1
|
In Vivo Genome Editing as a Therapeutic Approach. Int J Mol Sci 2018; 19:ijms19092721. [PMID: 30213032 PMCID: PMC6163904 DOI: 10.3390/ijms19092721] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Genome editing has been well established as a genome engineering tool that enables researchers to establish causal linkages between genetic mutation and biological phenotypes, providing further understanding of the genetic manifestation of many debilitating diseases. More recently, the paradigm of genome editing technologies has evolved to include the correction of mutations that cause diseases via the use of nucleases such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and more recently, Cas9 nuclease. With the aim of reversing disease phenotypes, which arise from somatic gene mutations, current research focuses on the clinical translatability of correcting human genetic diseases in vivo, to provide long-term therapeutic benefits and potentially circumvent the limitations of in vivo cell replacement therapy. In this review, in addition to providing an overview of the various genome editing techniques available, we have also summarized several in vivo genome engineering strategies that have successfully demonstrated disease correction via in vivo genome editing. The various benefits and challenges faced in applying in vivo genome editing in humans will also be discussed.
Collapse
|
2
|
Zaidi SSEA, Tashkandi M, Mahfouz MM. Engineering Molecular Immunity Against Plant Viruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:167-186. [PMID: 28712496 DOI: 10.1016/bs.pmbts.2017.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections.
Collapse
Affiliation(s)
- Syed Shan-E-Ali Zaidi
- Laboratory for Genome Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Manal Tashkandi
- Laboratory for Genome Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Alexander IE, Russell DW. The Potential of AAV-Mediated Gene Targeting for Gene and Cell Therapy Applications. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-014-0001-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering. THE PLANT CELL 2014; 26:151-63. [PMID: 24443519 PMCID: PMC3963565 DOI: 10.1105/tpc.113.119792] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/08/2013] [Accepted: 12/18/2013] [Indexed: 05/17/2023]
Abstract
Sequence-specific nucleases enable facile editing of higher eukaryotic genomic DNA; however, targeted modification of plant genomes remains challenging due to ineffective methods for delivering reagents for genome engineering to plant cells. Here, we use geminivirus-based replicons for transient expression of sequence-specific nucleases (zinc-finger nucleases, transcription activator-like effector nucleases, and the clustered, regularly interspaced, short palindromic repeat/Cas system) and delivery of DNA repair templates. In tobacco (Nicotiana tabacum), replicons based on the bean yellow dwarf virus enhanced gene targeting frequencies one to two orders of magnitude over conventional Agrobacterium tumefaciens T-DNA. In addition to the nuclease-mediated DNA double-strand breaks, gene targeting was promoted by replication of the repair template and pleiotropic activity of the geminivirus replication initiator proteins. We demonstrate the feasibility of using geminivirus replicons to generate plants with a desired DNA sequence modification. By adopting a general plant transformation method, plantlets with a desired DNA change were regenerated in <6 weeks. These results, in addition to the large host range of geminiviruses, advocate the use of replicons for plant genome engineering.
Collapse
Affiliation(s)
- Nicholas J. Baltes
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Javier Gil-Humanes
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tomas Cermak
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paul A. Atkins
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
5
|
Hirsch ML, Green L, Porteus MH, Samulski RJ. Self-complementary AAV mediates gene targeting and enhances endonuclease delivery for double-strand break repair. Gene Ther 2010; 17:1175-80. [PMID: 20463753 PMCID: PMC3152950 DOI: 10.1038/gt.2010.65] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 11/08/2022]
Abstract
Adeno-associated virus (AAV) mediates gene targeting in humans by providing exogenous DNA for allelic replacement through homologous recombination. In comparison to other methods of DNA delivery or alternative DNA substrates, AAV gene targeting is reported to be very efficient, perhaps due to its single-stranded DNA genome, the inverted terminal repeats (ITRs), and/or the consequence of induced cellular signals on infection or uncoating. These viral attributes were investigated in the presence and absence of an I-Sce endonuclease-induced double-strand break (DSB) within a chromosomal defective reporter in human embryonic kidney cells. Gene correction was evaluated using self-complementary (sc) AAV, which forms a duplexed DNA molecule and results in earlier and robust transgene expression compared with conventional single-strand (ss) AAV genomes. An scAAV repair substrate was modestly enhanced for reporter correction showing no dependency on ssAAV genomes for this process. The AAV ITR sequences were also investigated in a plasmid repair context. No correction was noted in the absence of a DSB, however, a modest inhibitory effect correlated with the increasing presence of ITR sequences. Similarly, signaling cascades stimulated upon recombinant AAV transduction had no effect on plasmid-mediated DSB repair. Noteworthy, was the 20-fold additional enhancement in reporter correction using scAAV vectors, over ss versions, to deliver both the repair substrate and the endonuclease. In this case, homologous recombination repaired the defective reporter in 4% of cells without any selection. This report provides novel insights regarding the recombination substrates used by AAV vectors in promoting homologous recombination and points to the initial steps in vector optimization that could facilitate their use in gene correction of genetic disorders.
