1
|
Arend M, Ütkür K, Hawer H, Mayer K, Ranjan N, Adrian L, Brinkmann U, Schaffrath R. Yeast gene KTI13 (alias DPH8) operates in the initiation step of diphthamide synthesis on elongation factor 2. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:195-203. [PMID: 37662670 PMCID: PMC10468694 DOI: 10.15698/mic2023.09.804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
In yeast, Elongator-dependent tRNA modifications are regulated by the Kti11•Kti13 dimer and hijacked for cell killing by zymocin, a tRNase ribotoxin. Kti11 (alias Dph3) also controls modification of elongation factor 2 (EF2) with diphthamide, the target for lethal ADP-ribosylation by diphtheria toxin (DT). Diphthamide formation on EF2 involves four biosynthetic steps encoded by the DPH1-DPH7 network and an ill-defined KTI13 function. On further examining the latter gene in yeast, we found that kti13Δ null-mutants maintain unmodified EF2 able to escape ADP-ribosylation by DT and to survive EF2 inhibition by sordarin, a diphthamide-dependent antifungal. Consistently, mass spectrometry shows kti13Δ cells are blocked in proper formation of amino-carboxyl-propyl-EF2, the first diphthamide pathway intermediate. Thus, apart from their common function in tRNA modification, both Kti11/Dph3 and Kti13 share roles in the initiation step of EF2 modification. We suggest an alias KTI13/DPH8 nomenclature indicating dual-functionality analogous to KTI11/DPH3.
Collapse
Affiliation(s)
- Meike Arend
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Koray Ütkür
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Harmen Hawer
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Nonnenwald 2, 82377 Penzberg, Germany
| | - Namit Ranjan
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lorenz Adrian
- Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Nonnenwald 2, 82377 Penzberg, Germany
| | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
2
|
Lacoux C, Wacheul L, Saraf K, Pythoud N, Huvelle E, Figaro S, Graille M, Carapito C, Lafontaine DLJ, Heurgué-Hamard V. The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucleic Acids Res 2020; 48:12310-12325. [PMID: 33166396 PMCID: PMC7708063 DOI: 10.1093/nar/gkaa972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.
Collapse
Affiliation(s)
- Caroline Lacoux
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Kritika Saraf
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Emmeline Huvelle
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Valérie Heurgué-Hamard
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
3
|
Liu J, Zuo Z, Zou M, Finkel T, Liu S. Identification of the transcription factor Miz1 as an essential regulator of diphthamide biosynthesis using a CRISPR-mediated genome-wide screen. PLoS Genet 2020; 16:e1009068. [PMID: 33057331 PMCID: PMC7591051 DOI: 10.1371/journal.pgen.1009068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Diphthamide is a unique post-translationally modified histidine residue (His715 in all mammals) found only in eukaryotic elongation factor-2 (eEF-2). The biosynthesis of diphthamide represents one of the most complex modifications, executed by protein factors conserved from yeast to humans. Diphthamide is not only essential for normal physiology (such as ensuring fidelity of mRNA translation), but is also exploited by bacterial ADP-ribosylating toxins (e.g., diphtheria toxin) as their molecular target in pathogenesis. Taking advantage of the observation that cells defective in diphthamide biosynthesis are resistant to ADP-ribosylating toxins, in the past four decades, seven essential genes (Dph1 to Dph7) have been identified for diphthamide biosynthesis. These technically unsaturated screens raise the question as to whether additional genes are required for diphthamide biosynthesis. In this study, we performed two independent, saturating, genome-wide CRISPR knockout screens in human cells. These screens identified all previously known Dph genes, as well as further identifying the BTB/POZ domain-containing transcription factor Miz1. We found that Miz1 is absolutely required for diphthamide biosynthesis via its role in the transcriptional regulation of Dph1 expression. Mechanistically, Miz1 binds to the Dph1 proximal promoter via an evolutionarily conserved consensus binding site to activate Dph1 transcription. Therefore, this work demonstrates that Dph1-7, along with the newly identified Miz1 transcription factor, are likely to represent the essential protein factors required for diphthamide modification on eEF2.
Collapse
Affiliation(s)
- Jie Liu
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Zehua Zuo
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Meijuan Zou
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Toren Finkel
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Shihui Liu
- Aging Institute of University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
4
|
Mateus-Seidl R, Stahl S, Dengl S, Birzele F, Herrmuth H, Mayer K, Niederfellner G, Liu XF, Pastan I, Brinkmann U. Interplay between reversible phosphorylation and irreversible ADP-ribosylation of eukaryotic translation elongation factor 2. Biol Chem 2019; 400:501-512. [PMID: 30218597 DOI: 10.1515/hsz-2018-0280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 11/15/2022]
Abstract
The functionality of eukaryotic translation elongation factor 2 (eEF2) is modulated by phosphorylation, eEF2 is simultaneously the molecular target of ADP-ribosylating toxins. We analyzed the interplay between phosphorylation and diphthamide-dependent ADP-ribosylation. Phosphorylation does not require diphthamide, eEF2 without it still becomes phosphorylated. ADP-ribosylation not only modifies the H715 diphthamide but also inhibits phosphorylation of S595 located in proximity to H715, and stimulates phosphorylation of T56. S595 can be phosphorylated by CDK2 and CDK1 which affects EEF2K-mediated T56-phosphorylation. Thus, ADP-ribosylation and S595-phosphorylation by kinases occur within the same vicinity and both trigger T56-phosphorylation. Diphthamide is surface-accessible permitting access to ADP-ribosylating enzymes, the adjacent S595 side chain extends into the interior. This orientation is incompatible with phosphorylation, neither allowing kinase access nor phosphate attachment. S595 phosphorylation must therefore be accompanied by structural alterations affecting the interface to ADP-ribosylating toxins. In agreement with that, replacement of S595 with Ala, Glu or Asp prevents ADP-ribosylation. Phosphorylation (starvation) as well as ADP-ribosylation (toxins) inhibit protein synthesis, both affect the S595/H715 region of eEF2, both trigger T57-phosphorylation eliciting similar transcriptional responses. Phosphorylation is short lived while ADP-ribosylation is stable. Thus, phosphorylation of the S595/H715 'modifier region' triggers transient interruption of translation while ADP-ribosylation arrests irreversibly.
