1
|
Arora N, Liang H, Yao W, Ying H, Liu J, Zhou Y. Lysophosphatidylcholine acyltransferase 1 suppresses nanoclustering and function of KRAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596653. [PMID: 38853864 PMCID: PMC11160780 DOI: 10.1101/2024.05.30.596653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
KRAS is frequently mutated in cancer, contributing to 20% of all human cancer especially pancreatic, colorectal and lung cancer. Signaling of the constitutively active KRAS oncogenic mutants is mostly compartmentalized to proteolipid nanoclusters on the plasma membrane (PM). Signaling nanoclusters of many KRAS mutants selectively enrich phosphatidylserine (PS) lipids with unsaturated sn-2 acyl chains, but not the fully saturated PS species. Thus, remodeling PS acyl chains may suppress KRAS oncogenesis. Lysophosphatidylcholine acyltransferases (LPCATs) remodel sn-2 acyl chains of phospholipids, with LPCAT1 preferentially generating the fully saturated lipids. Here, we show that stable expression of LPCAT1 depletes major PS species with unsaturated sn-2 chains while decreasing minor phosphatidylcholine (PC) species with the corresponding acyl chains. LPCAT1 expression more effectively disrupts the nanoclustering of oncogenic GFP-KRASG12V, which is restored by acute addback of exogenous unsaturated PS. LPCAT1 expression compromises signaling and oncogenic activities of the KRAS-dependent pancreatic tumor lines. LPCAT1 expression sensitizes human pancreatic tumor MiaPaCa-2 cells to KRASG12C specific inhibitor, Sotorasib. Statistical analyses of patient data further reveal that pancreatic cancer patients with KRAS mutations express less LPCAT1. Higher LPCAT1 expression also improves survival probability of pancreatic and lung adenocarcinoma patients with KRAS mutations. Thus, PS acyl chain remodeling selectively suppresses KRAS oncogenesis.
Collapse
Affiliation(s)
- Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Wantong Yao
- Department of Translational Molecular Pathology, Division of Pathology-Lab Medicine Div, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junchen Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
- Program of Biochemistry and Cell Biology, Graduate School of Biological Sciences, M. D. Anderson Cancer Center and University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
2
|
Liu J, Arora N, Zhou Y. RAS GTPases and Interleaflet Coupling in the Plasma Membrane. Cold Spring Harb Perspect Biol 2023; 15:a041414. [PMID: 37463719 PMCID: PMC10513163 DOI: 10.1101/cshperspect.a041414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
RAS genes are frequently mutated in cancer. The primary signaling compartment of wild-type and constitutively active oncogenic mutant RAS proteins is the inner leaflet of the plasma membrane (PM). Thus, a better understanding of the unique environment of the PM inner leaflet is important to shed further light on RAS function. Over the past few decades, an integrated approach of superresolution imaging, molecular dynamic simulations, and biophysical assays has yielded new insights into the capacity of RAS proteins to sort lipids with specific headgroups and acyl chains, to assemble signaling nanoclusters on the inner PM. RAS proteins also sense and respond to changes in components of the outer PM leaflet, including glycophosphatidylinositol-anchored proteins, sphingophospholipids, glycosphingolipids, and galectins, as well as cholesterol that translocates between the two leaflets. Such communication between the inner and outer leaflets of the PM, called interleaflet coupling, allows RAS to potentially integrate extracellular mechanical and electrostatic information with intracellular biochemical signaling events, and reciprocally allows mutant RAS-transformed tumor cells to modify tumor microenvironments. Here, we review RAS-lipid interactions and speculate on potential mechanisms that allow communication between the opposing leaflets of the PM.
Collapse
Affiliation(s)
- Junchen Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
- Biochemistry and Cell Biology Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center and University of Texas, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Ólafsson EB, Ten Hoeve AL, Li-Wang X, Westermark L, Varas-Godoy M, Barragan A. Convergent Met and voltage-gated Ca 2+ channel signaling drives hypermigration of Toxoplasma-infected dendritic cells. J Cell Sci 2020; 134:jcs241752. [PMID: 32161101 DOI: 10.1242/jcs.241752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/26/2020] [Indexed: 01/11/2023] Open
Abstract
Ras-Erk MAPK signaling controls many of the principal pathways involved in metazoan cell motility, drives metastasis of multiple cancer types and is targeted in chemotherapy. However, its putative roles in immune cell functions or in infections have remained elusive. Here, using primary dendritic cells (DCs) in an infection model with the protozoan Toxoplasma gondii, we show that two pathways activated by infection converge on Ras-Erk MAPK signaling to promote migration of parasitized DCs. We report that signaling through the receptor tyrosine kinase Met (also known as HGF receptor) contributes to T. gondii-induced DC hypermotility. Furthermore, voltage-gated Ca2+ channel (VGCC, subtype CaV1.3) signaling impacted the migratory activation of DCs via calmodulin-calmodulin kinase II. We show that convergent VGCC signaling and Met signaling activate the GTPase Ras to drive Erk1 and Erk2 (also known as MAPK3 and MAPK1, respectively) phosphorylation and hypermotility of T. gondii-infected DCs. The data provide a molecular basis for the hypermigratory mesenchymal-to-amoeboid transition (MAT) of parasitized DCs. This emerging concept suggests that parasitized DCs acquire metastasis-like migratory properties that promote infection-related dissemination.
Collapse
Affiliation(s)
- Einar B Ólafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Arne L Ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Xiaoze Li-Wang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Linda Westermark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Manuel Varas-Godoy
- Cancer Cell Biology Laboratory, Center for Cell Biology and Biomedicine (CEBICEM), Faculty of Medicine and Science, Universidad San Sebastian, 7620001 Santiago, Chile
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Sphingomyelin Metabolism Is a Regulator of K-Ras Function. Mol Cell Biol 2018; 38:MCB.00373-17. [PMID: 29158292 DOI: 10.1128/mcb.00373-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
K-Ras must localize to the plasma membrane (PM) for biological activity. We show here that multiple acid sphingomyelinase (ASM) inhibitors, including tricyclic antidepressants, mislocalized phosphatidylserine (PtdSer) and K-RasG12V from the PM, resulting in abrogation of K-RasG12V signaling and potent, selective growth inhibition of mutant K-Ras-transformed cancer cells. Concordantly, in nude mice, the ASM inhibitor fendiline decreased the rate of growth of oncogenic K-Ras-expressing MiaPaCa-2 tumors but had no effect on the growth of the wild-type K-Ras-expressing BxPC-3 tumors. ASM inhibitors also inhibited activated LET-60 (a K-Ras ortholog) signaling in Caenorhabditis elegans, as evidenced by suppression of the induced multivulva phenotype. Using RNA interference against C. elegans genes encoding other enzymes in the sphingomyelin (SM) biosynthetic pathway, we identified 14 enzymes whose knockdown strongly or moderately suppressed the LET-60 multivulva phenotype. In mammalian cells, pharmacological agents that target these enzymes all depleted PtdSer from the PM and caused K-RasG12V mislocalization. These effects correlated with changes in SM levels or subcellular distribution. Selected compounds, including sphingosine kinase inhibitors, potently inhibited the proliferation of oncogenic K-Ras-expressing pancreatic cancer cells. In conclusion, these results show that normal SM metabolism is critical for K-Ras function, which may present therapeutic options for the treatment of K-Ras-driven cancers.
Collapse
|
5
|
Asati V, Mahapatra DK, Bharti SK. K-Ras and its inhibitors towards personalized cancer treatment: Pharmacological and structural perspectives. Eur J Med Chem 2017; 125:299-314. [DOI: 10.1016/j.ejmech.2016.09.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
|
6
|
Could drugs inhibiting the mevalonate pathway also target cancer stem cells? Drug Resist Updat 2016; 25:13-25. [PMID: 27155373 DOI: 10.1016/j.drup.2016.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/12/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly highlight diverse functions of various elements of this mevalonate pathway. We further discuss in detail the role of elements of the mevalonate cascade in stemness, carcinogenesis, cancer progression, metastasis and maintenance of cancer stem cells.
