1
|
Qi Z, Jung C, Bandilla P, Ludwig C, Heron M, Sophie Kiesel A, Museridze M, Philippou‐Massier J, Nikolov M, Renna Max Schnepf A, Unnerstall U, Ceolin S, Mühlig B, Gompel N, Soeding J, Gaul U. Large-scale analysis of Drosophila core promoter function using synthetic promoters. Mol Syst Biol 2022; 18:e9816. [PMID: 35156763 PMCID: PMC8842121 DOI: 10.15252/msb.20209816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/02/2023] Open
Abstract
The core promoter plays a central role in setting metazoan gene expression levels, but how exactly it "computes" expression remains poorly understood. To dissect its function, we carried out a comprehensive structure-function analysis in Drosophila. First, we performed a genome-wide bioinformatic analysis, providing an improved picture of the sequence motifs architecture. We then measured synthetic promoters' activities of ~3,000 mutational variants with and without an external stimulus (hormonal activation), at large scale and with high accuracy using robotics and a dual luciferase reporter assay. We observed a strong impact on activity of the different types of mutations, including knockout of individual sequence motifs and motif combinations, variations of motif strength, nucleosome positioning, and flanking sequences. A linear combination of the individual motif features largely accounts for the combinatorial effects on core promoter activity. These findings shed new light on the quantitative assessment of gene expression in metazoans.
Collapse
Affiliation(s)
- Zhan Qi
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Christophe Jung
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Peter Bandilla
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Claudia Ludwig
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Mark Heron
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Anja Sophie Kiesel
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Mariam Museridze
- Department of Biology II, Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenPlanegg‐MartinsriedGermany
| | - Julia Philippou‐Massier
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Miroslav Nikolov
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Alessio Renna Max Schnepf
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Ulrich Unnerstall
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| | - Stefano Ceolin
- Department of Biology II, Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenPlanegg‐MartinsriedGermany
| | - Bettina Mühlig
- Department of Biology II, Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenPlanegg‐MartinsriedGermany
| | - Nicolas Gompel
- Department of Biology II, Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenPlanegg‐MartinsriedGermany
| | - Johannes Soeding
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
- Max Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Ulrike Gaul
- Department of Biochemistry, Gene CenterLudwig‐Maximillians‐Universität MünchenFeodor‐Lynen‐str 25MunichGermany
| |
Collapse
|
2
|
Soluri IV, Zumerling LM, Payan Parra OA, Clark EG, Blythe SA. Zygotic pioneer factor activity of Odd-paired/Zic is necessary for late function of the Drosophila segmentation network. eLife 2020; 9:e53916. [PMID: 32347792 PMCID: PMC7190358 DOI: 10.7554/elife.53916] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/29/2020] [Indexed: 12/20/2022] Open
Abstract
Because chromatin determines whether information encoded in DNA is accessible to transcription factors, dynamic chromatin states in development may constrain how gene regulatory networks impart embryonic pattern. To determine the interplay between chromatin states and regulatory network function, we performed ATAC-seq on Drosophila embryos during the establishment of the segmentation network, comparing wild-type and mutant embryos in which all graded maternal patterning inputs are eliminated. While during the period between zygotic genome activation and gastrulation many regions maintain stable accessibility, cis-regulatory modules (CRMs) within the network undergo extensive patterning-dependent changes in accessibility. A component of the network, Odd-paired (opa), is necessary for pioneering accessibility of late segmentation network CRMs. opa-driven changes in accessibility are accompanied by equivalent changes in gene expression. Interfering with the timing of opa activity impacts the proper patterning of expression. These results indicate that dynamic systems for chromatin regulation directly impact the reading of embryonic patterning information.