Collapse
Affiliation(s)
- Rita Mateus-Seidl
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Sebastian Stahl
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Stefan Dengl
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences- Bioinformatics, Roche Innovation Center Basel, Grenzacherstr. 124, CH-4070 Basel, Germany
| | - Hedda Herrmuth
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Gerhard Niederfellner
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Xiu-Fen Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| |
Collapse
|
5
|
Mayer K, Mundigl O, Kettenberger H, Birzele F, Stahl S, Pastan I, Brinkmann U. Diphthamide affects selenoprotein expression: Diphthamide deficiency reduces selenocysteine incorporation, decreases selenite sensitivity and pre-disposes to oxidative stress. Redox Biol 2019; 20:146-156. [PMID: 30312900 PMCID: PMC6180344 DOI: 10.1016/j.redox.2018.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
The diphthamide modification of translation elongation factor 2 is highly conserved in eukaryotes and archaebacteria. Nevertheless, cells lacking diphthamide can carry out protein synthesis and are viable. We have analyzed the phenotypes of diphthamide deficient cells and found that diphthamide deficiency reduces selenocysteine incorporation into selenoproteins. Additional phenotypes resulting from diphthamide deficiency include altered tRNA-synthetase and selenoprotein transcript levels, hypersensitivity to oxidative stress and increased selenite tolerance. Diphthamide-eEF2 occupies the aminoacyl-tRNA translocation site at which UGA either stalls translation or decodes selenocysteine. Its position is in close proximity and mutually exclusive to the ribosomal binding site of release/recycling factor ABCE1, which harbors a redox-sensitive Fe-S cluster and, like diphthamide, is present in eukaryotes and archaea but not in eubacteria. Involvement of diphthamide in UGA-SECIS decoding may explain deregulated selenoprotein expression and as a consequence oxidative stress, NFkB activation and selenite tolerance in diphthamide deficient cells.
Collapse
Affiliation(s)
- Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Sebastian Stahl
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
6
|
Hawer H, Ütkür K, Arend M, Mayer K, Adrian L, Brinkmann U, Schaffrath R. Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. PLoS One 2018; 13:e0205870. [PMID: 30335802 PMCID: PMC6193676 DOI: 10.1371/journal.pone.0205870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 01/23/2023] Open
Abstract
In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which collectively kill cells by inactivating the essential translocase function of EF2 during mRNA translation and protein biosynthesis. Although this notion emphasizes the pathological importance of diphthamide, precisely why cells including our own require EF2 to carry it, is unclear. Mining the synthetic genetic array (SGA) landscape from the budding yeast Saccharomyces cerevisiae has revealed negative interactions between EF2 (EFT1-EFT2) and diphthamide (DPH1-DPH7) gene deletions. In line with these correlations, we confirm in here that loss of diphthamide modification (dphΔ) on EF2 combined with EF2 undersupply (eft2Δ) causes synthetic growth phenotypes in the composite mutant (dphΔ eft2Δ). These reflect negative interference with cell performance under standard as well as thermal and/or chemical stress conditions, cell growth rates and doubling times, competitive fitness, cell viability in the presence of TOR inhibitors (rapamycin, caffeine) and translation indicator drugs (hygromycin, anisomycin). Together with significantly suppressed tolerance towards EF2 inhibition by cytotoxic DPH5 overexpression and increased ribosomal -1 frame-shift errors in mutants lacking modifiable pools of EF2 (dphΔ, dphΔ eft2Δ), our data indicate that diphthamide is important for the fidelity of the EF2 translocation function during mRNA translation.
Collapse
Affiliation(s)
- Harmen Hawer
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Koray Ütkür
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Meike Arend
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany
| | - Lorenz Adrian
- AG Geobiochemie, Department Isotopenbiogeochemie, Helmholtz-Zentrum für Umweltforschung GmbH–UFZ, Leipzig, Germany
- Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail:
| |
Collapse
|
7
|
Dong M, Zhang Y, Lin H. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis. Biochemistry 2018; 57:3454-3459. [PMID: 29708734 DOI: 10.1021/acs.biochem.8b00287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes are a superfamily of enzymes that use SAM and reduced [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical to catalyze numerous challenging reactions. We have reported a type of noncanonical radical SAM enzymes in the diphthamide biosynthesis pathway. These enzymes also use SAM and reduced [4Fe-4S] clusters, but generate a 3-amino-3-carboxypropyl (ACP) radical to modify the substrate protein, translation elongation factor 2. The regioselective cleavage of a different C-S bond of the sulfonium center of SAM in these enzymes comparing to canonical radical SAM enzymes is intriguing. Here, we highlight some recent findings in the mechanism of these types of enzymes, showing that the diphthamide biosynthetic radial SAM enzymes bound SAM with a distinct geometry. In this way, the unique iron of the [4Fe-4S] cluster in the enzyme can only attack the carbon on the ACP group to form an organometallic intermediate. The homolysis of the organometallic intermediate releases the ACP radical and generates the EF2 radial.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Yugang Zhang
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
8
|
Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2017; 7:1941-1954. [PMID: 28450372 PMCID: PMC5473770 DOI: 10.1534/g3.117.042291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations.
Collapse
|
9
|
Mayer K, Schröder A, Schnitger J, Stahl S, Brinkmann U. Influence of DPH1 and DPH5 Protein Variants on the Synthesis of Diphthamide, the Target of ADPRibosylating Toxins. Toxins (Basel) 2017; 9:E78. [PMID: 28245596 PMCID: PMC5371833 DOI: 10.3390/toxins9030078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/20/2017] [Indexed: 01/22/2023] Open
Abstract
The diphthamide on eukaryotic translation elongation factor 2 (eEF2) is the target of ADPribosylating toxins and -derivatives that serve as payloads in targeted tumor therapy. Diphthamide is generated by seven DPH proteins; cells deficient in these (DPHko) lack diphthamide and are toxin-resistant. We have established assays to address the functionality of DPH1 (OVCA1) and DPH5 variants listed in dbSNP and cosmic databases: plasmids encoding wildtype and mutant DPHs were transfected into DPHko cells. Supplementation of DPH1 and DPH5 restores diphthamide synthesis and toxin sensitivity in DPH1ko and DPH5ko cells, respectively. Consequently, the determination of the diphthamide status of cells expressing DPH variants differentiates active and compromised proteins. The DPH1 frameshift variant L96fs* (with Nterminal 96 amino acids, truncated thereafter) and two splice isoforms lacking 80 or 140 amino acids at their N-termini failed to restore DPH1ko deficiency. The DPH1 frameshift variant R312fs* retained some residual activity even though it lacks a large C-terminal portion. DPH1 missense variants R27W and S56F retained activity while S221P had reduced activity, indicated by a decreased capability to restore diphthamide synthesis. The DPH5 nonsense or frameshift variants E60*, W136fs* and R207* (containing intact N-termini with truncations after 60, 136 or 207 amino acids, respectively) were inactive: none compensated the deficiency of DPH5ko cells. In contrast, missense variants D57G, G87R, S123C and Q170H as well as the frequently occurring DPH5 isoform delA212 retained activity. Sensitivity to ADP-ribosylating toxins and tumor-targeted immunotoxins depends on diphthamide which, in turn, requires DPH functionality. Because of that, DPH variants (in particular those that are functionally compromised) may serve as a biomarker and correlate with the efficacy of immunotoxin-based therapies.