Collapse
|
7
|
Abstract
The thyroid parafollicular cell, or commonly named "C-cell," functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that multiple endocrine neoplasia type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma (MTC). Thyroid C-cells are known to express RET at high levels relative to most cell types; therefore, aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET, the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations have uncovered mutation of RAS family members and inactivation of Rb1 regulatory pathway as potential mediators of C-cell transformation. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation, will help in the development of novel molecular-targeted therapies.
Collapse
Affiliation(s)
- Gilbert J Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1461, Houston, TX, 77030, USA.
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1461, Houston, TX, 77030, USA
| |
Collapse
|
8
|
Understanding of complex protein interactions with respect to anchorage independence. Methods Mol Biol 2015; 1270:205-25. [PMID: 25702120 DOI: 10.1007/978-1-4939-2309-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anchorage-independent growth of cells in soft agar is one of the hallmark characteristics of cellular transformation and uncontrolled cell growth. It may be considered as one of the most stringent assays for detecting malignant transformation of cells. Here, we describe a retroviral infection of a library of small secretory proteins and the use of the soft agar assay to obtain and study novel interacting protein combinations that cause cell transformation.
Collapse
|
9
|
Kalinowski A, Yaron PN, Qin Z, Shenoy S, Buehler MJ, Lösche M, Dahl KN. Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome. Biophys Chem 2014; 195:43-8. [PMID: 25194277 PMCID: PMC4212650 DOI: 10.1016/j.bpc.2014.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 12/16/2022]
Abstract
Hutchinson-Gilford progeria syndrome is a premature aging disorder associated with the expression of ∆50 lamin A (∆50LA), a mutant form of the nuclear structural protein lamin A (LA). ∆50LA is missing 50 amino acids from the tail domain and retains a C-terminal farnesyl group that is cleaved from the wild-type LA. Many of the cellular pathologies of HGPS are thought to be a consequence of protein-membrane association mediated by the retained farnesyl group. To better characterize the protein-membrane interface, we quantified binding of purified recombinant ∆50LA tail domain (∆50LA-TD) to tethered bilayer membranes composed of phosphatidylserine and phosphocholine using surface plasmon resonance. Farnesylated ∆50LA-TD binds to the membrane interface only in the presence of Ca(2+) or Mg(2+) at physiological ionic strength. At extremely low ionic strength, both the farnesylated and non-farnesylated forms of ∆50LA-TD bind to the membrane surface in amounts that exceed those expected for a densely packed protein monolayer. Interestingly, the wild-type LA-TD with no farnesylation also associates with membranes at low ionic strength but forms only a single layer. We suggest that electrostatic interactions are mediated by charge clusters with a net positive charge that we calculate on the surface of the LA-TDs. These studies suggest that the accumulation of ∆50LA at the inner nuclear membrane observed in cells is due to a combination of aggregation and membrane association rather than simple membrane binding; electrostatics plays an important role in mediating this association.
Collapse
Affiliation(s)
- Agnieszka Kalinowski
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, United States
| | - Peter N Yaron
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, United States
| | - Zhao Qin
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Siddharth Shenoy
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, United States
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Mathias Lösche
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, United States; Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, United States; Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, United States.
| |
Collapse
|
10
|
Abstract
The Ras superfamily of small GTPases is composed of more than 150 members, which share a conserved structure and biochemical properties, acting as binary molecular switches turned on by binding GTP and off by hydrolyzing GTP to GDP. However, despite considerable structural and biochemical similarities, these proteins play multiple and divergent roles, being versatile and key regulators of virtually all fundamental cellular processes. Conversely, their dysfunction plays a crucial role in the pathogenesis of serious human diseases, including cancer and developmental syndromes. Fuelled by the original identification in 1982 of mutationally activated and transforming human Ras genes in human cancer cell lines, a variety of powerful experimental techniques have been intensively focused on discovering and studying structure, biochemistry, and biology of Ras and Ras-related small GTPases, leading to fundamental research breakthroughs into identification and structural and functional characterization of a huge number of Ras superfamily members, as well as of their multiple regulators and effectors. In this review we provide a general overview of the major milestones that eventually allowed to unlock the secret treasure chest of this large and important superfamily of proteins.
Collapse
|
11
|
Abstract
The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid (FTS, Salirasib®) interferes with Ras membrane interactions that are crucial for Ras-dependent signaling and cellular transformation. FTS had been successfully evaluated in clinical trials of cancer patients. Interestingly, its effect is mediated by targeting Ras chaperones that serve as key coordinators for Ras proper folding and delivery, thus offering a novel target for cancer therapy. The development of new FTS analogs has revealed that the specific modifications to the FTS carboxyl group by esterification and amidation yielded compounds with improved growth inhibitory activity. When FTS was combined with additional therapeutic agents its activity toward Ras was significantly augmented. FTS should be tested not only in cancer but also for genetic diseases associated with abnormal Ras signaling, as well as for various inflammatory and autoimmune disturbances, where Ras plays a major role. We conclude that FTS has a great potential both as a safe anticancer drug and as a promising immune modulator agent.
Collapse
Affiliation(s)
- Yoel Kloog
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel.
| | - Galit Elad-Sfadia
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel
| | - Roni Haklai
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel
| | - Adam Mor
- Department of Medicine, New York University School of Medicine, New York, New York, USA; Department of Pathology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Abstract
Pancreatic cancer continues to be a challenging disease to treat because of its aggressive nature, advanced stage at the time of diagnosis, and limited treatment options that are available. Traditional cytotoxic chemotherapy provides modest benefit to patients with pancreatic adenocarcinoma. Recently, a FOLFIRINOX regimen revealed improved response in overall and progression-free survival over single-agent gemcitabine in metastatic pancreatic cancer, but there is still much needed advancement in the systemic treatment of pancreatic cancer. There is a growing interest in the development of novel agents, while our understanding of molecular pathogenesis of pancreatic adenocarcinoma continues to expand. With identification of various molecular pathways in pancreatic cancer tumorigenesis, potential targets for drug development have been pursued with the use of monoclonal antibodies and small-molecule inhibitors. Although preclinical studies with multiple targeted therapies demonstrated encouraging results in pancreatic cancer, only erlotinib, an epidermal growth factor receptor inhibitor, showed a marginal survival benefit in a phase III clinical trial, when combined with gemcitabine. As further signaling pathways and their importance in pancreatic cancer tumorigenesis are better understood, further clinical trials will need to be designed to study these targeted agents as single agents, in combination with other novel agents or in combination with cytotoxic chemotherapy. In this review, we present the current knowledge on targeted therapy in pancreatic adenocarcinoma and its application in clinical practice.
Collapse
|
13
|
Abstract
Oncogenic mutant K-Ras is highly prevalent in multiple human tumors. Despite significant efforts to directly target Ras activity, no K-Ras-specific inhibitors have been developed and taken into the clinic. Since Ras proteins must be anchored to the inner leaflet of the plasma membrane (PM) for full biological activity, we devised a high-content screen to identify molecules with ability to displace K-Ras from the PM. Here we summarize the biochemistry and biology of three classes of compound identified by this screening method that inhibit K-Ras PM targeting: staurosporine and analogs, fendiline, and metformin. All three classes of compound significantly abrogate cell proliferation and Ras signaling in K-Ras-transformed cancer cells. Taken together, these studies provide an important proof of concept that blocking PM localization of K-Ras is a tractable therapeutic target.
Collapse
Affiliation(s)
- Kwang-Jin Cho
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, Texas, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
14
|
Cho KJ, Park JH, Hancock JF. Staurosporine: A new tool for studying phosphatidylserine trafficking. Commun Integr Biol 2013; 6:e24746. [PMID: 23986809 PMCID: PMC3737755 DOI: 10.4161/cib.24746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022] Open
Abstract
The Ras GTPases comprising three main isoforms H-, N- and K-Ras operate at the plasma membrane as molecular switches in essential signaling pathways. Active concentration of the minor phospholipid phosphatidylserine in the inner leaflet of the plasma membrane contributes to the electrostatic potential that is required for K-Ras anchoring to the plasma membrane. We recently observed that staurosporine and related analogs: 7-oxostaurosporine, UCN-01 and UCN-02, long known as relatively non-specific protein kinase inhibitors, block endosomal sorting and recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine to endosomes and endomembranes with concomitant mislocalization of K-Ras. Staurosporines are therefore a new tool to study phosphatidylserine trafficking. We discuss whether the mechanism of action of UCN-01, an FDA-approved staurosporine analog used as an anti-cancer therapeutic, is related to effects on phosphatidylserine subcellular distribution. Given the high prevalence of expression of constitutively active K-Ras in human cancers, we ask whether inhibitors of phosphatidylserine trafficking may have important therapeutic applications.