Collapse
Affiliation(s)
- Isabella V Soluri
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Lauren M Zumerling
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Omar A Payan Parra
- Program in Interdisciplinary Biological Sciences, Northwestern UniversityEvanstonUnited States
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Eleanor G Clark
- Program in Interdisciplinary Biological Sciences, Northwestern UniversityEvanstonUnited States
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
3
|
Kauranen H, Kinnunen J, Hiillos AL, Lankinen P, Hopkins D, Wiberg RAW, Ritchie MG, Hoikkala A. Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence. J Exp Biol 2019; 222:jeb.205831. [DOI: 10.1242/jeb.205831] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022]
Abstract
The incidence of reproductive diapause is a critical aspect of life history in overwintering insects from temperate regions. Much has been learned about the timing, physiology and genetics of diapause in a range of insects, but how the multiple changes involved in this and other photoperiodically regulated traits are interrelated is not well understood. We performed quasinatural selection on reproduction under short photoperiods in a northern fly species, Drosophila montana, to trace the effects of photoperiodic selection on traits regulated by the photoperiodic timer and / or by a circadian clock system. Selection changed several traits associated with reproductive diapause, including the critical day length for diapause (CDL), the frequency of diapausing females under photoperiods that deviate from daily 24 h cycles and cold tolerance, towards the phenotypes typical of lower latitudes. However, selection had no effect on the period of free-running locomotor activity rhythm regulated by the circadian clock in fly brain. At a genomic level, selection induced extensive divergence between the selection and control line replicates in 16 gene clusters involved in signal transduction, membrane properties, immunologlobulins and development. These changes resembled ones detected between latitudinally divergent D. montana populations in the wild and involved SNP divergence associated with several genes linked with diapause induction. Overall, our study shows that photoperiodic selection for reproduction under short photoperiods affects diapause-associated traits without disrupting the central clock network generating circadian rhythms in fly locomor activity.
Collapse
Affiliation(s)
- Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Kinnunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anna-Lotta Hiillos
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka Lankinen
- Department of Biology, University of Oulu, Oulu, Finland
| | - David Hopkins
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - R. Axel W. Wiberg
- School of Biology, Dyers Brae House, University of St. Andrews, Fife, KY16 9TH, St. Andrews, UK
| | - Michael G. Ritchie
- School of Biology, Dyers Brae House, University of St. Andrews, Fife, KY16 9TH, St. Andrews, UK
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Chan SKK, Cerda-Moya G, Stojnic R, Millen K, Fischer B, Fexova S, Skalska L, Gomez-Lamarca M, Pillidge Z, Russell S, Bray SJ. Role of co-repressor genomic landscapes in shaping the Notch response. PLoS Genet 2017; 13:e1007096. [PMID: 29155828 PMCID: PMC5714389 DOI: 10.1371/journal.pgen.1007096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/04/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
Repressors are frequently deployed to limit the transcriptional response to signalling pathways. For example, several co-repressors interact directly with the DNA-binding protein CSL and are proposed to keep target genes silenced in the absence of Notch activity. However, the scope of their contributions remains unclear. To investigate co-repressor activity in the context of this well defined signalling pathway, we have analysed the genome-wide binding profile of the best-characterized CSL co-repressor in Drosophila, Hairless, and of a second CSL interacting repressor, SMRTER. As predicted there was significant overlap between Hairless and its CSL DNA-binding partner, both in Kc cells and in wing discs, where they were predominantly found in chromatin with active enhancer marks. However, while the Hairless complex was widely present at some Notch regulated enhancers in the wing disc, no binding was detected at others, indicating that it is not essential for silencing per se. Further analysis of target enhancers confirmed differential requirements for Hairless. SMRTER binding significantly overlapped with Hairless, rather than complementing it, and many enhancers were apparently co-bound by both factors. Our analysis indicates that the actions of Hairless and SMRTER gate enhancers to Notch activity and to Ecdysone signalling respectively, to ensure that the appropriate levels and timing of target gene expression are achieved. The communication between cells that occurs during development, as well as in disease contexts, involves a small number of signalling pathways of which the Notch pathway is one. One outstanding question is how these pathways can bring about different gene responses in different contexts. As gene expression is co-ordinated by a mixture of activators and repressors, we set out to investigate whether the distribution of repressors across the genome is important in shaping whether genes are able to respond to Notch activity. Our results from analyzing the binding profile of two repressors, Hairless and SMRTER, show that, in many cases, they are not essential for preventing a gene from responding. Instead they are deployed at a limited number of genetic loci where they gate the response, helping to set a threshold for gene activation. Perturbations to their function lead to enhanced gene expression in limited territories rather than to new programmes of gene expression. Their main role therefore is to restrict the time or levels of signal that a gene needs to receive before it will respond.