Collapse
Affiliation(s)
- Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Anna Schröder
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Jerome Schnitger
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Sebastian Stahl
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| |
Collapse
|
10
|
Cbr1 is a Dph3 reductase required for the tRNA wobble uridine modification. Nat Chem Biol 2016; 12:995-997. [PMID: 27694803 PMCID: PMC5110365 DOI: 10.1038/nchembio.2190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Diphthamide and the tRNA wobble uridine modifications both require Dph3 (DiPHthamide biosynthesis 3) protein as an electron donor for the iron-sulfur clusters in their biosynthetic enzymes. Here, using a proteomic approach, we identified Saccharomyces cerevisiae cytochrome B5 reductase (Cbr1) as a NADH-dependent reductase for Dph3. The NADH- and Cbr1-dependent reduction of Dph3 may provide a regulatory linkage between cellular metabolic state and protein translation.
Collapse
|
11
|
A diphtheria toxin resistance marker for in vitro and in vivo selection of stably transduced human cells. Sci Rep 2015; 5:14721. [PMID: 26420058 PMCID: PMC4588510 DOI: 10.1038/srep14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
We developed a selectable marker rendering human cells resistant to Diphtheria Toxin (DT). The marker (DTR) consists of a primary microRNA sequence engineered to downregulate the ubiquitous DPH2 gene, a key enzyme for the biosynthesis of the DT target diphthamide. DTR expression in human cells invariably rendered them resistant to DT in vitro, without altering basal cell growth. DTR-based selection efficiency and stability were comparable to those of established drug-resistance markers. As mice are insensitive to DT, DTR-based selection can be also applied in vivo. Direct injection of a GFP-DTR lentiviral vector into human cancer cell-line xenografts and patient-derived tumorgrafts implanted in mice, followed by systemic DT administration, yielded tumors entirely composed of permanently transduced cells and detectable by imaging systems. This approach enabled high-efficiency in vivo selection of xenografted human tumor tissues expressing ectopic transgenes, a hitherto unmet need for functional and morphological studies in laboratory animals.
Collapse
|
12
|
Hu X, Wei H, Xiang L, Chertov O, Wayne AS, Bera TK, Pastan I. Methylation of the DPH1 promoter causes immunotoxin resistance in acute lymphoblastic leukemia cell line KOPN-8. Leuk Res 2013; 37:1551-6. [PMID: 24070652 PMCID: PMC3818433 DOI: 10.1016/j.leukres.2013.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Moxetumomab pasudotox (HA22) is an immunotoxin with an anti-CD22 Fv fused to a portion of Pseudomonas exotoxin A that kills CD22 expressing ALL cells. HA22 produced significant responses in some cases of ALL. To understand how to increase response rate, we isolated HA22-resistant KOPN-8 cells and found that HA22 cannot inactivate elongation factor-2 (EF2) due to low levels of DPH1 RNA and protein. Resistance was associated with methylation of the CpG island in the DPH1 promoter. 5-Azacytidine prevented resistance and methylation of the CpG residues and merits evaluation to determine if it can increase the efficacy of HA22 in ALL.
Collapse
Affiliation(s)
- Xiaobo Hu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Wei
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Laiman Xiang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Oleg Chertov
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, USA
| | - Alan S. Wayne
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tapan K. Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
13
|
Abstract
Eukaryotic and archaeal elongation factor 2 contains a unique post-translationally modified histidine residue, named diphthamide. Genetic and biochemical studies have revealed that diphthamide biosynthesis involves a multi-step pathway that is evolutionally conserved among lower and higher eukaryotes. During certain bacterial infections, diphthamide is specifically recognized by bacterial toxins, including diphtheria toxin, Pseudomonas exotoxin A and cholix toxin. Although the pathological relevance is well studied, the physiological function of diphthamide is still poorly understood. Recently, many new interesting developments in understanding the biosynthesis have been reported. Here, we review the current understanding of the biosynthesis and biological function of diphthamide.
Collapse
Affiliation(s)
- Xiaoyang Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Zhewang Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
14
|
Mateyak MK, Kinzy TG. ADP-ribosylation of translation elongation factor 2 by diphtheria toxin in yeast inhibits translation and cell separation. J Biol Chem 2013; 288:24647-55. [PMID: 23853096 DOI: 10.1074/jbc.m113.488783] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation elongation factor 2 (eEF2) facilitates the movement of the peptidyl tRNA-mRNA complex from the A site of the ribosome to the P site during protein synthesis. ADP-ribosylation (ADP(R)) of eEF2 by bacterial toxins on a unique diphthamide residue inhibits its translocation activity, but the mechanism is unclear. We have employed a hormone-inducible diphtheria toxin (DT) expression system in Saccharomyces cerevisiae which allows for the rapid induction of ADP(R)-eEF2 to examine the effects of DT in vivo. ADP(R) of eEF2 resulted in a decrease in total protein synthesis consistent with a defect in translation elongation. Association of eEF2 with polyribosomes, however, was unchanged upon expression of DT. Upon prolonged exposure to DT, cells with an abnormal morphology and increased DNA content accumulated. This observation was specific to DT expression and was not observed when translation elongation was inhibited by other methods. Examination of these cells by electron microscopy indicated a defect in cell separation following mitosis. These results suggest that expression of proteins late in the cell cycle is particularly sensitive to inhibition by ADP(R)-eEF2.
Collapse
Affiliation(s)
- Maria K Mateyak
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
15
|
Abdel-Fattah W, Scheidt V, Uthman S, Stark MJR, Schaffrath R. Insights into diphthamide, key diphtheria toxin effector. Toxins (Basel) 2013; 5:958-68. [PMID: 23645155 PMCID: PMC3709272 DOI: 10.3390/toxins5050958] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/17/2013] [Accepted: 04/26/2013] [Indexed: 11/16/2022] Open
Abstract
Diphtheria toxin (DT) inhibits eukaryotic translation elongation factor 2 (eEF2) by ADP-ribosylation in a fashion that requires diphthamide, a modified histidine residue on eEF2. In budding yeast, diphthamide formation involves seven genes, DPH1-DPH7. In an effort to further study diphthamide synthesis and interrelation among the Dph proteins, we found, by expression in E. coli and co-immune precipitation in yeast, that Dph1 and Dph2 interact and that they form a complex with Dph3. Protein-protein interaction mapping shows that Dph1-Dph3 complex formation can be dissected by progressive DPH1 gene truncations. This identifies N- and C-terminal domains on Dph1 that are crucial for diphthamide synthesis, DT action and cytotoxicity of sordarin, another microbial eEF2 inhibitor. Intriguingly, dph1 truncation mutants are sensitive to overexpression of DPH5, the gene necessary to synthesize diphthine from the first diphthamide pathway intermediate produced by Dph1-Dph3. This is in stark contrast to dph6 mutants, which also lack the ability to form diphthamide but are resistant to growth inhibition by excess Dph5 levels. As judged from site-specific mutagenesis, the amidation reaction itself relies on a conserved ATP binding domain in Dph6 that, when altered, blocks diphthamide formation and confers resistance to eEF2 inhibition by sordarin.