Collapse
Affiliation(s)
- ML Hirsch
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Green
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - MH Porteus
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - RJ Samulski
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Okada Y, Ueshin Y, Hasuwa H, Takumi K, Okabe M, Ikawa M. Targeted gene modification in mouse ES cells using integrase-defective lentiviral vectors. Genesis 2009; 47:217-23. [PMID: 19208434 DOI: 10.1002/dvg.20469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lentiviral vectors efficiently integrate into the host genome of both dividing and nondividing cells, and so they have been used for stable transgene expression in biological and biomedical studies. However, recent studies have highlighted the risk of insertional mutagenesis and subsequent oncogenesis. Here, we used an integrase-defective lentiviral (IDLV) vector to decrease the chance of random integration and examined the feasibility of lentiviral vector-mediated gene targeting into murine embryonic stem (ES) cells. After transduction with wild-type lentiviral vectors, none of the 512 G418 resistant clones were found to be homologous recombinant clones. Although the transduction efficiency was lower with the IDLV vectors (5.9% of wild-type), successful homologous recombination was observed in nine out of the 941 G418 resistant clones (0.83 +/- 1.32%). Pluripotency of the homologous recombinant ES cells was confirmed by the production of chimeric mice and subsequent germ line transmission. Because lentiviral vectors can efficiently transduce a variety of stem cell types, our strategy has potential relevance for secure gene-manipulation in therapeutic applications.
Collapse
Affiliation(s)
- Yuka Okada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Stephen SL, Sivanandam VG, Kochanek S. Homologous and heterologous recombination between adenovirus vector DNA and chromosomal DNA. J Gene Med 2008; 10:1176-89. [PMID: 18773501 DOI: 10.1002/jgm.1246] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Adenovirus vector DNA is perceived to remain as episome following gene transfer. We quantitatively and qualitatively analysed recombination between high capacity adenoviral vector (HC-AdV) and chromosomal DNA following gene transfer in vitro. METHODS We studied homologous and heterologous recombination with a single HC-AdV carrying (i) a large genomic HPRT fragment with the HPRT CHICAGO mutation causing translational stop upon homologous recombination with the HPRT locus and (ii) a selection marker to allow for clonal selection in the event of heterologous recombination. We analysed the sequences at the junctions between vector and chromosomal DNA. RESULTS In primary cells and in cell lines, the frequency of homologous recombination ranged from 2 x 10(-5) to 1.6 x 10(-6). Heterologous recombination occurred at rates between 5.5 x 10(-3) and 1.1 x 10(-4). HC-AdV DNA integrated via the termini mostly as intact molecules. Analysis of the junction sequences indicated vector integration in a relatively random manner without an obvious preference for particular chromosomal regions, but with a preference for integration into genes. Integration into protooncogenes or tumor suppressor genes was not observed. Patchy homologies between vector termini and chromosomal DNA were found at the site of integration. Although the majority of integrations had occurred without causing mutations in the chromosomal DNA, cases of nucleotide substitutions and insertions were observed. In several cases, deletions of even relative large chromosomal regions were likely. CONCLUSIONS These results extend previous information on the integration patterns of adenovirus vector DNA and contribute to a risk-benefit assessment of adenovirus-mediated gene transfer.