Collapse
Affiliation(s)
- Stephen K. K. Chan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gustavo Cerda-Moya
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert Stojnic
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Kat Millen
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Silvie Fexova
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Lenka Skalska
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maria Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Zoe Pillidge
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Totten DC, Vuong M, Litvinova OV, Jinwal UK, Gulia-Nuss M, Harrell RA, Beneš H. Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes. INSECT MOLECULAR BIOLOGY 2013; 22:18-30. [PMID: 23241066 PMCID: PMC4101173 DOI: 10.1111/imb.12005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As the fat body is a critical tissue for mosquito development, metamorphosis, immune and reproductive system function, the characterization of regulatory modules targeting gene expression to the female mosquito fat body at distinct life stages is much needed for multiple, varied strategies for controlling vector-borne diseases such as dengue and malaria. The hexameric storage protein, Hexamerin-1.2, of the mosquito Aedes atropalpus is female-specific and uniquely expressed in the fat body of fourth instar larvae and young adults. We have identified in the Hex-1.2 gene, a short regulatory module that directs female-, tissue-, and stage-specific lacZ reporter gene expression using a heterologous promoter in transgenic lines of the dengue vector Aedes aegypti. Male transgenic larvae and pupae of one line expressed no Escherichia coli β-galactosidase or transgene product; in two other lines reporter gene activity was highly female-biased. All transgenic lines expressed the reporter only in the fat body; however, lacZ mRNA levels were no different in males and females at any stage examined, suggesting that the gene regulatory module drives female-specific expression by post-transcriptional regulation in the heterologous mosquito. This regulatory element from the Hex-1.2 gene thus provides a new molecular tool for transgenic mosquito control as well as functional genetic analysis in aedine mosquitoes.
Collapse
Affiliation(s)
- D C Totten
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Jinwal UK, Zakharkin SO, Litvinova OV, Jain S, Benes H. Sex-, stage- and tissue-specific regulation by a mosquito hexamerin promoter. INSECT MOLECULAR BIOLOGY 2006; 15:301-11. [PMID: 16756549 PMCID: PMC2561890 DOI: 10.1111/j.1365-2583.2006.00644.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A portion of the 5'-flanking region of the female-specific hexamerin gene, Hex-1.2, from the mosquito Ochlerotatus atropalpus was used to drive expression of the luciferase reporter gene in Drosophila melanogaster. The proximal 0.7 kb of 5'-flanking DNA were sufficient to partially repress reporter gene activity in males and to drive tissue- and stage-specific expression comparable with that of the endogenous O. atropalpus Hex-1.2 gene. The Drosophila doublesex transcription factor (DSX), expressed in Escherichia coli, bound putative DSX sites of the Hex-1.2 gene differentially in vitro. Blocking expression of the female isoform of the Doublesex transcription factor in transgenic female flies resulted in reduction of luciferase expression to levels comparable with those in males, suggesting that Doublesex could contribute to regulation of female-specific expression of the O. atropalpus Hex-1.2 gene.
Collapse
Affiliation(s)
- U K Jinwal
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
7
|
Kayashima Y, Hirose S, Ueda H. Anterior epidermis-specific expression of the cuticle gene EDG84A is controlled by many cis-regulatory elements in Drosophila melanogaster. Dev Genes Evol 2005; 215:545-52. [PMID: 16025347 DOI: 10.1007/s00427-005-0013-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 06/10/2005] [Indexed: 11/28/2022]
Abstract
During insect metamorphosis, a pulse of ecdysteroids induces many different morphological changes depending on different parts of the body. In Drosophila, although a number of transcription factors are expressed in a stage-specific manner in response to an ecdysteroid pulse, little is known on the regulatory mechanism for space-specific gene expression during metamorphosis. The EDG84A gene encoding pupal cuticle protein is one of the targets of ecdysteroid-inducible transcription factor betaFTZ-F1 and is expressed only in anterior epidermis of the body during mid- to late prepupal period, whereas betaFTZ-F1 is expressed in almost all tissues. To address the regulatory mechanism of the tissue-specific expression of the EDG84A gene, we established transgenic fly lines which carry various upstream regions of the gene fused to the LacZ gene and examined the expression pattern of the reporter gene. Results of the transgenic fly reporter assays showed that the space-specific expression is controlled by at least four positive and two negative elements within a 263-bp region near the transcription start site, and at least three of them showed space-specific effects to the anterior body trunk. These results suggest that both high expression level and differential expression are achieved through many cis-regulatory elements.