Collapse
Affiliation(s)
- Wael Abdel-Fattah
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Kassel D-34132, Germany; E-Mails: (W.A.-F.); (V.S.)
| | - Viktor Scheidt
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Kassel D-34132, Germany; E-Mails: (W.A.-F.); (V.S.)
| | - Shanow Uthman
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; E-Mail:
| | - Michael J. R. Stark
- Centre for Gene Regulation & Expression, University of Dundee, Dundee, DD1 5EH, Scotland; E-Mail:
| | - Raffael Schaffrath
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Kassel D-34132, Germany; E-Mails: (W.A.-F.); (V.S.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: schaffrath@uni-kassel; Tel.: +49-561-804-4175; Fax: +49-561-804-4337
| |
Collapse
|
16
|
Wei H, Bera TK, Wayne AS, Xiang L, Colantonio S, Chertov O, Pastan I. A modified form of diphthamide causes immunotoxin resistance in a lymphoma cell line with a deletion of the WDR85 gene. J Biol Chem 2013; 288:12305-12. [PMID: 23486472 PMCID: PMC3636914 DOI: 10.1074/jbc.m113.461343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/12/2013] [Indexed: 11/06/2022] Open
Abstract
HA22 is a recombinant immunotoxin that kills CD22-expressing cells by ADP-ribosylating and inactivating elongation factor-2 (EF2). HA22 is composed of an Fv that binds to CD22 fused to a portion of Pseudomonas exotoxin A. HA22 is very active in drug-resistant hairy cell leukemia but is less active in children with acute lymphoblastic leukemia. To understand why some patients do not respond to HA22, we isolated an HA22-resistant lymphoma cell line and showed that resistance was due to the inability of HA22 to ADP-ribosylate and inactivate EF2. We analyzed the diphthamide synthesis genes and found that the WDR85 gene was deleted. We show that WDR85 knockdown conferred HA22 resistance to sensitive cells and that sensitivity was restored by introduction of a WDR85 cDNA into resistant cells. Analysis of EF2 in the mutant cells revealed a novel form of diphthamide with an additional methyl group that prevented ADP-ribosylation and inactivation of EF2. The abnormal methylation appeared to be catalyzed by DPH5. Inactivation of the WDR85 gene could be a mechanism of immunotoxin resistance in patients undergoing immunotoxin therapy.
Collapse
Affiliation(s)
- Hui Wei
- From the Laboratory of Molecular Biology and
| | | | - Alan S. Wayne
- From the Laboratory of Molecular Biology and
- Pediatric Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | | | - Simona Colantonio
- the Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Oleg Chertov
- the Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Ira Pastan
- From the Laboratory of Molecular Biology and
| |
Collapse
|
17
|
The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network. PLoS Genet 2013; 9:e1003334. [PMID: 23468660 PMCID: PMC3585130 DOI: 10.1371/journal.pgen.1003334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 01/07/2013] [Indexed: 01/31/2023] Open
Abstract
Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step—amidation of the intermediate diphthine to diphthamide—is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase (YLR143w/DPH6) and confirm involvement of a second gene (YBR246w/DPH7) in the amidation step. Like dph1-dph5, dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal −1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation. Diphthamide is an unusual modified amino acid found uniquely in a single protein, eEF2, which is required for cells to synthesize new proteins. The name refers to its target function for eEF2 inactivation by diphtheria toxin, the disease-inducing agent produced by the pathogen Corynebacterium diphtheriae. Why cells require eEF2 to contain diphthamide is unclear, although mice unable to make it fail to complete embryogenesis. Cells generate diphthamide by modifying a specific histidine residue in eEF2 using a three-step biosynthetic pathway, the first two steps of which are well defined. However, the enzyme(s) involved in the final amidation step are unknown. Here we integrate genomic and molecular approaches to identify a candidate for the elusive amidase (Dph6) and confirm involvement of a second protein (Dph7) in the amidation step, showing that failure to synthesize diphthamide affects the accuracy of protein synthesis. In contrast to Dph6, however, Dph7 may be regulatory. Our data strongly suggest that it promotes dissociation of eEF2 from diphthine synthase (Dph5), which carries out the second step of diphthamide synthesis, and that Dph5 has a novel role as an eEF2 inhibitor when diphthamide synthesis is incomplete.
Collapse
|
18
|
Chemogenomic approach identified yeast YLR143W as diphthamide synthetase. Proc Natl Acad Sci U S A 2012; 109:19983-7. [PMID: 23169644 DOI: 10.1073/pnas.1214346109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many genes are of unknown functions in any sequenced genome. A combination of chemical and genetic perturbations has been used to investigate gene functions. Here we present a case that such "chemogenomics" information can be effectively used to identify missing genes in a defined biological pathway. In particular, we identified the previously unknown enzyme diphthamide synthetase for the last step of diphthamide biosynthesis. We found that yeast protein YLR143W is the diphthamide synthetase catalyzing the last amidation step using ammonium and ATP. Diphthamide synthetase is evolutionarily conserved in eukaryotes. The previously uncharacterized human gene ATPBD4 is the ortholog of yeast YLR143W and fully rescues the deletion of YLR143W in yeast.