Collapse
Affiliation(s)
- Kwang-Jin Cho
- Department of Integrative Biology and Pharmacology; The University of Texas Medical School at Houston; Houston, TX USA
| | | | | |
Collapse
|
15
|
Cho KJ, Park JH, Piggott AM, Salim AA, Gorfe AA, Parton RG, Capon RJ, Lacey E, Hancock JF. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J Biol Chem 2012; 287:43573-84. [PMID: 23124205 DOI: 10.1074/jbc.m112.424457] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutant Ras is frequently expressed in human cancers, but no anti-Ras drugs have been developed. Since membrane association is essential for Ras biological activity, we developed a high content assay for inhibitors of Ras plasma membrane localization. We discovered that staurosporine and analogs potently inhibit Ras plasma membrane binding by blocking endosomal recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine from plasma membrane to endomembrane. Staurosporines are more active against K-Ras than H-Ras. K-Ras is displaced to endosomes and undergoes proteasomal-independent degradation, whereas H-Ras redistributes to the Golgi and is not degraded. K-Ras nanoclustering on the plasma membrane is also inhibited. Ras mislocalization does not correlate with protein kinase C inhibition or induction of apoptosis. Staurosporines selectively abrogate K-Ras signaling and proliferation of K-Ras-transformed cells. These results identify staurosporines as novel inhibitors of phosphatidylserine trafficking, yield new insights into the role of phosphatidylserine and electrostatics in Ras plasma membrane targeting, and validate a new target for anti-Ras therapeutics.
Collapse
Affiliation(s)
- Kwang-jin Cho
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School-Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The RAS oncogenes (HRAS, NRAS and KRAS) comprise the most frequently mutated class of oncogenes in human cancers (33%), thus stimulating intensive effort in developing anti-Ras inhibitors for cancer treatment. Despite intensive effort, to date, no effective anti-Ras strategies have successfully made it to the clinic. We present an overview of past and ongoing strategies to inhibit oncogenic Ras in cancer. Since approaches to directly target mutant Ras have not been successful, most efforts have focused on indirect approaches to block Ras membrane association or downstream effector signaling. While inhibitors of effector signaling are currently under clinical evaluation, genome-wide unbiased genetic screens have identified novel directions for future anti-Ras drug discovery.
Collapse
|
17
|
Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nat Protoc 2011; 6:1775-91. [PMID: 22036881 DOI: 10.1038/nprot.2011.387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The importance of the post-translational lipid modifications farnesylation and geranylgeranylation in protein localization and function coupled with the critical role of prenylated proteins in malignant transformation has prompted interest in their biology and the development of farnesyl transferase and geranylgeranyl transferase inhibitors (FTIs and GGTIs) as chemical probes and anticancer agents. The ability to measure protein prenylation before and after FTI and GGTI treatment is important to understanding and interpreting the effects of these agents on signal transduction pathways and cellular phenotypes, as well as to the use of prenylation as a biomarker. Here we describe protocols to measure the degree of protein prenylation by farnesyl transferase or geranylgeranyl transferase in vitro, in cultured cells and in tumors from animals and humans. The assays use [(3)H]farnesyl diphosphate and [(3)H]geranylgeranyl diphosphate, electrophoretic mobility shift, membrane association using subcellular fractionation or immunofluorescence of intact cells, [(3)H]mevalonic acid labeling, followed by immunoprecipitation and SDS-PAGE, and in vitro transcription, translation and prenylation in reticulocyte lysates. These protocols require from 1 d (enzyme assays) to up to 3 months (autoradiography of [(3)H]-labeled proteins).
Collapse
|
18
|
Shimoyama S. Statins are logical candidates for overcoming limitations of targeting therapies on malignancy: their potential application to gastrointestinal cancers. Cancer Chemother Pharmacol 2011; 67:729-39. [DOI: 10.1007/s00280-011-1583-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 01/31/2011] [Indexed: 12/18/2022]
|
19
|
Lee R, Chang SY, Trinh H, Tu Y, White AC, Davies BSJ, Bergo MO, Fong LG, Lowry WE, Young SG. Genetic studies on the functional relevance of the protein prenyltransferases in skin keratinocytes. Hum Mol Genet 2010; 19:1603-17. [PMID: 20106865 DOI: 10.1093/hmg/ddq036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The modification of proteins with farnesyl or geranylgeranyl lipids, a process called protein prenylation, facilitates interactions of proteins with membrane surfaces. Protein prenylation is carried out by a pair of cytosolic enzymes, protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type I (GGTase-I). FTase and GGTase-I have attracted interest as therapeutic targets for both cancer and progeria, but very little information exists on the importance of these enzymes for homeostasis of normal tissues. One study actually suggested that FTase is entirely dispensable. To explore the importance of the protein prenyltransferases for normal tissues, we used conditional knockout alleles for Fntb and Pggt1b (which encode the beta-subunits of FTase and GGTase-I, respectively) and a keratin 14-Cre transgene to create mice lacking FTase or GGTase-I in skin keratinocytes. Keratinocyte-specific Fntb knockout mice were viable but developed severe alopecia. Although hair follicles appeared normal during development, they were morphologically abnormal after birth, and ultrastructural and immunohistochemical studies revealed many apoptotic cells. The interfollicular epidermis of Fntb-deficient mice appeared normal; however, keratinocytes from these mice could not proliferate in culture. As expected, non-farnesylated prelamin A and non-farnesylated DNAJA1 accumulated in Fntb-deficient keratinocytes. Keratinocyte-specific Pggt1b knockout mice survived development but died shortly after birth. Like Fntb-deficient keratinocytes, Pggt1b-deficient keratinocytes did not proliferate in culture. Thus, both FTase and GGTase-I are required for the homeostasis of skin keratinocytes.
Collapse
Affiliation(s)
- Roger Lee
- Department of Medicine, David Geffen School of Medicine, University of California, LA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mahalingam D, Kelly KR, Swords RT, Carew J, Nawrocki ST, Giles FJ. Emerging drugs in the treatment of pancreatic cancer. Expert Opin Emerg Drugs 2009; 14:311-28. [PMID: 19466902 DOI: 10.1517/14728210902972502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Pancreatic cancer is the fourth leading cause of cancer-related death in the US. However, there is a growing belief that novel biological agents could improve survival of patients with this cancer. Gemcitabine-based chemotherapy remains the cornerstone treatment for advanced pancreatic cancers. So far, the current targeted agents that have been used in combination with gemcitabine have failed to improve clinical outcomes. This failure may stem from the heterogeneous molecular pathogenesis of pancreatic cancers, which involves several oncogenic pathways and defined genetic mutations. OBJECTIVE The aims of this review are: i) to define the existing treatments available at present for patients with pancreatic cancers in the neo-adjuvant, adjuvant, locally advanced and metastatic settings; ii) to highlight the molecular heterogeneity of the cancers and the rationale for targeting specific oncogenic pathways; iii) to give an overview of targeted agents that may potentially have an impact in the treatment of pancreatic cancers. CONCLUSIONS Molecular pathogenesis of pancreatic cancer involves several pathways and defined genetic mutations. Targeting these complex molecular pathways with a combination of novel biological and chemotherapeutic agents could potentially improve patient outcome.