Collapse
Affiliation(s)
- Yasunari Kayashima
- Department of Developmental Genetics, National Institute of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
8
|
Raphael KA, Whyard S, Shearman D, An X, Frommer M. Bactrocera tryoni and closely related pest tephritids--molecular analysis and prospects for transgenic control strategies. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:167-176. [PMID: 14871613 DOI: 10.1016/j.ibmb.2003.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 04/01/2003] [Accepted: 06/20/2003] [Indexed: 05/24/2023]
Abstract
Bactrocera tryoni is a serious pest of horticulture in eastern Australia. Here we review molecular data relevant to pest status and development of a transformation system for this species. The development of transformation vectors for non-drosophilid insects has opened the door to the possibility of improving the sterile insect technique (SIT), by genetically engineering factory strains of pest insects to produce male-only broods. Transposition assays indicate that all five of the vectors currently used for transformation in non-drosophilid species have the potential to be useful as transformation vectors in B. tryoni. Evidence of cross mobilization of hobo by an endogenous Homer element emphasises the necessity to understand the endogenous transposons within a species. The sex-specific doublesex and yolk protein genes have been characterized with a view to engineering a female-specific lethal gene or modifying gene expression through RNA interference (RNAi). Data are presented which indicate the potential of RNAi to modify the sex ratio of resultant broods. An understanding of how pest status is determined and maintained is being addressed through the characterization of genes of the circadian clock that enable the fly to adapt to environmental cues. Such an understanding will be useful in the future to the effective delivery of sophisticated pest control measures.
Collapse
Affiliation(s)
- Kathryn A Raphael
- Fruit Fly Research Centre, School of Biological Sciences, University of Sydney, New South Wales 2006, Australia.
| | | | | | | | | |
Collapse
|
9
|
Petersen RA, Niamsup H, Berenbaum MR, Schuler MA. Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:269-82. [PMID: 12573487 DOI: 10.1016/s0304-4165(02)00486-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Papilio polyxenes, a lepidopteran continually exposed to toxic furanocoumarins in its hostplants, owes its tolerance to these compounds to the transcriptional induction of the CYP6B1 gene encoding a P450 capable of metabolizing linear furanocoumarins, such as xanthotoxin, at high rates. Transient expression of various lengths of wild-type and mutant CYP6B1v3 promoter in lepidopteran Sf9 cells defines a positive element (XRE-xan) from -136 to -119 required for both basal and xanthotoxin-inducible transcription and a negative element from -228 to -146 that represses basal transcription. Fusion of the CYP6B1v3 XRE-xan element to the Drosophila melanogaster Eip28/29 core promoter indicates that the XRE-xan functions in conjunction with its own core promoter but not with a heterologous core promoter. Sequence searches of the CYP6B1v3 proximal promoter region revealed a number of putative elements (XRE-AhR, ARE, OCT-1, EcRE, C/EBP, Inr) sharing sequence similarity with those in other regulated vertebrate and insect promoters. Mutation of TGAC nucleotides shared by the overlapping EcRE/ARE/XRE-xan indicates that this sequence is essential for basal and regulated transcription of this gene. Mutagenesis in the non-overlapping region of the EcRE indicates it modulates basal transcription. These findings are incorporated into a working model for regulation of this toxin-inducible promoter.
Collapse
Affiliation(s)
- Rebecca A Petersen
- Department of Entomology, 320 Morrill Hall, 505 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
10
|
Hutson SF, Bownes M. The regulation of yp3 expression in the Drosophila melanogaster fat body. Dev Genes Evol 2003; 213:1-8. [PMID: 12590347 DOI: 10.1007/s00427-002-0286-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2002] [Accepted: 10/22/2002] [Indexed: 10/25/2022]
Abstract
The regulation of the Drosophila melanogaster yolk protein genes 1 and 2 have been well characterised. Cis-acting DNA elements and trans-acting factors regulating ovarian fat body and sex-specific expression have been identified. In this paper we have analysed the regulation of yolk protein 3, which is separated from the other two genes on the X-chromosome. We have separated sex-specific control from fat body control in some constructs in transgenic flies. We propose that the organisation of the regulatory elements in yp3 differs from yp1 and yp2 for control of fat body expression and that it closely resembles the regulation of a reporter gene using Musca and Calliphora yp promoter enhancer sequences in transgenic Drosophila.
Collapse
Affiliation(s)
- Simone F Hutson
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR UK
| | | |
Collapse
|
11
|
Zakharkin SO, Headley VV, Kumar NK, Buck NA, Wheeler DE, Benes H. Female-specific expression of a hexamerin gene in larvae of an autogenous mosquito. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5713-22. [PMID: 11722555 DOI: 10.1046/j.0014-2956.2001.02514.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fourth-instar larvae of the autogenous mosquito, Aedes atropalpus, synthesize three hexamerins or hexameric storage proteins which are distinguished by different methionine and aromatic amino-acid contents. One protein, Hexamerin-1.2 (AatHex-1.2) is only found in female larvae and pupae. In order to investigate the molecular basis for this sex-specific accumulation, we have cloned and sequenced the cDNA encoding AatHex-1.2 and isolated and sequenced over 1 kb of the 5' flanking region of the AatHex-1.2 gene. The AatHex-1.2 transcript encodes a 81.6-kDa hexamerin subunit which contains 19.8% phenylalanine, tyrosine and tryptophan and 8.6% methionine residues. The single-copy AatHex-1.2 gene consists of three exons and two small introns located at its 5' end. A 2.3-kb AatHex-1.2 mRNA accumulates only in female larvae and pupae and is expressed at very low levels in adult female mosquitoes. The temporal expression profile of this transcript is typical of other mosquito hexamerin genes, with rapid disappearance of the mRNA shortly after pupation. Hence this is the first observation of exclusively female-specific gene activity during preadult development of an insect. In the 5' flanking region of the AatHex-1.2 gene, we identified putative binding sites for transcription factors, such as GATA, C/EBP and Doublesex, typically involved in fat body- and female-specific gene activity in Diptera. These findings suggest that mechanisms for sex-specific transcription in the fat body may be well conserved between flies and mosquitoes.