Collapse
|
8
|
Narang AS, Mahato RI. Biological and Biomaterial Approaches for Improved Islet Transplantation. Pharmacol Rev 2006; 58:194-243. [PMID: 16714486 DOI: 10.1124/pr.58.2.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 26 S. Dunlap St., Feurt Building, Room 413, Memphis, TN 38163, USA
| | | |
Collapse
|
9
|
Barzon L, Stefani AL, Pacenti M, Palù G. Versatility of gene therapy vectors through viruses. Expert Opin Biol Ther 2005; 5:639-62. [PMID: 15934840 DOI: 10.1517/14712598.5.5.639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several viruses have been engineered for gene therapy applications, and the specific properties of each viral vector have been exploited to target a variety of inherited and acquired diseases. Preclinical and clinical studies demonstrated that viral vectors are highly versatile tools capable of efficient transfer of foreign genetic information into almost all cell types and tissues. Gene therapy applications depend on vector characteristics, such as host range, cell- or tissue-specific targeting, genome integration, efficiency and duration of transgene expression, packaging capacity, and suitability for scale-up production. This review discusses the advances in the development of viral vectors, with particular emphasis on how knowledge of virus biology has been exploited to design a variety of vectors with improved safety characteristics and efficiency, potentially suitable for a large number of gene therapy applications.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via Gabelli 63, I-35121 Padova, Italy.
| | | | | | | |
Collapse
|
10
|
Ino A, Naito Y, Mizuguchi H, Handa N, Hayakawa T, Kobayashi I. A trial of somatic gene targeting in vivo with an adenovirus vector. GENETIC VACCINES AND THERAPY 2005; 3:8. [PMID: 16219108 PMCID: PMC1277836 DOI: 10.1186/1479-0556-3-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 10/12/2005] [Indexed: 11/26/2022]
Abstract
Background Gene targeting in vivo provides a potentially powerful method for gene analysis and gene therapy. In order to sensitively detect and accurately measure designed sequence changes, we have used a transgenic mouse system, MutaMouse, which has been developed for detection of mutation in vivo. It carries bacteriophage lambda genome with lacZ+ gene, whose change to lacZ-negative allele is detected after in vitro packaging into bacteriophage particles. We have also demonstrated that gene transfer with a replication-defective adenovirus vector can achieve efficient and accurate gene targeting in vitro. Methods An 8 kb long DNA corresponding to the bacteriophage lambda transgene with one of two lacZ-negative single-base-pair-substitution mutant allele was inserted into a replication-defective adenovirus vector. This recombinant adenovirus was injected to the transgenic mice via tail-vein. Twenty-four hours later, genomic DNA was extracted from the liver tissue and the lambda::lacZ were recovered by in vitro packaging. The lacZ-negative phage was detected as a plaque former on agar with phenyl-beta-D-galactoside. Results The mutant frequency of the lacZ-negative recombinant adenovirus injected mice was at the same level with the control mouse (~1/10000). Our further restriction analysis did not detect any designed recombinant. Conclusion The frequency of gene targeting in the mouse liver by these recombinant adenoviruses was shown to be less than 1/20000 in our assay. However, these results will aid the development of a sensitive, reliable and PCR-independent assay for gene targeting in vivo mediated by virus vectors and other means.
Collapse
Affiliation(s)
- Asami Ino
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo & Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science the University of Tokyo
| | - Yasuhiro Naito
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo & Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Environmental Information, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-8520, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Asagi 7-6-8, Saito, Ibaraki, Osaka 567-0085, Japan
| | - Naofumi Handa
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo & Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takao Hayakawa
- Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Bldg. 3-3-2, Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo & Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science the University of Tokyo
| |
Collapse
|
11
|
Hendrie PC, Russell DW. Gene Targeting with Viral Vectors. Mol Ther 2005; 12:9-17. [PMID: 15932801 DOI: 10.1016/j.ymthe.2005.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/06/2005] [Accepted: 04/06/2005] [Indexed: 10/25/2022] Open
Abstract
Genetic manipulation of cells for scientific and therapeutic goals can be achieved by both gene-addition and gene-targeting methods. Gene targeting precisely alters a gene in its natural chromosome location, providing distinct advantages over gene-addition approaches. Classic gene-targeting delivery systems (microinjection, electroporation, or calcium phosphate transfection) have led to major scientific advances, but are too inefficient in their current state to be used for some applications, including gene therapy. This review describes the development of gene-targeting vectors based on three types of viruses (retrovirus, adenovirus, and adeno-associated virus) and discusses the design, possible mechanisms of action, and applications of gene-targeting vectors based on adeno-associated virus.