Collapse
|
19
|
de Crécy-Lagard V, Forouhar F, Brochier-Armanet C, Tong L, Hunt JF. Comparative genomic analysis of the DUF71/COG2102 family predicts roles in diphthamide biosynthesis and B12 salvage. Biol Direct 2012; 7:32. [PMID: 23013770 PMCID: PMC3541065 DOI: 10.1186/1745-6150-7-32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/18/2012] [Indexed: 01/09/2023] Open
Abstract
Background The availability of over 3000 published genome sequences has enabled the use of comparative genomic approaches to drive the biological function discovery process. Classically, one used to link gene with function by genetic or biochemical approaches, a lengthy process that often took years. Phylogenetic distribution profiles, physical clustering, gene fusion, co-expression profiles, structural information and other genomic or post-genomic derived associations can be now used to make very strong functional hypotheses. Here, we illustrate this shift with the analysis of the DUF71/COG2102 family, a subgroup of the PP-loop ATPase family. Results The DUF71 family contains at least two subfamilies, one of which was predicted to be the missing diphthine-ammonia ligase (EC 6.3.1.14), Dph6. This enzyme catalyzes the last ATP-dependent step in the synthesis of diphthamide, a complex modification of Elongation Factor 2 that can be ADP-ribosylated by bacterial toxins. Dph6 orthologs are found in nearly all sequenced Archaea and Eucarya, as expected from the distribution of the diphthamide modification. The DUF71 family appears to have originated in the Archaea/Eucarya ancestor and to have been subsequently horizontally transferred to Bacteria. Bacterial DUF71 members likely acquired a different function because the diphthamide modification is absent in this Domain of Life. In-depth investigations suggest that some archaeal and bacterial DUF71 proteins participate in B12 salvage. Conclusions This detailed analysis of the DUF71 family members provides an example of the power of integrated data-miming for solving important “missing genes” or “missing function” cases and illustrates the danger of functional annotation of protein families by homology alone. Reviewers’ names This article was reviewed by Arcady Mushegian, Michael Galperin and L. Aravind.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|
20
|
Diphthamide modification on eukaryotic elongation factor 2 is needed to assure fidelity of mRNA translation and mouse development. Proc Natl Acad Sci U S A 2012; 109:13817-22. [PMID: 22869748 DOI: 10.1073/pnas.1206933109] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the role of the diphthamide modification on eukaryotic elongation factor 2 (eEF2), we generated an eEF2 Gly(717)Arg mutant mouse, in which the first step of diphthamide biosynthesis is prevented. Interestingly, the Gly(717)-to-Arg mutation partially compensates the eEF2 functional loss resulting from diphthamide deficiency, possibly because the added +1 charge compensates for the loss of the +1 charge on diphthamide. Therefore, in contrast to mouse embryonic fibroblasts (MEFs) from OVCA1(-/-) mice, eEF2(G717R/G717R) MEFs retain full activity in polypeptide elongation and have normal growth rates. Furthermore, eEF2(G717R/G717R) mice showed milder phenotypes than OVCA1(-/-) mice (which are 100% embryonic lethal) and a small fraction survived to adulthood without obvious abnormalities. Moreover, eEF2(G717R/G717R)/OVCA1(-/-) double mutant mice displayed the milder phenotypes of the eEF2(G717R/G717R) mice, suggesting that the embryonic lethality of OVCA1(-/-) mice is due to diphthamide deficiency. We confirmed that the diphthamide modification is essential for eEF2 to prevent -1 frameshifting during translation and show that the Gly(717)-to-Arg mutation cannot rescue this defect.
Collapse
|
21
|
Thakur A, Chitoor B, Goswami AV, Pareek G, Atreya HS, D'Silva P. Structure and mechanistic insights into novel iron-mediated moonlighting functions of human J-protein cochaperone, Dph4. J Biol Chem 2012; 287:13194-205. [PMID: 22367199 PMCID: PMC3339945 DOI: 10.1074/jbc.m112.339655] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
J-proteins are obligate cochaperones of Hsp70s and stimulate their ATPase activity via the J-domain. Although the functions of J-proteins have been well understood in the context of Hsp70s, their additional co-evolved "physiological functions" are still elusive. We report here the solution structure and mechanism of novel iron-mediated functional roles of human Dph4, a type III J-protein playing a vital role in diphthamide biosynthesis and normal development. The NMR structure of Dph4 reveals two domains: a conserved J-domain and a CSL-domain connected via a flexible linker-helix. The linker-helix modulates the conformational flexibility between the two domains, regulating thereby the protein function. Dph4 exhibits a unique ability to bind iron in tetrahedral coordination geometry through cysteines of its CSL-domain. The oxidized Fe-Dph4 shows characteristic UV-visible and electron paramagnetic resonance spectral properties similar to rubredoxins. Iron-bound Dph4 (Fe-Dph4) also undergoes oligomerization, thus potentially functioning as a transient "iron storage protein," thereby regulating the intracellular iron homeostasis. Remarkably, Fe-Dph4 exhibits vital redox and electron carrier activity, which is critical for important metabolic reactions, including diphthamide biosynthesis. Further, we observed that Fe-Dph4 is conformationally better poised to perform Hsp70-dependent functions, thus underlining the significance of iron binding in Dph4. Yeast Jjj3, a functional ortholog of human Dph4 also shows a similar iron-binding property, indicating the conserved nature of iron sequestration across species. Taken together, our findings provide invaluable evidence in favor of additional co-evolved specialized functions of J-proteins, previously not well appreciated.
Collapse
Affiliation(s)
- Anushikha Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | |
Collapse
|
22
|
Su X, Chen W, Lee W, Jiang H, Zhang S, Lin H. YBR246W is required for the third step of diphthamide biosynthesis. J Am Chem Soc 2011; 134:773-6. [PMID: 22188241 DOI: 10.1021/ja208870a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diphthamide, the target of diphtheria toxin, is a post-translationally modified histidine residue that is found in archaeal and eukaryotic translation elongation factor 2. The biosynthesis and function of this modification has attracted the interest of many biochemists for decades. The biosynthesis has been known to proceed in three steps. Proteins required for the first and second steps have been identified, but the protein(s) required for the last step have remained elusive. Here we demonstrate that the YBR246W gene in yeast is required for the last step of diphthamide biosynthesis, as the deletion of YBR246W leads to the accumulation of diphthine, which is the enzymatic product of the second step of the biosynthesis. This discovery will provide important information leading to the complete elucidation of the full biosynthesis pathway of diphthamide.
Collapse
Affiliation(s)
- Xiaoyang Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lin H. S-Adenosylmethionine-dependent alkylation reactions: when are radical reactions used? Bioorg Chem 2011; 39:161-70. [PMID: 21762947 DOI: 10.1016/j.bioorg.2011.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
S-Adenosylmethionine (SAM) is a versatile small molecule used in many biological reactions. This review focuses on the mechanistic consideration of SAM-dependent methylation and 3-amino-3-carboxypropylation reactions. Special emphasis is given to methylation and 3-amino-3-carboxypropylation of carbon atoms, for which both nucleophilic mechanisms and radical mechanisms are used, depending on the specific enzymatic reactions. What is the logic behind Nature's choice of different reaction mechanisms? Here I aim to rationalize the choice of different reaction mechanisms in SAM-dependent alkylation reaction by analyzing a few enzymatic reactions in depth. These reactions include SAM-dependent cyclopropane fatty acid synthesis, DNA cytosine methylation, RNA adenosine C2 and C8 methylation, and 3-amino-3-carboxypropylation involved in diphthamide biosynthesis and wybutosine biosynthesis.