Collapse
Affiliation(s)
- S O Zakharkin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
12
|
Brodu V, Mugat B, Fichelson P, Lepesant JA, Antoniewski C. A UAS site substitution approach to the in vivo dissection of promoters: interplay between the GATAb activator and the AEF-1 repressor at aDrosophilaecdysone response unit. Development 2001; 128:2593-602. [PMID: 11493575 DOI: 10.1242/dev.128.13.2593] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An ecdysone response unit (EcRU) directs the expression of the Fat body protein 1 (Fbp1) gene in the third instar larval Drosophila fat body. The tissue-specific activity of this regulatory element necessitates the binding of both the ligand-activated EcR/USP ecdysone receptor and GATAb. To analyze the role played by GATAb in the regulation of the Fbp1 EcRU activity, we have replaced the GATA-binding sites GBS1, GBS2 and GBS3 in the Fbp1 EcRU with UAS sites for the yeast GAL4 activator and tested the activity of the mutagenized Fbp1 EcRUs in transgenic lines, either in the presence or absence of ubiquitously expressed GAL4. Our results reveal that GATAb plays two distinguishable roles at the Fbp1 EcRU that contribute to the tissue-specific activity of this regulatory element. On the one hand, GATAb mediates a fat body-specific transcriptional activation. On the other hand, it antagonizes specifically in the fat body a ubiquitous repressor that maintains the Fbp1 EcRU in an inactive state, refractory to activation by GAL4. We identified this repressor as AEF-1, a factor previously shown to be involved in the regulation of the Drosophila Adh and yp1-yp2 genes. These results show that, for a functional dissection of complex promoter-dependent regulatory pathways, the replacement of specific regulatory target sites by UAS GAL4 binding sites is a powerful alternative to the widely used disruption approach.
Collapse
Affiliation(s)
- V Brodu
- Institut Jacques-Monod, CNRS UMR7592, Université Paris 6 P. et M. Curie, Université Paris 7-Denis-Diderot, 2, place Jussieu, F-75251, Paris cedex 05, France
| | | | | | | | | |
Collapse
|
13
|
Amador A, Papaceit M, Juan E. Evolutionary change in the structure of the regulatory region that drives tissue and temporally regulated expression of alcohol dehydrogenase gene in Drosophila funebris. INSECT MOLECULAR BIOLOGY 2001; 10:237-247. [PMID: 11437915 DOI: 10.1046/j.1365-2583.2001.00262.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Adh locus of Drosophilidae is organized as a single gene transcribed from two spatially and temporally regulated promoters except in species of the repleta group, which have two single promoter genes. Here we show that in Drosophila funebris the Adh gene is transcribed from a single promoter, in both larva and adult, with qualitative and quantitative species specific-differences in tissue distribution. The gene is expressed in larval fat body but in other tissues such as gastric caeca, midgut and Malpighian tubules its expression is reduced compared to most Drosophilidae species, and in adults it is almost limited to the fat body. The comparative analysis of gene expression of two strains, which differ by a duplication, indicates that the cis elements necessary for this pattern of expression in larvae are included in the region of 1.55 kb upstream of the transcription initiation site. This new organization reveals the evolution of a different regulatory strategy to express the Adh gene in the subgenus Drosophila.