Collapse
Affiliation(s)
- Devalingam Mahalingam
- Institute of Drug Development, Division of Cancer Research and Therapy Center, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Bradley EW, Ruan MM, Vrable A, Oursler MJ. Pathway crosstalk between Ras/Raf and PI3K in promotion of M-CSF-induced MEK/ERK-mediated osteoclast survival. J Cell Biochem 2008; 104:1439-51. [PMID: 18275061 DOI: 10.1002/jcb.21719] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
While M-CSF-mediated MEK/ERK activation promotes osteoclast survival, the signaling pathway by which M-CSF activates MEK/ERK is unresolved. Functions for PI3K, Ras, and Raf have been implicated in support of osteoclast survival, although interaction between these signaling components has not been examined. Therefore, the interplay between PI3K, Ras and Raf in M-CSF-promoted MEK/ERK activation and osteoclast survival was investigated. M-CSF activates Ras to coordinate activation of PI3K and Raf/MEK/ERK, since Ras inhibition decreased PI3K activation and PI3K inhibition did not block M-CSF-mediated Ras activation. As further support for Ras-mediated signaling, constitutively active (ca) Ras promoted MEK/ERK activation and osteoclast survival, which was blocked by inhibition of PI3K or Raf. Moreover, PI3K-selective or Raf-selective caRas were only partially able to promote osteoclast survival when compared to parental caRas. We then examined whether PI3K and Raf function linearly or in parallel downstream of Ras. Expression of caPI3K increased MEK/ERK activation and promoted osteoclast survival downstream of M-CSF, supporting this hypothesis. Blocking Raf did not decrease osteoclast survival and MEK/ERK activation promoted by caPI3K. In addition, PI3K-selective Ras-mediated survival was not blocked by Raf inhibition. Taken together, our data support that Raf signaling is separate from Ras/PI3K signaling and PI3K signaling is separate from Ras/Raf signaling. These data therefore support a role for Ras in coordinate activation of PI3K and Raf acting in parallel to mediate MEK/ERK-promoted osteoclast survival induced by M-CSF.
Collapse
Affiliation(s)
- Elizabeth W Bradley
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
22
|
Smad3 deficiency inhibits v-ras-induced transformation by suppression of JNK MAPK signaling and increased farnesyl transferase inhibition. Oncogene 2007; 27:2507-12. [DOI: 10.1038/sj.onc.1210889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Puntambekar DS, Giridhar R, Yadav MR. Inhibition of farnesyltransferase: a rational approach to treat cancer? J Enzyme Inhib Med Chem 2007; 22:127-40. [PMID: 17518338 DOI: 10.1080/14756360601072841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This article presents in brief the development of farnesyltransferase inhibitors (FTIs) and their preclinical and clinical status. In this review the mechanism of action of FTIs is discussed and their selectivity issue towards tumor cells is also addressed. The significant efficacy of FTIs as single or combined agents in preclinical studies stands in contrast with only moderate effects in Clinical Phase II-III studies. This suggests that there is a need to further explore and understand the complex mechanism of action of FTIs and their interaction with cytotoxic agents.
Collapse
Affiliation(s)
- Devendra S Puntambekar
- Pharmacy Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, Gujarat, India
| | | | | |
Collapse
|
24
|
Maurer-Stroh S, Koranda M, Benetka W, Schneider G, Sirota FL, Eisenhaber F. Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol 2007; 3:e66. [PMID: 17411337 PMCID: PMC1847700 DOI: 10.1371/journal.pcbi.0030066] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 02/23/2007] [Indexed: 11/18/2022] Open
Abstract
Three different prenyltransferases attach isoprenyl anchors to C-terminal motifs in substrate proteins. These lipid anchors serve for membrane attachment or protein–protein interactions in many pathways. Although well-tolerated selective prenyltransferase inhibitors are clinically available, their mode of action remains unclear since the known substrate sets of the various prenyltransferases are incomplete. The Prenylation Prediction Suite (PrePS) has been applied for large-scale predictions of prenylated proteins. To prioritize targets for experimental verification, we rank the predictions by their functional importance estimated by evolutionary conservation of the prenylation motifs within protein families. The ranked lists of predictions are accessible as PRENbase (http://mendel.imp.univie.ac.at/sat/PrePS/PRENbase) and can be queried for verification status, type of modifying enzymes (anchor type), and taxonomic distribution. Our results highlight a large group of plant metal-binding chaperones as well as several newly predicted proteins involved in ubiquitin-mediated protein degradation, enriching the known functional repertoire of prenylated proteins. Furthermore, we identify two possibly prenylated proteins in Mimivirus. The section HumanPRENbase provides complete lists of predicted prenylated human proteins—for example, the list of farnesyltransferase targets that cannot become substrates of geranylgeranyltransferase 1 and, therefore, are especially affected by farnesyltransferase inhibitors (FTIs) used in cancer and anti-parasite therapy. We report direct experimental evidence verifying the prediction of the human proteins Prickle1, Prickle2, the BRO1 domain–containing FLJ32421 (termed BROFTI), and Rab28 (short isoform) as exclusive farnesyltransferase targets. We introduce PRENbase, a database of large-scale predictions of protein prenylation substrates ranked by evolutionary conservation of the motif. Experimental evidence is presented for the selective farnesylation of targets with an evolutionary conserved modification site. Various cellular functions require reversible membrane localization of proteins. This is often facilitated by attaching lipids to the respective proteins, thus anchoring them to the membrane. For example, addition of prenyl lipid anchors (prenylation) is directed by a motif in the protein sequence that can be predicted using a recently developed method. We describe the prediction of protein prenylation in all currently known proteins. The annotated results are available as an online database: PRENbase. A ranking of the predictions is introduced, assuming that existence of a prenylation sequence motif in related proteins from different species (evolutionary conservation) relates to functional importance of the lipid anchor. We present experimental evidence for high-ranked human proteins predicted to be affected by anticancer drugs inhibiting prenylation.
Collapse
|
25
|
Protein Prenylation: An (Almost) Comprehensive Overview on Discovery History, Enzymology, and Significance in Physiology and Disease. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0534-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Rowinsky EK. Lately, it occurs to me what a long, strange trip it's been for the farnesyltransferase inhibitors. J Clin Oncol 2006; 24:2981-4. [PMID: 16769983 DOI: 10.1200/jco.2006.05.9808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Affiliation(s)
- R Schäfer
- Department of Pathology, University of Zurich, Switzerland
| |
Collapse
|
28
|
Kafri M, Kloog Y, Korczyn AD, Ferdman-Aronovich R, Drory V, Katzav A, Wirguin I, Chapman J. Inhibition of Ras attenuates the course of experimental autoimmune neuritis. J Neuroimmunol 2005; 168:46-55. [PMID: 16154640 DOI: 10.1016/j.jneuroim.2005.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 07/05/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
EAN induced in Lewis rats by immunization with peripheral bovine myelin was treated by the Ras inhibitor farnesylthiosalicylate (FTS). Treatment from day 0 with FTS (5 mg/kg intraperitoneally twice daily) attenuated peak clinical scores (mean+/-S.E., 2.5+/-0.5 compared to 4.1+/-0.5 in saline treated controls, p=0.018, t-test) but not recovery. Treatment from day 10 with FTS attenuated peak disability (2.5+/-0.6, p=0.032 compared to saline treated controls) and improved recovery (0.84+/-0.42, untreated controls 2.4+/-0.6, p=0.028 by repeated measures ANOVA). Effects were confirmed by rotarod and nerve conduction studies. An inactive analogue, geranylthiosalicylate, had no clinical effect. Inhibition of Ras is of potential use in the treatment of inflammatory neuropathies.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal
- Body Weight/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Concanavalin A/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Immunologic
- Drug Interactions
- Electromyography/methods
- Enzyme Inhibitors/administration & dosage
- Farnesol/administration & dosage
- Farnesol/analogs & derivatives
- Female
- Lymphocytes/cytology
- Lymphocytes/physiology
- Motor Activity/drug effects
- Motor Activity/physiology
- Mycobacterium tuberculosis
- Myelin Proteins
- Neural Conduction/drug effects
- Neuritis, Autoimmune, Experimental/drug therapy
- Neuritis, Autoimmune, Experimental/etiology
- Neuritis, Autoimmune, Experimental/physiopathology
- Rats
- Rats, Inbred Lew
- Rotarod Performance Test/methods
- Salicylates/administration & dosage
- Severity of Illness Index
- ras Proteins/antagonists & inhibitors
Collapse
Affiliation(s)
- Michal Kafri
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Boutonnet C, Boijoux O, Bernat S, Kharrat A, Favre G, Faye JC, Vagner S. Pharmacological-based translational induction of transgene expression in mammalian cells. EMBO Rep 2004; 5:721-7. [PMID: 15192697 PMCID: PMC1299091 DOI: 10.1038/sj.embor.7400170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 04/20/2004] [Accepted: 04/20/2004] [Indexed: 11/09/2022] Open
Abstract
In the quest for the development of pharmacological switches that control gene expression, no system has been reported that regulates at the translational level. To permit small-molecule control of transgene translation, we have constructed a farnesyl transferase inhibitor-responsive translation initiation factor. This artificial protein is a three-component chimaera consisting of the ribosome recruitment core of the eIF4G1 eukaryotic translation initiation factor, the RNA-binding domain of the R17 bacteriophage coat protein and the plasma membrane localization CAAX motif of farnesylated H-Ras. This membrane-delocalized translation factor is inactive unless liberated in the cytosol. Farnesyl transferase inhibitor FTI-277 prevents the membrane association of the CAAX motif and thus increases the cytoplasmic levels of the eIF4G fusion protein, which is then capable of inducing translation of the second cistron of a bicistronic messenger RNA containing an R17-binding site in its intercistronic space. Such direct translational control by farnesyl transferase inhibitors provides a system for fast, graded and reversible regulation of transgene expression.