Collapse
Affiliation(s)
- Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
24
|
Zhu X, Kim J, Su X, Lin H. Reconstitution of diphthine synthase activity in vitro. Biochemistry 2011; 49:9649-57. [PMID: 20873788 DOI: 10.1021/bi100812h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on eukaryotic and archaeal translation elongation factor 2 (EF2). Although diphthamide modification was discovered three decades ago, in vitro reconstitution of diphthamide biosynthesis using purified proteins has not been reported. The proposed biosynthesis pathway of diphthamide involves three steps. Our laboratory has recently showed that in Pyrococcus horikoshii (P. horikoshii), the first step uses a [4Fe-4S] enzyme PhDph2 to generate a 3-amino-3-carboxypropyl radical from S-adenosyl-L-methionine (SAM) to form a C−C bond. The second step is the trimethylation of an amino group to form the diphthine intermediate. This step is catalyzed by a methyltransferase called diphthine synthase or Dph5. Here we report the in vitro reconstitution of the second step using P. horikoshii Dph5 (PhDph5). Our results demonstrate that PhDph5 is sufficient to catalyze the mono-, di-, and trimethylation of P. horikoshii EF2 (PhEF2). Interestingly, the trimethylated product from the PhDph5-catalyzed reaction can easily eliminate the trimethylamino group. The potential implication of this unexpected finding on the diphthamide biosynthesis pathway is discussed.
Collapse
Affiliation(s)
- Xuling Zhu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
25
|
Roy V, Ghani K, Caruso M. A dominant-negative approach that prevents diphthamide formation confers resistance to Pseudomonas exotoxin A and diphtheria toxin. PLoS One 2010; 5:e15753. [PMID: 21203470 PMCID: PMC3009735 DOI: 10.1371/journal.pone.0015753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/23/2010] [Indexed: 11/25/2022] Open
Abstract
Diphtheria toxin (DT), Pseudomonas aeruginosa Exotoxin A (ETA) and cholix toxin from Vibrio cholerae share the same mechanism of toxicity; these enzymes ADP-rybosylate elongation factor-2 (EF-2) on a modified histidine residue called diphthamide, leading to a block in protein synthesis. Mutant Chinese hamster ovary cells that are defective in the formation of diphthamide have no distinct phenotype except their resistance to DT and ETA. These observations led us to predict that a strategy that prevents the formation of diphthamide to confer DT and ETA resistance is likely to be safe. It is well documented that Dph1 and Dph2 are involved in the first biochemical step of diphthamide formation and that these two proteins interact with each other. We hypothesized that we could block diphthamide formation with a dominant negative mutant of either Dph1 or Dph2. We report in this study the first cellular-targeted strategy that protects against DT and ETA toxicity. We have generated Dph2(C-), a dominant-negative mutant of Dph2, that could block very efficiently the formation of diphthamide. Cells expressing Dph2(C-) were 1000-fold more resistant to DT than parental cells, and a similar protection against Pseudomonas exotoxin A was also obtained. The targeting of a cellular component with this approach should have a reduced risk of generating resistance as it is commonly seen with antibiotic treatments.
Collapse
Affiliation(s)
- Vincent Roy
- Le Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Karim Ghani
- Le Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Manuel Caruso
- Le Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec, Canada
| |
Collapse
|
26
|
Zhu X, Dzikovski B, Su X, Torelli AT, Zhang Y, Ealick SE, Freed JH, Lin H. Mechanistic understanding of Pyrococcus horikoshii Dph2, a [4Fe-4S] enzyme required for diphthamide biosynthesis. MOLECULAR BIOSYSTEMS 2010; 7:74-81. [PMID: 20931132 DOI: 10.1039/c0mb00076k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on eukaryotic and archaeal translation elongation factor 2 (EF2). The proposed biosynthesis of diphthamide involves three steps and we have recently found that in Pyrococcus horikoshii (P. horikoshii), the first step uses an S-adenosyl-L-methionine (SAM)-dependent [4Fe-4S] enzyme, PhDph2, to catalyze the formation of a C-C bond. Crystal structure shows that PhDph2 is a homodimer and each monomer contains three conserved cysteine residues that can bind a [4Fe-4S] cluster. In the reduced state, the [4Fe-4S] cluster can provide one electron to reductively cleave the bound SAM molecule. However, different from classical radical SAM family of enzymes, biochemical evidence suggest that a 3-amino-3-carboxypropyl radical is generated in PhDph2. Here we present evidence supporting that the 3-amino-3-carboxypropyl radical does not undergo hydrogen abstraction reaction, which is observed for the deoxyadenosyl radical in classical radical SAM enzymes. Instead, the 3-amino-3-carboxypropyl radical is added to the imidazole ring in the pathway towards the formation of the product. Furthermore, our data suggest that the chemistry requires only one [4Fe-4S] cluster to be present in the PhDph2 dimer.
Collapse
Affiliation(s)
- Xuling Zhu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme. Nature 2010; 465:891-6. [PMID: 20559380 PMCID: PMC3006227 DOI: 10.1038/nature09138] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 04/30/2010] [Indexed: 12/29/2022]
Abstract
Archaeal and eukaryotic translation elongation factor 2 contain a unique post-translationally modified histidine residue called diphthamide, which is the target of diphtheria toxin. The biosynthesis of diphthamide was proposed to involve three steps, with the first being the formation of a C-C bond between the histidine residue and the 3-amino-3-carboxypropyl group of S-adenosyl-l-methionine (SAM). However, further details of the biosynthesis remain unknown. Here we present structural and biochemical evidence showing that the first step of diphthamide biosynthesis in the archaeon Pyrococcus horikoshii uses a novel iron-sulphur-cluster enzyme, Dph2. Dph2 is a homodimer and each of its monomers can bind a [4Fe-4S] cluster. Biochemical data suggest that unlike the enzymes in the radical SAM superfamily, Dph2 does not form the canonical 5'-deoxyadenosyl radical. Instead, it breaks the C(gamma,Met)-S bond of SAM and generates a 3-amino-3-carboxypropyl radical. Our results suggest that P. horikoshii Dph2 represents a previously unknown, SAM-dependent, [4Fe-4S]-containing enzyme that catalyses unprecedented chemistry.