Collapse
Affiliation(s)
- Paul C Hendrie
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
12
|
Carlson CA, Shayakhmetov DM, Lieber A. Restoration of a functional open reading frame by homologous recombination between two adenoviral vectors. Mol Ther 2002; 6:99-105. [PMID: 12095309 DOI: 10.1006/mthe.2002.0635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the ability of adenoviral (Ad) vectors to undergo homologous recombination. The lacZ gene was divided between two parental, first-generation vectors such that neither encoded a functional product but both shared 494 bp in common. The open reading frame could only be restored by homologous recombination. We observed beta-galactosidase activity only upon co-infection of both parental vectors and after the onset of viral DNA replication, creating a delay in expression of 24-36 hours in HeLa cells. At peak efficiency, this recombination vector system resulted in beta-galactosidase activity levels 100x above background and just 18x less than a conventional, first-generation vector in HeLa cells. After recombination, the resultant progeny vector genomes containing reconstituted expression cassettes were devoid of all viral genes and contained two packaging signals. These progeny genomes were efficiently packaged, could be separated from their parental vectors based on their lighter buoyant densities in CsCl gradients, and were subsequently used as functional gene transfer vectors. This novel recombination vector system should be useful for transferring large transgenes (because the carrying capacity of two Ad vectors can be exploited) or expressing any cytotoxic or Ad replication inhibitory protein (because the parental vectors exhibit no background expression).
Collapse
Affiliation(s)
- Cheryl A Carlson
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
13
|
Carlson CA, Steinwaerder DS, Stecher H, Shayakhmetov DM, Lieber A. Rearrangements in adenoviral genomes mediated by inverted repeats. Methods Enzymol 2002; 346:277-92. [PMID: 11883073 DOI: 10.1016/s0076-6879(02)46061-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Cheryl A Carlson
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- C Fraefel
- Institute of Virology, University of Zurich, Switzerland
| | | | | |
Collapse
|
15
|
Schwarzenberger P, Huang W, Oliver P, Osidipe T, Theodossiou C, Kolls JK. Poly-L-lysine-based molecular conjugate vectors: a high efficiency gene transfer system for human progenitor and leukemia cells. Am J Med Sci 2001; 321:129-36. [PMID: 11217815 DOI: 10.1097/00000441-200102000-00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Targeted, specific receptor mediated gene transfer is a major goal of gene therapy research to accomplish gene transfer exclusively to the desired cell population. METHODS First, the use of natural receptor for stem cell factor and transferrin receptor-targeted gene transfer using poly-L-lysine-based molecular conjugate vectors was evaluated in a panel of hematopoietic progenitor cell lines. Second, the ability of poly-L-lysine to enhance adenovirus mediated gene transfer efficiency was examined in different cell lines by using recombinant adenovirus-poly-L-lysine molecular conjugate conglomerates (recMCVEGFP). RESULTS Despite effective ligand internalization receptor, gene expression amplification in receptor positive cell lines was not uniformly observed. Therefore, using a poly-L-lysine-based, receptor-targeted vector, neither transferrin nor natural receptor for stem cell factor mediated gene transfer can be considered a universally applicable procedure that exclusively depends on the presence of receptors on the cell surface; rather, it is a cell specific phenomenon. In our model, poly-L-lysine is the major contributor for gene transfer to hematopoietic progenitor cells, mediating the initial vector-cell binding. Human progenitor cell lines are poorly transduceable with recombinant adenovirus vectors. This new poly-L-lysine-modified, adenovirus-based vector could overcome virus tropism restrictions and consistently achieve very high transduction efficiency (>90%) in cells otherwise refractory to adenovirus gene transfer. CONCLUSIONS Polylysine-based adenovirus vectors may have promise for situations in which high-efficiency gene transfer with transient high level transgene expression in hematopoietic cells is needed, such as leukemia vaccine protocols or for purging strategies in leukemia cell contaminated stem cell preparations.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Adhesion
- Cell Line
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Endocytosis
- Eye Neoplasms/pathology
- Genes, Reporter
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Hematopoietic Stem Cells/drug effects
- Humans
- K562 Cells/drug effects
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Monocytic, Acute/pathology
- Lung Neoplasms/pathology
- Neoplastic Stem Cells/drug effects
- Polylysine/administration & dosage
- Polylysine/pharmacology
- Proto-Oncogene Proteins c-kit/drug effects
- Receptors, Transferrin/drug effects
- Receptors, Virus/drug effects
- Retinoblastoma/pathology
- Transfection/methods
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P Schwarzenberger
- Department of Medicine, Louisiana State University Medical Center of New Orleans 70122, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Bernstein A. Have you used an adeno vector...lately? Nat Genet 1998; 18:305-6. [PMID: 9537408 DOI: 10.1038/ng0198-306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Have you used an adeno vector... lately? Nat Genet 1998. [DOI: 10.1038/ng0498-305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Abstract
Stable transduction of mammalian cells typically involves random integration of viral vectors by non-homologous recombination. Here we report that vectors based on adeno-associated virus (AAV) can efficiently modify homologous human chromosomal target sequences. Both integrated neomycin phosphotransferase genes and the hypoxanthine phosphoribosyltransferase gene were targeted by AAV vectors. Site-specific genetic modifications could be introduced into approximately 1% of cells, with the highest targeting rates occurring in normal human fibroblasts. These results suggest that AAV vectors could be used to introduce specific genetic changes into the genomic DNA of a wide variety of mammalian cells, including therapeutic gene targeting applications.