Collapse
Affiliation(s)
- Christel Boutonnet
- INSERM U589, Institut Louis Bugnard, CHU Rangueil, 31054 Toulouse, France
- MILLEGEN SA, Rue Pierre et Marie Curie BP 28262, 31682 Labège, France
| | - Olivier Boijoux
- INSERM U563, Centre Claudius Régaud, Rue du Pont Saint-Pierre, 31052 Toulouse, France
| | - Sandra Bernat
- MILLEGEN SA, Rue Pierre et Marie Curie BP 28262, 31682 Labège, France
| | | | - Gilles Favre
- INSERM U563, Centre Claudius Régaud, Rue du Pont Saint-Pierre, 31052 Toulouse, France
| | - Jean-Charles Faye
- INSERM U563, Centre Claudius Régaud, Rue du Pont Saint-Pierre, 31052 Toulouse, France
| | - Stéphan Vagner
- INSERM U589, Institut Louis Bugnard, CHU Rangueil, 31054 Toulouse, France
- Tel: +33 561 32 31 28; Fax: +33 561 32 21 41; E-mail:
| |
Collapse
|
30
|
Affiliation(s)
- Saïd M Sebti
- Drug Discovery Program, H. Lee Moffitt Cancer Center & Research Institute, Department of Oncology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | |
Collapse
|
31
|
Fiordalisi JJ, Johnson RL, Weinbaum CA, Sakabe K, Chen Z, Casey PJ, Cox AD. High affinity for farnesyltransferase and alternative prenylation contribute individually to K-Ras4B resistance to farnesyltransferase inhibitors. J Biol Chem 2003; 278:41718-27. [PMID: 12882980 DOI: 10.1074/jbc.m305733200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Farnesyltransferase inhibitors (FTIs) block Ras farnesylation, subcellular localization and activity, and inhibit the growth of Ras-transformed cells. Although FTIs are ineffective against K-Ras4B, the Ras isoform most commonly mutated in human cancers, they can inhibit the growth of tumors containing oncogenic K-Ras4B, implicating other farnesylated proteins or suggesting distinct functions for farnesylated and for geranylgeranylated K-Ras, which is generated when farnesyltransferase is inhibited. In addition to bypassing FTI blockade through geranylgeranylation, K-Ras4B resistance to FTIs may also result from its higher affinity for farnesyltransferase. Using chimeric Ras proteins containing all combinations of Ras background, CAAX motif, and K-Ras polybasic domain, we show that either a polybasic domain or an alternatively prenylated CAAX renders Ras prenylation, Ras-induced Elk-1 activation, and anchorage-independent cell growth FTI-resistant. The polybasic domain alone increases the affinity of Ras for farnesyltransferase, implying independent roles for each K-Ras4B sequence element in FTI resistance. Using microarray analysis and colony formation assays, we confirm that K-Ras function is independent of the identity of the prenyl group and, therefore, that FTI inhibition of K-Ras transformed cells is likely to be independent of K-Ras inhibition. Our results imply that relevant FTI targets will lack both polybasic and potentially geranylgeranylated methionine-CAAX motifs.
Collapse
Affiliation(s)
- James J Fiordalisi
- Department of Radiation Oncology and Pharmacology, CB #7512, University of North Carolina, Chapel Hill, NC 27599-7512, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Maurer-Stroh S, Washietl S, Eisenhaber F. Protein prenyltransferases: anchor size, pseudogenes and parasites. Biol Chem 2003; 384:977-89. [PMID: 12956414 DOI: 10.1515/bc.2003.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lipid modification of eukaryotic proteins by protein prenyltransferases is required for critical signaling pathways, cell cycle progression, cytoskeleton remodeling, induction of apoptosis and vesicular trafficking. This review analyzes the influence of distinct states of sequential posttranslational processing that can be obtained after single or double prenylation, reversible palmitoylation, proteolytic cleavage of the C-terminus and possible reversible carboxymethylation. This series of modifications, as well as the exact length of the prenyl anchor, are determinants in protein-membrane and specific protein-protein interactions of protein prenyltransferase substrates. Furthermore, the occurrence and distribution of pseudogenes of protein prenyltransferase subunits are discussed. Besides being developed as anti-cancer agents, prenyltransferase inhibitors are effective against an increasing number of parasitic diseases. Extensive screens for protein prenyltransferases in genomic data of fungal and protozoan pathogens unveil a series of new pharmacologic targets for prenyltransferase inhibition, including the parasites Brugia malayi, Onchocerca volvulus, Aspergillus nidulans, Pneumocystis carinii, Entamoeba histolytica, Strongyloides stercoralis, Trichinella spiralis and Cryptosporidium parvum.
Collapse
|
33
|
Brambilla R, Neary JT, Fumagalli M, Cottini L, Cattabeni F, Schiller PR, Abbracchio MP. P2Y receptors in brain astroglial cells: Identification of a gliotic P2Y receptor coupled to activation of a calcium-independent ras/ERK1/2 pathway. Drug Dev Res 2003. [DOI: 10.1002/ddr.10217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Carey KD, Watson RT, Pessin JE, Stork PJS. The requirement of specific membrane domains for Raf-1 phosphorylation and activation. J Biol Chem 2003; 278:3185-96. [PMID: 12446733 DOI: 10.1074/jbc.m207014200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Raf-1 by Ras requires recruitment to the membrane as well as additional phosphorylations, including phosphorylation at serine 338 (Ser-338) and tyrosine 341 (Tyr-341). In this study we show that Tyr-341 participates in the recruitment of Raf-1 to specialized membrane domains called "rafts," which are required for Raf-1 to be phosphorylated on Ser-338. Raf-1 is also thought to be recruited to the small G protein Rap1 upon GTP loading of Rap1. However, this does not result in Raf-1 activation. We propose that this is because Raf-1 is not phosphorylated on Tyr-341 upon recruitment to Rap1. Redirecting Rap1 to Ras-containing membranes or mimicking Tyr-341 phosphorylation of Raf-1 by mutation converts Rap1 into an activator of Raf-1. In contrast to Raf-1, B-Raf is activated by Rap1. We suggest that this is because B-Raf activation is independent of tyrosine phosphorylation. Moreover, mutants that render B-Raf dependent on tyrosine phosphorylation are no longer activated by Rap1.