Collapse
Affiliation(s)
- A Amador
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
14
|
Petersen RA, Zangerl AR, Berenbaum MR, Schuler MA. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera: Papilionidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:679-690. [PMID: 11267906 DOI: 10.1016/s0965-1748(00)00174-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The CYP6B1 and CYP6B3 cytochrome P450 monooxygenases in the midgut of the black swallowtail participate in the metabolism of toxic furanocoumarins present in its host plants. In this study, biochemical analyses indicate that the fat body metabolizes significant amounts of the linear furanocoumarins bergapten and xanthotoxin after larvae feed on xanthotoxin. Northern analyses of the combined CYP6B1/3 transcript expression patterns indicate that transcripts in this P450 subfamily are induced in the midgut and fat body by xanthotoxin. Semi-quantitative RT-PCR analyses of individual CYP6B1/CYP6B3 mRNAs indicate that CYP6B1 transcripts are induced by xanthotoxin in all tissues examined and that CYP6B3 transcripts are induced in the fat body only. These results indicate that the fat body participates in the P450-mediated metabolism of excess furanocoumarins unmetabolized by the midgut. Although transcripts of both genes were detected and CYP6B1 transcripts were induced by xanthotoxin in the integument, furanocoumarin metabolism was not detected. Comparison of these P450 promoters with the promoters of alcohol dehydrogenase genes expressed in the fat bodies of several Drosophila species suggest that the xanthotoxin inducibilities of these P450 genes in fat bodies are regulated by elements other than those modulating expression of Adh genes.
Collapse
Affiliation(s)
- R A Petersen
- Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Ave, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
15
|
Lebedeva TV, Singh AK. Constitutive activity of the murine IL-1 beta promoter is regulated by a transcriptional repressor. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1353:32-8. [PMID: 9256062 DOI: 10.1016/s0167-4781(97)00040-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Constitutive expression of IL-1 beta is kept under tight control in healthy tissues. So far no repressor elements down-regulating expression of the IL-1 beta gene have been described. In the current study, a deletion analysis approach was utilized to identify a region spanning -306/-292 bp upstream of the transcription start site, which appeared to down-regulate constitutive IL-1 beta promoter activity. Further deletion analysis confirmed that the -306/-292 bp element possessed repressor activity. A putative NF-kappaB binding site and an AATATT palindromic sequence were identified within the 306/-292 bp element. Notably, no binding of NF-kappaB was observed in gel shift assays, suggesting that another nuclear activity binding to the 14 bp sequence suppressed NF-kappaB binding. Further, the results of gel shift assays demonstrated that the AATATT palindromic sequence, which lies immediately downstream of the putative NF-kappaB site, may be responsible, in conjunction with the NF-kappaB site, for constitutive suppression of the IL-1 beta promoter. Thus, our results suggest that a novel repressor element may play a potentially important role in suppressing constitutive activity of the IL-1 beta promoter.
Collapse
Affiliation(s)
- T V Lebedeva
- New England Medical Center, Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
16
|
Ortiz EM, Dusetti NJ, Dagorn JC, Iovanna JL. Characterization of a silencer regulatory element in the rat PAP I gene which confers tissue-specific expression and is promoter-dependent. Arch Biochem Biophys 1997; 340:111-6. [PMID: 9126283 DOI: 10.1006/abbi.1997.9886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous analysis of the rat PAP I promoter indicated that the region between nt -180 and -81 possessed silencer activity in cells that did not express PAP I. Based on this finding, we performed a series of experiments to characterize functionally that region and analyze the nuclear proteins interacting with it. Transient transfection assays were conducted in the fibroblast Rat2 cell line, in which PAP I is not expressed, and in the pancreatic cell line AR-42J, expressing PAP I, using the CAT gene as reporter. Experiments in Rat2 cells revealed that the sequence with silencer activity was located within the rep27 region (position -180/-153). Suppressor activity was observed when rep27 was inserted upstream from the core PAP I promoter, in both orientations. By contrast, inserting the rep27 region in front of the promoters of SV40 or thymidine kinase did not affect or weakly enhanced CAT activity. Suppressor activity is therefore position-independent and promoter-dependent. In pancreatic AR-42J cells, rep27 act as a positive element but did not alter CAT expression when inserted in front of the core PAP I promoter or heterologous promoters. Electrophoretic mobility shift assays allowed identification of specific DNA-protein complexes. The shifted complex migrated at the same position with both Rat2 and AR-42J nuclear extracts. Moreover, similar band shifts were obtained with rat nuclear extracts from healthy pancreas, pancreas with acute pancreatitis, liver, kidney, spleen, and small intestine. Results suggest that the rep27 cis-acting element contributes to the tissue specific expression of the PAP I gene. That activity could be mediated by the synergistic action of several transcription factors, one of which being present in all cells.