Collapse
|
28
|
Brown SJ, Cole MD, Erives AJ. Evolution of the holozoan ribosome biogenesis regulon. BMC Genomics 2008; 9:442. [PMID: 18816399 PMCID: PMC2570694 DOI: 10.1186/1471-2164-9-442] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/24/2008] [Indexed: 01/22/2023] Open
Abstract
Background The ribosome biogenesis (RiBi) genes encode a highly-conserved eukaryotic set of nucleolar proteins involved in rRNA transcription, assembly, processing, and export from the nucleus. While the mode of regulation of this suite of genes has been studied in the yeast, Saccharomyces cerevisiae, how this gene set is coordinately regulated in the larger and more complex metazoan genomes is not understood. Results Here we present genome-wide analyses indicating that a distinct mode of RiBi regulation co-evolved with the E(CG)-binding, Myc:Max bHLH heterodimer complex in a stem-holozoan, the ancestor of both Metazoa and Choanoflagellata, the protozoan group most closely related to animals. These results show that this mode of regulation, characterized by an E(CG)-bearing core-promoter, is specific to almost all of the known genes involved in ribosome biogenesis in these genomes. Interestingly, this holozoan RiBi promoter signature is absent in nematode genomes, which have not only secondarily lost Myc but are marked by invariant cell lineages typically producing small body plans of 1000 somatic cells. Furthermore, a detailed analysis of 10 fungal genomes shows that this holozoan signature in RiBi genes is not found in hemiascomycete fungi, which evolved their own unique regulatory signature for the RiBi regulon. Conclusion These results indicate that a Myc regulon, which is activated in proliferating cells during normal development as well as during tumor progression, has primordial roots in the evolution of an inducible growth regime in a protozoan ancestor of animals. Furthermore, by comparing divergent bHLH repertoires, we conclude that regulation by Myc but not by other bHLH genes is responsible for the evolutionary maintenance of E(CG) sites across the RiBi suite of genes.
Collapse
Affiliation(s)
- Seth J Brown
- Department of Genetics, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
29
|
Webb TR, Cross SH, McKie L, Edgar R, Vizor L, Harrison J, Peters J, Jackson IJ. Diphthamide modification of eEF2 requires a J-domain protein and is essential for normal development. J Cell Sci 2008; 121:3140-5. [PMID: 18765564 DOI: 10.1242/jcs.035550] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular target of diphtheria toxin is a modified histidine residue, diphthamide, in the translation elongation factor, eEF2 (also known as EFT1). This enigmatic modification occurs in all eukaryotes and is produced in yeast by the action of five gene products, DPH1 to DPH5. Sequence homologues of these genes are present in all sequenced eukaryotic genomes and, in higher eukaryotes, there is functional evidence for DPH1, DPH2, DPH3 and DPH5 acting in diphthamide biosynthesis. We identified a mouse that was mutant for the remaining gene, Dph4. Cells derived from homozygous mutant embryos lacked the diphthamide modification of eEF2 and were resistant to killing by diphtheria toxin. Reporter-tagged DPH4 protein localized to the cytoskeleton, in contrast to the localization of DPH1 and consistent with evidence that DPH4 is not part of a proposed complex containing DPH1, DPH2 and DPH3. Mice that were homozygous for the mutation were retarded in growth and development, and almost always die before birth. Those that survive long enough had preaxial polydactyly, a duplication of digit 1 of the hind foot. This same defect has been seen in embryos that were homozygous for mutation of DPH1, suggesting that lack of diphthamide on eEF2 could result in translational failure of specific proteins, rather than a generalized translation downregulation.
Collapse
Affiliation(s)
- Tom R Webb
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gupta PK, Liu S, Batavia MP, Leppla SH. The diphthamide modification on elongation factor-2 renders mammalian cells resistant to ricin. Cell Microbiol 2008; 10:1687-94. [PMID: 18460012 DOI: 10.1111/j.1462-5822.2008.01159.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diphthamide is a post-translational derivative of histidine in protein synthesis elongation factor-2 (eEF-2) that is present in all eukaryotes with no known normal physiological role. Five proteins Dph1-Dph5 are required for the biosynthesis of diphthamide. Chinese hamster ovary (CHO) cells mutated in the biosynthetic genes lack diphthamide and are resistant to bacterial toxins such as diphtheria toxin. We found that diphthamide-deficient cultured cells were threefold more sensitive than their parental cells towards ricin, a ribosome-inactivating protein (RIP). RIPs bind to ribosomes at the same site as eEF-2 and cleave the large ribosomal RNA, inhibiting translation and causing cell death. We hypothesized that one role of diphthamide may be to protect ribosomes, and therefore all eukaryotic life forms, from RIPs, which are widely distributed in nature. A protective role of diphthamide against ricin was further demonstrated by complementation where dph mutant CHO cells transfected with the corresponding DPH gene acquired increased resistance to ricin in comparison with the control-transfected cells, and resembled the parental CHO cells in their response to the toxin. These data show that the presence of diphthamide in eEF-2 provides protection against ricin and suggest the hypothesis that diphthamide may have evolved to provide protection against RIPs.
Collapse
Affiliation(s)
- Pradeep K Gupta
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
31
|
A chemical genomic screen in Saccharomyces cerevisiae reveals a role for diphthamidation of translation elongation factor 2 in inhibition of protein synthesis by sordarin. Antimicrob Agents Chemother 2008; 52:1623-9. [PMID: 18285480 DOI: 10.1128/aac.01603-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sordarin and its derivatives are antifungal compounds of potential clinical interest. Despite the highly conserved nature of the fungal and mammalian protein synthesis machineries, sordarin is a selective inhibitor of protein synthesis in fungal organisms. In cells sensitive to sordarin, its mode of action is through preventing the release of translation elongation factor 2 (eEF2) during the translocation step, thus blocking protein synthesis. To further investigate the cellular components required for the effects of sordarin in fungal cells, we have used the haploid deletion collection of Saccharomyces cerevisiae to systematically identify genes whose deletion confers sensitivity or resistance to the compound. Our results indicate that genes in a number of cellular pathways previously unknown to play a role in sordarin response are involved in its growth effects on fungal cells and reveal a specific requirement for the diphthamidation pathway of cells in causing eEF2 to be sensitive to the effects of sordarin on protein synthesis. Our results underscore the importance of the powerful genomic tools developed in yeast (Saccharomyces cerevisiae) to more comprehensively understanding the cellular mechanisms involved in the response to therapeutic agents.