Collapse
Affiliation(s)
- Kendall D Carey
- Vollum Institute, Department of Cell and Developmental Biology, L474 Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
35
|
Kale TA, Raab C, Yu N, Aquino E, Dean DC, Distefano MD. Synthesis of high specific activity 35S-labelled N-methanesulfonyl farnesylcysteine and a photoactive analog. J Labelled Comp Radiopharm 2003. [DOI: 10.1002/jlcr.638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Chen CH, Fan JH, Chuang NN. Effects of prenyl pyrophosphates on the binding of S-Ras proteins with KSR. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:551-60. [PMID: 12410604 DOI: 10.1002/jez.10165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BALB/3T3 cells were transformed by transfection with DNA encoding the mutated ras(Q(61)K) from shrimp Penaeus japonicus (Huang et al., 2001. J. Exp. Zool. 289:441-448). On a Western blot, the kinase suppressor of Ras (KSR) in the membrane fraction was expressed at slightly reduced level as compared to that of the untransformed cells. To understand this in more detail, the interaction of the bacterially expressed shrimp Ras (S-Ras) with KSR was investigated using KSR purified from mice brains. SDS-polyacrylamide gel electrophoresis and Western blot analysis revealed that the monomers of the purified KSR have a relative molecular mass of 60,000. Purified KSR was found to bind with digoxigenylated S-ras-encoding fusion protein (Dig-S-Ras) with high affinity in the absence of ATP, and the binding activity of KSR was sustained upon phosphorylation of Dig-S-Ras with mitogen-activated protein kinase (MAPK). The association of purified KSR with S-Ras was confirmed. Differences between the effects of farnesyl pyrophosphate and geranylgeranyl pyrophosphate on the binding of S-Ras with the purified KSR were assessed. Densitometer analysis revealed that at nanogram concentration, farnesyl pyrophosphate inhibited the binding of S-Ras with KSR competently, but geranylgeranyl pyrophosphate did not. The present study provides the evidence that decrease of the concentration of farnesyl pyrophosphate to sub-microgram levels lower the affinity of Ras proteins with KSR in the signaling pathway.
Collapse
Affiliation(s)
- Chau-Huei Chen
- Division of Biochemistry and Molecular Sciences, Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan 11529
| | | | | |
Collapse
|
37
|
Solski PA, Helms W, Keely PJ, Su L, Der CJ. RhoA biological activity is dependent on prenylation but independent of specific isoprenoid modification. CELL GROWTH & DIFFERENTIATION : THE MOLECULAR BIOLOGY JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH 2002; 13:363-73. [PMID: 12193475 PMCID: PMC4415366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Recent studies showed that specific isoprenoid modification may be critical for RhoB subcellular location and function. Therefore, we determined whether the function of the highly related RhoA protein is also critically dependent on specific isoprenoid modification: (a) in contrast to observations with RhoB or Ras proteins, where farnesylated and geranylgeranylated versions showed differences in subcellular location, both prenylated versions of RhoA showed the same plasma membrane and cytosolic location; (b) a farnesylated version of activated RhoA(63L) retained the same diverse functions as the normally geranylgeranylated RhoA(63L) protein, and both proteins show indistinguishable abilities to stimulate gene expression, cause growth transformation of NIH 3T3 mouse fibroblasts, to stimulate the motility of T47D human breast epithelial cells, and to block HIV-1 viral replication and gene expression; and (c) cells expressing farnesylated RhoA retained sensitivity to the growth inhibition caused by inhibition of geranylgeranyltransferase I, indicating that other proteins are critical targets for inhibitors of geranylgeranylation.
Collapse
Affiliation(s)
- Patricia A. Solski
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Departments of Pharmacology [P. A. S., C. J. D.] and Microbiology and Immunology [W. H., L. S.], Chapel Hill, North Carolina 27599, and Department of Pharmacology, University of Wisconsin Medical School and Comprehensive Cancer Center, Madison, Wisconsin 53706 [P. J. K.]
| | - Whitney Helms
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Departments of Pharmacology [P. A. S., C. J. D.] and Microbiology and Immunology [W. H., L. S.], Chapel Hill, North Carolina 27599, and Department of Pharmacology, University of Wisconsin Medical School and Comprehensive Cancer Center, Madison, Wisconsin 53706 [P. J. K.]
| | - Patricia J. Keely
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Departments of Pharmacology [P. A. S., C. J. D.] and Microbiology and Immunology [W. H., L. S.], Chapel Hill, North Carolina 27599, and Department of Pharmacology, University of Wisconsin Medical School and Comprehensive Cancer Center, Madison, Wisconsin 53706 [P. J. K.]
| | - Lishan Su
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Departments of Pharmacology [P. A. S., C. J. D.] and Microbiology and Immunology [W. H., L. S.], Chapel Hill, North Carolina 27599, and Department of Pharmacology, University of Wisconsin Medical School and Comprehensive Cancer Center, Madison, Wisconsin 53706 [P. J. K.]
| | - Channing J. Der
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Departments of Pharmacology [P. A. S., C. J. D.] and Microbiology and Immunology [W. H., L. S.], Chapel Hill, North Carolina 27599, and Department of Pharmacology, University of Wisconsin Medical School and Comprehensive Cancer Center, Madison, Wisconsin 53706 [P. J. K.]
| |
Collapse
|
38
|
Fiordalisi JJ, Holly SP, Johnson RL, Parise LV, Cox AD. A distinct class of dominant negative Ras mutants: cytosolic GTP-bound Ras effector domain mutants that inhibit Ras signaling and transformation and enhance cell adhesion. J Biol Chem 2002; 277:10813-23. [PMID: 11799108 DOI: 10.1074/jbc.m107684200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic GTP-bound Ras has been shown to act as a dominant negative (DN) inhibitor of Ras by sequestering Raf in non-productive cytosolic complexes. Nevertheless, this distinct class of DN mutants has been neither well characterized nor extensively used to analyze Ras signaling. In contrast, DN Ras17N, which functions by blocking Ras guanine nucleotide exchange factors, has been well characterized and is widely used. Cytosolic GTP-bound Ras mutants could be used to inhibit particular Ras effectors by introducing additional mutations (T35S, E37G or Y40C) that permit them to associate selectively with and inhibit Raf, RalGDS, or phosphoinositide 3-kinase, respectively. When the wild-type Ras effector binding region is used, cytosolic Ras should associate with all Ras effectors, even those that are not yet identified, making these DN Ras mutants effective inhibitors of multiple Ras functions. We generated cytosolic GTP-bound H-, N-, and K-Ras, and we assessed their ability to inhibit Ras-induced phenotypes. In fibroblasts, cytosolic H-, N-, and K-Ras inhibited Ras-induced Elk-1 activation and focus formation, induced a flattened cell morphology, and increased adhesion to fibronectin through modulation of a beta(1)-subunit-containing integrin, thereby demonstrating that DN activity is not limited to a subset of Ras isoforms. We also generated cytosolic GTP-bound Ras effector domain mutants (EDMs), each of which reduced the ability of cytosolic GTP-bound Ras proteins to inhibit Elk-1 activation and to induce cell flattening, implicating multiple pathways in these phenotypes. In contrast, Ras-induced focus formation, platelet-derived growth factor (PDGF)-, or Ras-induced phospho-Akt levels and cell adhesion to fibronectin were affected by T35S and Y40C EDMs, whereas PDGF- or Ras-induced phospho-Erk levels were affected only by the T35S EDM, implying that a more limited set of Ras-mediated pathways participate in these phenotypes. These data constitute the first extensive characterization of this functionally distinct class of DN Ras inhibitor proteins.
Collapse
Affiliation(s)
- James J Fiordalisi
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
39
|
Brassard DL, English JM, Malkowski M, Kirschmeier P, Nagabhushan TL, Bishop WR. Inhibitors of farnesyl protein transferase and MEK1,2 induce apoptosis in fibroblasts transformed with farnesylated but not geranylgeranylated H-Ras. Exp Cell Res 2002; 273:138-46. [PMID: 11822869 DOI: 10.1006/excr.2001.5440] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Farnesyl protein transferase inhibitors (FTIs) reverse the transformed phenotype of fibroblasts expressing activated H-Ras and block anchorage-independent growth and tumorigenesis of tumor cell lines independent of their Ras mutational status. FTIs induce significant tumor regression accompanied by apoptosis in several transgenic mouse tumor models. FTI treatment of tumor cells in vitro is proapoptotic under certain cell culture conditions. Induction of apoptosis by FTIs in vitro generally requires a second death-promoting signal. To better understand FTI-induced apoptosis we analyzed the effect of SCH 66336, a tricyclic FTI, on apoptosis of Ras-transformed Rat2 fibroblasts. Treatment of H-Ras-CVLS-transformed fibroblasts with MEK1,2 inhibitors provides a pharmacological second signal to enhance FTI-induced apoptosis. Simultaneous treatment of these cells with a MEK1,2 inhibitor markedly enhanced caspase-3 activity and the apoptotic response to SCH 66336. The combination treatment resulted in a more complete and sustained inhibition of MAPK pathway activity than observed with either drug alone. Surprisingly, after treatment with either agent alone or in combination, no apoptotic response was observed in Rat2 cells transformed with a geranylgeranylated form of H-Ras (H-Ras-CVLL). Differences were also observed when SCH 66336 treatment was combined with forced suspension growth or serum withdrawal, in that an increase in drug-induced apoptosis was observed in H-Ras-CVLS-transformed Rat2 cells but not H-Ras-CVLL-transformed Rat2 cells. The lack of apoptotic effect of SCH 66336 and MEK inhibitor, alone or in combination, in H-Ras-CVLL-transformed cells suggests a difference in the reliance of cells transformed with farnesylated and geranylgeranylated forms of H-Ras on the MAPK signal transduction cascade for survival. K-Ras-transformed cells underwent apoptosis upon MEK1,2 inhibition but not in response to SCH 66336 treatment. The apoptotic response induced by MEK1,2 inhibitors is much greater in magnitude in H-Ras-transformed cells than in K-Ras-transformed cells, also pointing to differences in pathway utilization and/or dependence for these two Ras isoforms.
