGAP in Drosophila testis. Therefore, protein sequence similarity and analogous developmental and tissue specificities of gene expression support the hypothesis that RotundRacGAP and MgcRacGAP have equivalent functions in insect and mammalian germ cells. Since rotundRacGAP deletion leads to male sterility in the fruit fly, the mgcRacGAP gene may prove likewise to play a key role in mammalian male fertility.
Collapse
Affiliation(s)
- A Touré
- Institut Cochin de Génétique Moléculaire, INSERM Unité 257, 24 Rue du faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Schaefer L, Prakash S, Zoghbi HY. Cloning and characterization of a novel rho-type GTPase-activating protein gene (ARHGAP6) from the critical region for microphthalmia with linear skin defects. Genomics 1997; 46:268-77. [PMID: 9417914 DOI: 10.1006/geno.1997.5040] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microphthalmia with linear skin defects syndrome (MLS) is an X-linked dominant, male-lethal disorder associated with chromosomal rearrangements that result in deletions of the distal short arm of the X chromosome. In an effort to isolate expressed sequences from the 500-kb MLS critical region in Xp22.3, exons were trapped from 14 overlapping cosmids. Using exon connection followed by cDNA library screening, we identified a 2.4-kb contig of cDNA library screening 170 kb of genomic sequence in the MLS deletion region. Northern analysis of this cDNA detected a prominent approximately 4.2-kb transcript and a less abundant approximately 6-kb transcript in all tissues examined, with additional transcripts in skeletal muscle. Sequence analysis revealed a coding region of 601 amino acids contained in 12 exons, with a splice variant isoform of 495 amino acids. The predicted protein sequence of the gene, named ARHGAP6, contains homology to the GTPase-activating (GAP) domain of the rhoGAP family of proteins, which has been implicated in the regulation of actin polymerization at the plasma membrane in several cellular processes. The possible role of the ARHGAP6 protein in the pathogenesis of MLS is discussed.
Collapse
Affiliation(s)
- L Schaefer
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
22
|
Müller RT, Honnert U, Reinhard J, Bähler M. The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695. Mol Biol Cell 1997; 8:2039-53. [PMID: 9348541 PMCID: PMC25667 DOI: 10.1091/mbc.8.10.2039] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
myr 5 is an unconventional myosin (class IX) from rat that contains a Rho-family GTPase-activating protein (GAP) domain. Herein we addressed the specificity of the myr 5 GAP activity, the molecular mechanism by which GAPs activate GTP hydrolysis, the consequences of myr 5 overexpression in living cells, and its subcellular localization. The myr 5 GAP activity exhibits a high specificity for Rho. To achieve similar rates of GTPase activation for RhoA, Cdc42Hs, and Rac1, a 100-fold or 1000-fold higher concentration of recombinant myr 5 GAP domain was needed for Cdc42Hs or Rac1, respectively, as compared with RhoA. Cell lysates from Sf9 insect cells infected with recombinant baculovirus encoding myr 5 exhibited increased GAP activity for RhoA but not for Cdc42Hs or Rac1. Analysis of Rho-family GAP domain sequences for conserved arginine residues that might contribute to accelerate GTP hydrolysis revealed a single conserved arginine residue. Mutation of the corresponding arginine residue in the myr 5 GAP domain to a methionine (M1695) virtually abolished Rho-GAP activity. Expression of myr 5 in Sf9 insect cells induced the formation of numerous long thin processes containing occasional varicosities. Such morphological changes were dependent on the myr 5 Rho-GAP activity, because they were induced by expression the myr 5 tail or just the myr 5 Rho-GAP domain but not by expressing the myr 5 myosin domain. Expression of myr 5 in mammalian normal rat kidney (NRK) or HtTA-1 HeLa cells induced a loss of actin stress fibers and focal contacts with concomitant morphological changes and rounding up of the cells. Similar morphological changes were observed in HtTA-1 HeLa cells expressing just the myr 5 Rho-GAP domain but not in cells expressing myr 5 M1695. These morphological changes induced by myr 5 were inhibited by coexpression of RhoV14, which is defective in GTP hydrolysis, but not by RhoI117. myr 5 was localized in dynamic regions of the cell periphery, in the perinuclear region in the Golgi area, along stress fibers, and in the cytosol. These results demonstrate that myr 5 has in vitro and in vivo Rho-GAP activity. No evidence for a Rho effector function of the myr 5 myosin domain was obtained.
Collapse
Affiliation(s)
- R T Müller
- Friedrich-Miescher-Laboratorium in der Max-Planck Gesellschaft, Tübingen, Germany
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- H Y Zoghbi
- Department of Pediatrics, Baylor College of Medicine, Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
24
|
Hurley JH, Newton AC, Parker PJ, Blumberg PM, Nishizuka Y. Taxonomy and function of C1 protein kinase C homology domains. Protein Sci 1997; 6:477-80. [PMID: 9041654 PMCID: PMC2143645 DOI: 10.1002/pro.5560060228] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
C1 domains are compact alpha/beta structural units of about 50 amino acids which tightly bind two zinc ions. These domains were first discovered as the loci of phorbol ester and diacylglycerol binding to conventional protein kinase C isozymes, which contain 2 C1 domains (C1A and C1B) in their N-terminal regulatory regions. We present a comprehensive list of 54 C1 domains occurring singly or doubly in 34 different proteins. Many C1 domains and C1 domain-containing proteins bind phorbol esters, but many others do not. By combining analysis of 54 C1 domain sequences with information from previously reported solution and crystal structure determinations and site-directed mutagenesis, profiles are derived and used to classify C1 domains. Twenty-six C1 domains fit the profile for phorbol-ester binding and are termed "typical." Twenty-eight other domains fit the profile for the overall C1 domain fold but do not fit the profile for phorbol ester binding, and are termed "atypical." Proteins containing typical C1 domains are predicted to be regulated by diacylglycerol, whereas those containing only atypical domains are not.