Collapse
|
32
|
Sahi C, Craig EA. Network of general and specialty J protein chaperones of the yeast cytosol. Proc Natl Acad Sci U S A 2007; 104:7163-8. [PMID: 17438278 PMCID: PMC1855418 DOI: 10.1073/pnas.0702357104] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
J proteins are obligate cochaperones of Hsp70s, stimulating their ATPase activity and thus allowing them to function in multiple cellular processes. In most cellular compartments, an Hsp70 works with multiple, structurally divergent J proteins. To better understand the functional specificity of J proteins and the complexity of the Hsp70:J protein network, we undertook a comprehensive analysis of 13 J proteins of the cytosol of the yeast Saccharomyces cerevisiae. Phenotypes caused by the absence of four proteins, Sis1, Jjj1, Jjj3, and Cwc23, could not be rescued by overexpression of any other cytosolic J protein, demonstrating the distinctive nature of J proteins. In one case, that of Zuo1, the phenotypic effects of the absence of a J protein could be rescued by overexpression of only one other J protein, Jjj1, which, like Zuo1, is ribosome-associated. In contrast, the severe growth phenotype caused by the absence of the cytosol's most abundant J protein, Ydj1, was substantially rescued by expression of J domain-containing fragments of many cytosolic J proteins. We conclude that many functions of Hsp70 chaperone machineries only require stimulation of Hsp70's ATPase activity by J protein partners. However, a subset of Hsp70 functions requires specific J protein partners, likely demanding either sublocalization within the compartment or binding to specific client proteins.
Collapse
Affiliation(s)
- Chandan Sahi
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706
| | - Elizabeth Anne Craig
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Liu S, Wiggins JF, Sreenath T, Kulkarni AB, Ward JM, Leppla SH. Dph3, a small protein required for diphthamide biosynthesis, is essential in mouse development. Mol Cell Biol 2006; 26:3835-41. [PMID: 16648478 PMCID: PMC1488998 DOI: 10.1128/mcb.26.10.3835-3841.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The translation elongation factor 2 in eukaryotes (eEF-2) contains a unique posttranslationally modified histidine residue, termed diphthamide, which serves as the only target for diphtheria toxin and Pseudomonas aeruginosa exotoxin A. Diphthamide biosynthesis is carried out by five highly conserved proteins, Dph1 to Dph5, and an as-yet-unidentified amidating enzyme. The evolutionary conservation of the complex diphthamide biosynthesis pathway throughout eukaryotes implies a key role for diphthamide in normal cellular physiology. Of the proteins required for diphthamide synthesis, Dph3 is the smallest, containing only 82 residues. In addition to having a role in diphthamide biosynthesis, Dph3 is also involved in modulating the functions of the Elongator complex in yeast. To explore the physiological roles of Dph3 and to begin to investigate the function of diphthamide, we generated dph3 knockout mice and showed that dph3+/- mice are phenotypically normal, whereas dph3-/- mice, which lack the diphthamide modification on eEF-2, are embryonic lethal. Loss of both dph3 alleles causes a general delay in embryonic development accompanied by lack of allantois fusion to the chorion and increased degeneration and necrosis in neural tubes and is not compatible with life beyond embryonic day 11.5. The dph3-/- placentas also developed abnormally, showing a thinner labyrinth lacking embryonic erythrocytes and blood vessels. These results attest to the physiological importance of Dph3 in development. The biological roles of Dph3 are also discussed.
Collapse
Affiliation(s)
- Shihui Liu
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
34
|
Liu S, Milne GT, Kuremsky JG, Fink GR, Leppla SH. Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol 2004; 24:9487-97. [PMID: 15485916 PMCID: PMC522255 DOI: 10.1128/mcb.24.21.9487-9497.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 07/19/2004] [Accepted: 08/09/2004] [Indexed: 11/20/2022] Open
Abstract
Diphthamide, a posttranslational modification of translation elongation factor 2 that is conserved in all eukaryotes and archaebacteria and is the target of diphtheria toxin, is formed in yeast by the actions of five proteins, Dph1 to -5, and a still unidentified amidating enzyme. Dph2 and Dph5 were previously identified. Here, we report the identification of the remaining three yeast proteins (Dph1, -3, and -4) and show that all five Dph proteins have either functional (Dph1, -2, -3, and -5) or sequence (Dph4) homologs in mammals. We propose a unified nomenclature for these proteins (e.g., HsDph1 to -5 for the human proteins) and their genes based on the yeast nomenclature. We show that Dph1 and Dph2 are homologous in sequence but functionally independent. The human tumor suppressor gene OVCA1, previously identified as homologous to yeast DPH2, is shown to actually be HsDPH1. We show that HsDPH3 is the previously described human diphtheria toxin and Pseudomonas exotoxin A sensitivity required gene 1 and that DPH4 encodes a CSL zinc finger-containing DnaJ-like protein. Other features of these genes are also discussed. The physiological function of diphthamide and the basis of its ubiquity remain a mystery, but evidence is presented that Dph1 to -3 function in vivo as a protein complex in multiple cellular processes.
Collapse
Affiliation(s)
- Shihui Liu
- Microbial Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
35
|
Yates SP, Merrill AR. Elucidation of eukaryotic elongation factor-2 contact sites within the catalytic domain of Pseudomonas aeruginosa exotoxin A. Biochem J 2004; 379:563-72. [PMID: 14733615 PMCID: PMC1224111 DOI: 10.1042/bj20031731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 01/09/2004] [Accepted: 01/20/2004] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa produces the virulence factor, ETA (exotoxin A), which catalyses an ADP-ribosyltransferase reaction of its target protein, eEF2 (eukaryotic elongation factor-2). Currently, this protein-protein interaction is poorly characterized and this study was aimed at identifying the contact sites between eEF2 and the catalytic domain of ETA (PE24H, an ETA from P. aeruginosa, a 24 kDa C-terminal fragment containing a His6 tag). Single-cysteine residues were introduced into the toxin at 21 defined surface-exposed sites and labelled with the fluorophore, IAEDANS [5-(2-iodoacetylaminoethylamino)-1-napthalenesulphonic acid]. Fluorescence quenching studies using acrylamide, and fluorescence lifetime and wavelength emission maxima analyses were conducted in the presence and absence of eEF2. Large changes in the microenvironment of the AEDANS [5-(2-aminoethylamino)-1-naphthalenesulphonic acid] probe after eEF2 binding were not observed as dictated by both fluorescence lifetime and wavelength emission maxima values. This supported the proposed minimal contact model, which suggests that only small, discrete contacts occur between these proteins. As dictated by the bimolecular quenching constant (k(q)) for acrylamide, binding of eEF2 with toxin caused the greatest change in acrylamide accessibility (>50%) when the fluorescence label was near the active site or was located within a known catalytic loop. All mutant proteins showed a decrease in accessibility to acrylamide once eEF2 bound, although the relative change varied for each labelled protein. From these data, a low-resolution model of the toxin-eEF2 complex was constructed based on the minimal contact model with the intention of enhancing our knowledge on the mode of inactivation of the ribosome translocase by the Pseudomonas toxin.
Collapse
Affiliation(s)
- Susan P Yates
- Department of Chemistry and Biochemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|