Collapse
Affiliation(s)
- Diana L Brassard
- Biotechnology Development, Schering-Plough Research Institute, Union, New Jersey 07083, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Selected Targets and Rationally Designed Therapeutics for Patients with Colorectal Cancer. COLORECTAL CANCER 2002. [DOI: 10.1007/978-1-59259-160-2_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Chang KC, Chuang NN. GTPase stimulation in shrimp Ras(Q(61)K) with geranylgeranyl pyrophosphate but not mammalian GAP. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:642-51. [PMID: 11748613 DOI: 10.1002/jez.1115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BALB/3T3 cells were transformed by transfection with DNA encoding the mutated ras(Q(61)K) from shrimp Penaeus japonicus (Huang et al., 2000). The GTPase-activating protein (GAP) in the cytosol fraction was significantly expressed and degraded, compared to untransformed cells on the western blot. To understand this in more detail, the interaction of the bacterially expressed shrimp Ras (S-Ras) with GAP was investigated using GAP purified from mouse brains. SDS-polyacrylamide gel electrophoresis revealed the monomers of the purified GAP to have a relative mass of 65,000. Since the purified GAP was bound to the Ras conjugated affinity sepharose column with high affinity and its GTP hydolysis activity upon binding with tubulin was suppressed, the purified enzyme was concluded to be neurofibromin-like. The purified GAP enhanced the intrinsic GTPase activity of the S-Ras, to convert it into the inactive GDP-bound form, in agreement with findings for GTP-bound K(B)-Ras in vitro. To compare the effects between isoprenoids and GAP on the GTP-hydrolysis of Ras, we applied the GTP-locked shrimp mutant S-Ras(Q(61)K) and GTP-locked rat mutant K(B)-ras(Q(61)K). Radioassay studies showed that geranylgeranyl pyrophosphate at microg level catalyzed the GTP hydrolysis of S-Ras(Q(61)K) and K(B)-ras(Q(61)K) competently, but not farnesyl pyrophosphate or the purified GAP. The present study provides the view that the geranylgeranyl pyrophosphate at carboxyl terminal CAAX assists GTP hydrolysis to Ras proteins probably in a manner similar to the substrate assisted catalysis in GTPase mechanism.
Collapse
Affiliation(s)
- K C Chang
- Division of Biochemistry and Molecular Sciences, Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan 11529
| | | |
Collapse
|
42
|
Fiordalisi JJ, Johnson RL, Ulkü AS, Der CJ, Cox AD. Mammalian expression vectors for Ras family proteins: generation and use of expression constructs to analyze Ras family function. Methods Enzymol 2001; 332:3-36. [PMID: 11305105 DOI: 10.1016/s0076-6879(01)32189-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J J Fiordalisi
- Departments of Radiation, Oncology, and Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
43
|
Sebti SM, Hamilton AD. Inhibition of Rho GTPases using protein geranylgeranyltransferase I inhibitors. Methods Enzymol 2001; 325:381-8. [PMID: 11036620 DOI: 10.1016/s0076-6879(00)25459-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S M Sebti
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa 33612, USA
| | | |
Collapse
|
44
|
Huang CF, Chen CH, Chuang NN. Disrupting the transforming activity of shrimpras(Q61K) by deleting the CAAX box at the C-terminus. ACTA ACUST UNITED AC 2001; 289:441-8. [PMID: 11351331 DOI: 10.1002/jez.1025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BALB/3T3 cells were transformed by transfection with DNA encoding the mutated ras(Q(61)K) from shrimp Penaeus japonicus. Ras transcription and protein levels had increased significantly in the cells transfected with the S-ras plasmid, compared to cells transfected with a control plasmid pcDNA3.1. The bacterially expressed GTP-locked S-Ras(Q(61)K) is successfully prenylated by rat protein geranylgeranyltransferase I (PGGTase I) and then polymerized with tubulin, in agreement with findings for GTP-locked mammalian K(B)-Ras(Q(61)K) in vitro. Shrimp protein farnesyltransferase (PFTase) of shrimp did not prenylate the GTP-locked shrimp S-Ras(Q(61)K) (Lin and Chuang. 1998. J Exp Zool 281:565-573), whereas rat PFTase efficiently catalyzed the farnesylation of GTP-locked S-Ras(Q(61)K). To investigate the effect of geranylgeranylation on cellular transformation, we generated S-ras(Q(61)K) mutants with deletion of the CAAX box [S-ras(Q(61)K)(-caax)] or replacement of the CAAX box [S-ras(Q(61)K)(Kcaax)] or replacement of the arginine-rich domain [S-ras(Q(61)K)(K-Lys)] with corresponding sequences from rat K(B)-ras(Q(61)K). BALB/3T3 cells transfected with DNA encoding S-ras(Q(61)K), S-ras(Q(61)K)(KCAAX), S-ras(Q(61)K)(K-Lys) were transformed successfully, but S-ras(Q(61)K)(-CAAX) was defective in its ability to transform. Thus, prenylation at CAAX is required for transformation. Either the geranylgeranylated or the farnesylated S-Ras(Q(61)K) was endowed with abilities to transform. The arginine-rich region in S-Ras or the lysine-rich clusters from the rat K(B)-Ras appear not essential for activity to transform.
Collapse
Affiliation(s)
- C F Huang
- Division of Biochemistry and Molecular Sciences, Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan 11529
| | | | | |
Collapse
|
45
|
Ashar HR, James L, Gray K, Carr D, McGuirk M, Maxwell E, Black S, Armstrong L, Doll RJ, Taveras AG, Bishop WR, Kirschmeier P. The farnesyl transferase inhibitor SCH 66336 induces a G(2) --> M or G(1) pause in sensitive human tumor cell lines. Exp Cell Res 2001; 262:17-27. [PMID: 11120601 DOI: 10.1006/excr.2000.5076] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SCH 66336 is a potent farnesyl transferase inhibitor (FTI) in clinical development. It efficiently prevents the membrane association of H-ras, but not K- or N-ras. Yet, in soft agar, it reverts the anchorage-independent growth of human tumor cell lines (hTCLs) harboring H-ras, K-ras, and N-ras mutations, implying that blocking farnesylation of proteins besides ras may be responsible for this effect. Experiments show that SCH 66336 altered the cell cycle distribution of sensitive human tumor cells in two distinct ways. Most sensitive hTCLs accumulated in the G(2)-->M phase after the FTI treatment, but those with an activated H-ras accumulated in G(1) phase, suggesting that the biological effects induced by FTIs in cells with an activated H-ras are distinct from other sensitive cells. A careful genotypic comparison of the hTCLs revealed that those cells with wild-type p53 are especially sensitive to the FTIs. In these cells p53 and its downstream target gene p21(Cip1) are induced after treatment with SCH 66336 for 24 h. These data suggest that cell cycle effects, either G(1) or G(2)-->M accumulation, and p53 status are important for mediating the effects of FTIs on tumor cells.