Collapse
Affiliation(s)
- J H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0580, USA.
| | | | | | | | | |
Collapse
|
25
|
Guichard A, Bergeret E, Griffin-Shea R. Overexpression of RnRacGAP in Drosophila melanogaster deregulates cytoskeletal organisation in cellularising embryos and induces discrete imaginal phenotypes. Mech Dev 1997; 61:49-62. [PMID: 9076677 DOI: 10.1016/s0925-4773(96)00619-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RacGAP proteins have been shown to down-regulate members of the Rho/Rac subfamily, small GTPases controlling actin network organisation. Only one RacGAP protein, RnRacGAP, has been identified in Drosophila. To examine RnRacGAP function, we generated transgenic strains expressing RnRacGAP under the control of the heat-shock promoter hsp70. In cellularising embryos, ectopic RnRacGAP induces lethality, associated with radical cell-shape changes, apical F-actin delocalisation, and inhibition of basal actin polymerisation. Overexpression of RnRacGAP in pupae induces a number of phenotypes with distinct critical periods of induction. These include wing shape and margin changes, wing vein defects, disorientation of wing hairs and thoracic bristles, and abdominal segment fusion. Thus, changes in cell shape/adhesion and reorganisation of the actin network are sensitive to overexpression of RnRacGAP throughout development in Drosophila.
Collapse
Affiliation(s)
- A Guichard
- CEA, INSERM Unité 309, Département de Biologie Moléculaire et Structurale, Grenoble, France
| | | | | |
Collapse
|
26
|
Hoemann CD, Bergeret E, Guichard A, Griffin-Shea R. Alternative splicing of the Drosophila melanogaster rotundRacGAP gene. Gene 1996; 168:135-41. [PMID: 8654933 DOI: 10.1016/0378-1119(95)00747-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The rotund (rn) gene in Drosophila melanogaster codes for a RacGTPase-activating protein, RnRacGAP. Cellular studies have shown that RacGAP proteins function as negative regulators of substrate Rac proteins which, in turn, control the localization and polymerization state of actin within the cell. Previous sequence analysis of rn genomic DNA and incomplete cDNA clones suggested that at least two differentially spliced forms of the transcript exist, rnRacGAP(1) and rnRacGAP(2). Using nested reverse transcription-polymerase chain reaction (RT-PCR) methods, we have cloned missing exon and intron sequences, and detected differences between rnRacGAP(1) and rnRacGAP(2) involving 24 nucleotides (nt) of coding sequences and 119 nt of 3'UTR. This translates to a difference of seven amino acids at the C-termini of the polypeptide products. Utilization, in RT-PCR analysis, of form-specific primers provided a simple assay for the tissue specificity of expression of the two forms. rnRacGAP(1) is the predominant species in the testes and is expressed at a low level in the ovary and somatic tissues. rnRacGAP(2) is only very weakly expressed and is detectable solely in the testes.
Collapse
Affiliation(s)
- C D Hoemann
- INSERM Unité 309, Department de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires, Grenoble, France
| | | | | | | |
Collapse
|
27
|
Ahmed S, Kozma R, Hall C, Lim L. GTPase-activating protein activity of n(alpha 1)-Chimaerin and effect of lipids. Methods Enzymol 1995; 256:114-25. [PMID: 7476424 DOI: 10.1016/0076-6879(95)56016-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- S Ahmed
- Department of Neurochemistry, Institute of Neurology, London, United Kingdom
| | | | | | | |
Collapse
|
28
|
Abstract
Ras-related GTP-binding proteins (GTPases) of the rho subfamily play important roles in regulating the organization of the actin cytoskeleton. A large number of multifunctional proteins that can stimulate their intrinsic GTPase activity have been identified. Here, we discuss the nature of such GTPase-activating proteins (GAPs) and their potential importance for cell signalling.
Collapse
Affiliation(s)
- N Lamarche
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| | | |
Collapse
|
29
|
Breakpoint cluster region gene product-related domain of n-chimaerin. Discrimination between Rac-binding and GTPase-activating residues by mutational analysis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32489-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Chen W, Blanc J, Lim L. Characterization of a promiscuous GTPase-activating protein that has a Bcr-related domain from Caenorhabditis elegans. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42184-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Abstract
GTPases of the Ras superfamily regulate many aspects of cell growth, differentiation and action. Their functions depend on their ability to alternate between inactive and active forms, and on their cellular localization. Numerous proteins affecting the GTPase activity, nucleotide exchange rates and membrane localization of Ras superfamily members have now been identified. Many of these proteins are much larger and more complex than their targets, containing multiple domains capable of interacting with an intricate network of cellular enzymes and structures.
Collapse
Affiliation(s)
- M S Boguski
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland 20894
| | | |
Collapse
|
32
|
Baldwin GS, Zhang QX. Related GAP domains in inositol polyphosphate 5-phosphatase and the p85 subunit of phosphatidylinositol 3-kinase. Trends Biochem Sci 1993; 18:378-80. [PMID: 8256286 DOI: 10.1016/0968-0004(93)90093-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- G S Baldwin
- Ludwig Institute for Cancer Research, Melbourne Tumor Biology Branch, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
33
|
Leung T, How B, Manser E, Lim L. Germ cell beta-chimaerin, a new GTPase-activating protein for p21rac, is specifically expressed during the acrosomal assembly stage in rat testis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53543-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|