Collapse
|
17
|
Benes H, Neal KC, Willis RL, Gadde D, Castleberry AB, Korochkina SE. Overlapping Lsp-2 gene sequences target expression to both the larval and adult Drosophila fat body. INSECT MOLECULAR BIOLOGY 1996; 5:39-49. [PMID: 8630534 DOI: 10.1111/j.1365-2583.1996.tb00039.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Larval serum protein-2 gene (Lsp-2) of Drosophila melanogaster encodes one of the major hexameric haemolymph proteins of third-instar larvae and a major component of adult serum. Regulated transcription of Lsp-2 results in high-level, ecdysone-stimulated expression throughout the larval fat body and low-level, spatially restricted expression in the adult fat cells. To localize cis-acting regulatory sequences responsible for the stage- and tissue-specific activity at Lsp-2, the expression of Lsp-2-lacZ fusion genes was studied by P element-mediated germline transformation of Drosophila. A 230 base pair larval enhancer, which includes an ecdysone response element (EcRE), specifically targets gene activity to the larval fat body. Although the adult mode of Lsp-2 expression depends on the larval enhancer, additional negative regulatory elements dictate both tissue-specificity and unique spatial restriction within the adult fat body. Implications of these findings for the identification of fat body-specific gene regulatory units in other insects are discussed.
Collapse
Affiliation(s)
- H Benes
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, 72205 , USA
| | | | | | | | | | | |
Collapse
|
18
|
Bushmeyer S, Park K, Atchison ML. Characterization of functional domains within the multifunctional transcription factor, YY1. J Biol Chem 1995; 270:30213-20. [PMID: 8530432 DOI: 10.1074/jbc.270.50.30213] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
YY1 is a multifunctional transcription factor capable of either activation or repression of transcription. Using a series of mutant proteins, we have characterized domains responsible for activation or repression. We found that the YY1 transcriptional activation domain lies near the amino terminus and requires amino acids 16-29 and 80-100 for maximal activity. The region between residues 16 and 29 has the potential to form an acidic amphipathic helix, whereas residues between 80 and 100 are rich in proline and glutamine. The YY1 repression domain lies near the carboxyl terminus and is embedded within the YY1 zinc finger region necessary for binding to DNA. Deletion of YY1 amino acids, which include zinc fingers 3 and 4, abolishes repression. However, site-directed mutagenesis, progressive deletion, and internal deletion mutant analyses indicate that the normal structures of zinc fingers 3 and 4 are not required for repression.
Collapse
Affiliation(s)
- S Bushmeyer
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
19
|
Hu J, Qazzaz H, Brennan MD. A transcriptional role for conserved footprinting sequences within the larval promoter of a Drosophila alcohol dehydrogenase gene. J Mol Biol 1995; 249:259-69. [PMID: 7783192 DOI: 10.1006/jmbi.1995.0295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All Drosophila alcohol dehydrogenase (Adh) genes that are expressed in larvae display strong transcription in the larval fat body. To identify and characterize elements needed for Adh promoter function, footprinting analysis of the Drosophila affinidisjuncta Adh gene was performed with stage-specific nuclear proteins from embryos and larvae. Multiple sites upstream of the larval promoter were protected from deoxyribonuclease digestion by both embryonic and larval extracts. Comparison with foot-printing results for Adh genes from other Drosophila species revealed only one nuclease-protected region that is conserved in both sequence and position. Clustered point mutations in this sequence were analyzed by footprinting analysis, transient transformation and in vitro transcription. Two separate sequences in this footprinting region exerted positive effects on transcription from the Adh proximal promoter in the larval fat body. The effects of these sequences on gene expression were synergistic. One of these sequences, TGATAA, bound in vitro to Drosophila melanogaster box A binding factor protein, as shown by gel mobility shift assays. This is the first direct demonstration of specific protein-DNA interactions influencing transcription of a Drosophila Adh gene in the larval fat body.