Collapse
Affiliation(s)
- H R Ashar
- Department of Tumor Biology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey, 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Prendergast GC, Oliff A. Farnesyltransferase inhibitors: antineoplastic properties, mechanisms of action, and clinical prospects. Semin Cancer Biol 2000; 10:443-52. [PMID: 11170866 DOI: 10.1006/scbi.2000.0335] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Farnesyltransferase (FTase) inhibitors are among the current wave of molecularly targeted anti-cancer agents being used to attack malignancy in a rational manner. A large body of preclinical data indicates that FTase inhibitors block cancer cell proliferation through both cytostatic and cytotoxic effects. Interestingly, FTase inhibitors have rather limited effects on normal cell function, suggesting that they may target unique aspects of cancer cell pathophysiology. The development of FTase inhibitors was predicated on the discovery that the Ras oncoproteins must be post-translationally modified to transform cells. However, recent work indicates that the anti-neoplastic effects of FTase inhibitors depend on altering the post-translational modifications of non-Ras proteins as well. In particular, a critical target protein that responds to FTase inhibition by blocking tumor cell growth is RhoB, an endosomal Rho protein that functions in receptor trafficking. In this review, we survey the biological foundations for the clinical development of FTase inhibitors, and consider some of the latest mechanistic studies that reveal how these agents affect cellular physiology.
Collapse
Affiliation(s)
- G C Prendergast
- Department of Cancer Research, Dupont Pharmaceuticals Company, Glenolden Laboratory, Glenolden, PA 19036, USA
| | | |
Collapse
|
47
|
Adnane J, Bizouarn FA, Chen Z, Ohkanda J, Hamilton AD, Munoz-Antonia T, Sebti SM. Inhibition of farnesyltransferase increases TGFbeta type II receptor expression and enhances the responsiveness of human cancer cells to TGFbeta. Oncogene 2000; 19:5525-33. [PMID: 11114730 DOI: 10.1038/sj.onc.1203920] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several small GTPases of the Ras superfamily have been shown to antagonize TGFbeta signaling in human tumor cell lines. Some of these GTPases are post-translationally modified by farnesylation, a lipid modification catalyzed by farnesyltransferase and required for the proteins to attach to membranes and to function. In this study, we investigated the effect of the farnesyltransferase inhibitor FTI-277 on TGFbeta-regulated cell growth and transcription. Treatment of the human pancreatic tumor cell line, Panc-1, with FTI-277 enhanced the ability of TGFbeta to inhibit both anchorage-dependent and -independent tumor cell growth. FTI-277 also enhanced the ability of TGFbeta to induce transcription, as measured by p3TP-lux reporter activity and collagen synthesis. The enhancement of TGFbeta responses by FTI-277 correlated with the stimulation of transcription and protein expression of type II TGFbeta receptor (TbetaRII). Consequently, FTI-277-treated cells exhibited a higher level of TGFbeta binding to its receptor. Thus, inhibition of protein farnesylation stimulates TbetaRII expression, which leads to increased TGFbeta receptor binding and signaling as well as inhibition of tumor cell growth and transformation.
Collapse
Affiliation(s)
- J Adnane
- Drug Discovery Program, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa 33612, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Allal C, Favre G, Couderc B, Salicio S, Sixou S, Hamilton AD, Sebti SM, Lajoie-Mazenc I, Pradines A. RhoA prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription. J Biol Chem 2000; 275:31001-8. [PMID: 10896672 DOI: 10.1074/jbc.m005264200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of post-translational geranylgeranylation of the GTPase RhoA for its ability to induce cellular proliferation and malignant transformation is not well understood. In this manuscript we demonstrate that geranylgeranylation is required for the proper cellular localization of V14RhoA and for its ability to induce actin stress fiber and focal adhesion formation. Furthermore, V14RhoA geranylgeranylation was also required for suppressing p21(WAF) transcription, promoting cell cycle progression and cellular proliferation. The ability of V14RhoA to induce focus formation and enhance plating efficiency and oncogenic Ras anchorage-dependent growth was also dependent on its geranylgeranylation. The only biological activity of V14RhoA that was not dependent on its prenylation was its ability to induce serum response element transcriptional activity. Furthermore, we demonstrate that a farnesylated form of V14RhoA was also able to bind RhoGDI-1, was able to induce cytoskeleton organization, proliferation, and transformation, and was just as potent as geranylgeranylated V14RhoA at suppressing p21(WAF) transcriptional activity. These results demonstrate that RhoA geranylgeranylation is required for its biological activity and that the nature of the lipid modification is not critical.
Collapse
Affiliation(s)
- C Allal
- Oncologie Cellulaire et Moléculaire, EA 2048 Université Paul Sabatier, Centre de Lutte Contre le Cancer Claudius Regaud, 20-24 rue du Pont Saint-Pierre, 31052 Toulouse cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rusyn EV, Reynolds ER, Shao H, Grana TM, Chan TO, Andres DA, Cox AD. Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways. Oncogene 2000; 19:4685-94. [PMID: 11032018 DOI: 10.1038/sj.onc.1203836] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biological functions of Rit (Ras-like protein in tissues) and Rin (Ras-like protein in neurons), members of a novel branch of Ras-related GTP-binding proteins that are approximately 50% identical to Ras, have not been characterized. Therefore, we assessed their activity in growth control, transformation and signaling. NIH cells stably expressing a constitutively activated mutant of Rit [Rit(79L)] (analogous to the oncogenic mutant H-Ras(61L)) demonstrated strong growth transformation, proliferating rapidly in low serum and forming colonies in soft agar and tumors in nude mice. Although Rit(79L) alone did not promote morphologically transformed foci, it cooperated with both Raf and Rho A to form Rac/Rho-like foci. Rin [Rin(78L)] cooperated only with Raf. Rit(79L) but not Rin(78L) stimulated transcription from luciferase reporter constructs regulated by SRF, NF-kappaB, Elk-1 and Jun. However, neither activated ERK, JNK or p38, or PI3-K/Akt kinases in immune complex kinase assays. Interestingly, although Rit lacks any known recognition signal for C-terminal lipidation, Rit-transformed cell growth and survival in low serum is dependent on a farnesylated protein, as treatment with farnesyltransferase inhibitors caused apoptosis. Rin cooperated with Raf in focus assays but did not otherwise function in these assays, perhaps due to a lack of appropriate effector pathways in NIH3T3 fibroblasts for this neural-specific Ras family member. In summary, although Rit shares most core effector domain residues with Ras, our results suggest that Rit uses novel effector pathways to regulate proliferation and transformation.
Collapse
Affiliation(s)
- E V Rusyn
- Department of Radiation Oncology, Lineberger Cancer Center, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Welman A, Burger MM, Hagmann J. Structure and function of the C-terminal hypervariable region of K-Ras4B in plasma membrane targetting and transformation. Oncogene 2000; 19:4582-91. [PMID: 11030147 DOI: 10.1038/sj.onc.1203818] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The C-terminal hypervariable domain of K-Ras4B targets the protein to the plasma membrane by a combination of positive charge and a hydrophobic signal (farnesyl group). We analysed the contribution of several structural features of the domain: net charge, charge distribution, amino acid sequence and lipid specificity to membrane targetting and function by using artificial 'hypervariable' domains fused to either EGFP or V12KRas4B. We found that charge and a lipid residue are sufficient for plasma membrane localization and function of the constitutively active V12K-Ras4B. However, the amount of net charge, charge distribution and the length of the anchoring domain are important. Increasing the net charge and concentrating it close to the C-terminus increases not only the percentage of membrane bound protein, but also shifts the distribution from internal membranes, including the nuclear envelope, to the plasma membrane. While plasma membrane binding is necessary for V12K-Ras4B activity (MAPK activation and focus formation), we found that there are additional restrictions. In particular, mutants with very highly charged domains that bind almost exclusively to the plasma membrane show less transforming potential than expected. In addition, a construct with a short 'hypervariable' domain (7 amino acids) also has decreased transformation activity. These results suggest that specific interactions between K-Ras4B and the plasma membrane are required.
Collapse
Affiliation(s)
- A Welman
- Friedrich Miescher-Institute, Basel, Switzerland
| | | | | |
Collapse
|