Collapse
Affiliation(s)
- D W Russell
- Markey Molecular Medicine Center, Department of Medicine, University of Washington School of Medicine, Seattle 98195-7720, USA.
| | | |
Collapse
|
19
|
Hitt MM, Addison CL, Graham FL. Human adenovirus vectors for gene transfer into mammalian cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 40:137-206. [PMID: 9217926 DOI: 10.1016/s1054-3589(08)60140-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M M Hitt
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
20
|
Affiliation(s)
- Q Wang
- Cell Genesys Inc., Foster City, California 94404, USA
| | | |
Collapse
|
21
|
Fujita A, Sakagami K, Kanegae Y, Saito I, Kobayashi I. Gene targeting with a replication-defective adenovirus vector. J Virol 1995; 69:6180-90. [PMID: 7666520 PMCID: PMC189515 DOI: 10.1128/jvi.69.10.6180-6190.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Wide application of the gene-targeting technique has been hampered by its low level of efficiency. A replication-defective adenovirus vector was used for efficient delivery of donor DNA in order to bypass this problem. Homologous recombination was selected between a donor neo gene inserted in the adenovirus vector and a target mutant neo gene on a nuclear papillomavirus plasmid. These recombinant adenoviruses allowed gene transfer to 100% of the treated cells without impairing their viability. Homologous recombinants were obtained at a level of frequency much higher than that obtained by electroporation or a calcium phosphate procedure. The structure of the recombinants was analyzed in detail after recovery in an Escherichia coli strain. All of the recombinants examined had experienced a precise correction of the mutant neo gene. Some of them had a nonhomologous rearrangement of their sequences as well. One type of nonhomologous recombination took place at the end of the donor-target homology. The vector adenovirus DNA was inserted into some of the products obtained at a high multiplicity of infection. The insertion was at the end of the donor-target homology with a concomitant insertion of a 10-bp-long filler sequence in one of the recombinants. The possible relationship between these rearrangements and the homologous recombination is discussed. These results demonstrate the applicability of adenovirus-mediated gene delivery in gene targeting and gene therapy.
Collapse
Affiliation(s)
- A Fujita
- Department of Molecular Biology, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
22
|
Mitani K, Wakamiya M, Hasty P, Graham FL, Bradley A, Caskey CT. Gene targeting in mouse embryonic stem cells with an adenoviral vector. SOMATIC CELL AND MOLECULAR GENETICS 1995; 21:221-31. [PMID: 8525428 DOI: 10.1007/bf02255777] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the ability of an E1, E3-defective adenoviral vector to act as a substrate for homologous recombination with chromosomal DNA by including host chromosomal sequence from the mouse Fgr locus that also contained a selectable marker. After infection of mouse embryonic stem cells, stable integration was selected for neomycin resistance and the efficiency of homologous recombination was evaluated. The adenoviral vector was capable of infecting mouse embryonic stem cells efficiently. Between 30-50% of the input virus reached the nuclei after 24 hours of infection. Surprisingly, even without negative selection, 25-40% of the integration resulted from homologous recombination at m.o.i. 10 and 100, although the absolute efficiency of integration was low. Our results suggest that it is possible to modify the structure of an adenoviral vector to achieve a high gene targeting efficiency, resulting in regulated and long-term expression of an introduced gene.
Collapse
Affiliation(s)
- K Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Gene targeting by homologous recombination is a genetic tool that permits modification of cellular genes in a precise and predetermined fashion. The methodologies that are currently available permit gene targeting at high efficiency and fidelity. New developments promise large-scale modification of the mammalian genome using these techniques.
Collapse
Affiliation(s)
- B Morrow
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|