Collapse
Affiliation(s)
- J Hu
- Department of Biochemistry, School of Medicine, University of Louisville, KY 40292, USA
| | | | | |
Collapse
|
20
|
Potter JJ, Mezey E, Yang VW. The adult enhancer factor-1, a Drosophila melanogaster transcriptional repressor, modulates the promoter activity of the rat class-I alcohol dehydrogenase-encoding gene. Gene X 1994; 149:325-30. [PMID: 7959011 DOI: 10.1016/0378-1119(94)90170-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of the Drosophila melanogaster alcohol dehydrogenase-encoding gene (ADH) in the adult fat body is controlled by the ADH adult enhancer site (AAE). The D. melanogaster transcription repressor, adult enhancer factor-1 (AEF-1), binds to AAE at a site which overlaps with a sequence recognized by the mammalian transcription factor, CCAAT/enhancer-binding protein alpha [C/EBP alpha; Falb and Maniatis, Genes Dev. 6 (1992a) 454-465]. C/EBP alpha also activates the promoter of the rat class-I ADH gene in a sequence-specific manner [Potter et al., Arch. Biochem. Biophys. 285 (1991a) 246-251]. In this study, we explored the possibility that D. melanogaster AEF-1 influences transcription of the rat class-I ADH. By DNase I footprint analysis, bacterially produced AEF-1 protects a region of DNA between nucleotides (nt) -22 and -36 of the rat class-I ADH promoter (pADH), just 5' to the binding site of C/EBP alpha, a result confirmed by the electrophoretic mobility shift assay (EMSA). Co-transfection of a rat pADH-CAT reporter construct with expression vectors containing C/EBP alpha, AEF-1, or both, indicates that AEF-1 inhibits induction of the rat pADH by C/EBP alpha. Moreover, rat liver nuclear extracts appear to contain AEF-1-like-binding activities to AAE by EMSA. These experiments suggest an evolutionarily conserved mechanism by which AEF-1 modulates expression of the D. melanogaster and rat ADH genes.
Collapse
Affiliation(s)
- J J Potter
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | |
Collapse
|
21
|
Burtis KC. The regulation of sex determination and sexually dimorphic differentiation in Drosophila. Curr Opin Cell Biol 1993; 5:1006-14. [PMID: 8129938 DOI: 10.1016/0955-0674(93)90085-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sex determination and sexually dimorphic differentiation in Drosophila involve multiple regulatory mechanisms, including alternative splicing, transcriptional control, subcellular compartmentalization, and intercellular signal transduction. Regulatory interactions occur throughout the development of the fly, some requiring the continuous function of the genes involved, and others being temporally limited, but having permanent consequences. The control of sexual differentiation in Drosophila is, for the most part, subject to the continuous active control of numerous regulatory proteins operating at many levels.
Collapse
|
22
|
Hu Y, Kazenwadel J, James R. Isolation and characterization of the murine homeobox gene Cdx-1. Regulation of expression in intestinal epithelial cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74240-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Lapie P, Nasr F, Lepesant JA, Deutsch J. Deletion scanning of the regulatory sequences of the Fbp1 gene of Drosophila melanogaster using P transposase-induced deficiencies. Genetics 1993; 135:801-16. [PMID: 8293980 PMCID: PMC1205721 DOI: 10.1093/genetics/135.3.801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A procedure permitting deletion scanning of potential cis-regulatory sequences within a transgene whose genomic position remains fixed was applied to the study of the upstream sequences of the ecdysteroid-inducible Fat-body-protein-1 (Fbp1) gene. Deficiencies were induced in a Fbp1:Adh fusion transgene by means of a secondary P transposase mutagenesis. Phenotypic and molecular screens were used to select mutant transposons that retained their original genomic location and carried a deletion affecting the Fbp1 sequences but not the Adh reporter gene. Molecular mapping of the deletion breakpoints was achieved by sequence analysis and expression of the reporter gene was quantified by measurement of ADH activity. This procedure was efficient in detecting cis-acting elements, even those with moderate effects on levels of gene expression. For example, we have succeeded in identifying a negative regulatory element. Deletion of this element leads to a 50% increase in the reporter ADH activity. This element binds the transcription factor AEF-1. In addition, we have detected a strong, positively acting element contained within a 32-bp region located immediately upstream of an ecdysone-response element.
Collapse
Affiliation(s)
- P Lapie
- Laboratoire de Biologie du Développement, Institut Jacques Monod, CNRS, Paris, France
| | | | | | | |
Collapse
|
24
|
Farr CJ, Easty DJ, Ragoussis J, Collignon J, Lovell-Badge R, Goodfellow PN. Characterization and mapping of the human SOX4 gene. Mamm Genome 1993; 4:577-84. [PMID: 8268656 DOI: 10.1007/bf00361388] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The SOX genes comprise a large family related by homology to the HMG-box region of the testis-determining gene SRY. We have cloned and sequenced the human SOX4 gene. The open reading frame encodes a 474 amino acid protein, which includes an HMG-box. The non-box sequence is particularly rich in serine residues and has several polyglycine and polyalanine stretches. With somatic cell hybrids, human SOX4 has been mapped to Chromosome (Chr) 6p distal to the MHC region. There is no evidence for clustering of other members of the SOX1, -2, and -3 or SOX4 gene families around the SOX4 locus.
Collapse
Affiliation(s)
- C J Farr
- Department of Genetics, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|