1
|
Abstract
OBJECTIVE CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. METHODS Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. RESULTS Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. CONCLUSION Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis.
Collapse
|
2
|
Lomonosov M, Anand S, Sangrithi M, Davies R, Venkitaraman AR. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev 2003; 17:3017-22. [PMID: 14681210 PMCID: PMC305253 DOI: 10.1101/gad.279003] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
How dividing mammalian cells overcome blocks to DNA replication by DNA damage, depleted nucleotide pools, or template-bound proteins is unclear. Here, we show that the response to blocked replication requires BRCA2, a suppressor of human breast cancer. By using two-dimensional gel electrophoresis, we demonstrate that Y-shaped DNA junctions at stalled replication forks disappear during genome-wide replication arrest in BRCA2-deficient cells, accompanied by double-strand DNA breakage. But activation of the replication checkpoint kinase Chk2 is unaffected, defining an unexpected function for BRCA2 in stabilizing DNA structures at stalled forks. We propose that in BRCA2 deficiency and related chromosomal instability diseases, the breakdown of replication forks, which arrest or pause during normal cell growth, triggers spontaneous DNA breakage, leading to mutability and cancer predisposition.
Collapse
Affiliation(s)
- Mikhail Lomonosov
- University of Cambridge, CR UK Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB2 2XZ, UK
| | | | | | | | | |
Collapse
|
3
|
Aladjem MI, Rodewald LW, Lin CM, Bowman S, Cimbora DM, Brody LL, Epner EM, Groudine M, Wahl GM. Replication initiation patterns in the beta-globin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions. Mol Cell Biol 2002; 22:442-52. [PMID: 11756541 PMCID: PMC139749 DOI: 10.1128/mcb.22.2.442-452.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication initiation pattern of the murine beta-globin locus was analyzed in totipotent embryonic stem cells and in differentiated cell lines. Initiation events in the murine beta-globin locus were detected in a region extending from the embryonic Ey gene to the adult betaminor gene, unlike the restricted initiation observed in the human locus. Totipotent and differentiated cells exhibited similar initiation patterns. Deletion of the region between the adult globin genes did not prevent initiation in the remainder of the locus, suggesting that the potential to initiate DNA replication was not contained exclusively within the primary sequence of the deleted region. In addition, a deletion encompassing the six identified 5' hypersensitive sites in the mouse locus control region had no effect on initiation from within the locus. As this deletion also did not affect the chromatin structure of the locus, we propose that the sequences determining both chromatin structure and replication initiation lie outside the hypersensitive sites removed by the deletion.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shimizu N, Itoh N, Utiyama H, Wahl GM. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J Cell Biol 1998; 140:1307-20. [PMID: 9508765 PMCID: PMC2132668 DOI: 10.1083/jcb.140.6.1307] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1997] [Revised: 12/16/1997] [Indexed: 02/06/2023] Open
Abstract
Acentric, autonomously replicating extrachromosomal structures called double-minute chromosomes (DMs) frequently mediate oncogene amplification in human tumors. We show that DMs can be removed from the nucleus by a novel micronucleation mechanism that is initiated by budding of the nuclear membrane during S phase. DMs containing c-myc oncogenes in a colon cancer cell line localized to and replicated at the nuclear periphery. Replication inhibitors increased micronucleation; cell synchronization and bromodeoxyuridine-pulse labeling demonstrated de novo formation of buds and micronuclei during S phase. The frequencies of S-phase nuclear budding and micronucleation were increased dramatically in normal human cells by inactivating p53, suggesting that an S-phase function of p53 minimizes the probability of producing the broken chromosome fragments that induce budding and micronucleation. These data have implications for understanding the behavior of acentric DNA in interphase nuclei and for developing chemotherapeutic strategies based on this new mechanism for DM elimination.
Collapse
Affiliation(s)
- N Shimizu
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 724, Japan
| | | | | | | |
Collapse
|
5
|
Rein T, Zorbas H, DePamphilis ML. Active mammalian replication origins are associated with a high-density cluster of mCpG dinucleotides. Mol Cell Biol 1997; 17:416-26. [PMID: 8972222 PMCID: PMC231766 DOI: 10.1128/mcb.17.1.416] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
ori-beta is a well-characterized origin of bidirectional replication (OBR) located approximately 17 kb downstream of the dihydrofolate reductase gene in hamster cell chromosomes. The approximately 2-kb region of ori-beta that exhibits greatest replication initiation activity also contains 12 potential methylation sites in the form of CpG dinucleotides. To ascertain whether DNA methylation might play a role at mammalian replication origins, the methylation status of these sites was examined with bisulfite to chemically distinguish cytosine (C) from 5-methylcytosine (mC). All of the CpGs were methylated, and nine of them were located within 356 bp flanking the minimal OBR, creating a high-density cluster of mCpGs that was approximately 10 times greater than average for human DNA. However, the previously reported densely methylated island in which all cytosines were methylated regardless of their dinucleotide composition was not detected and appeared to be an experimental artifact. A second OBR, located at the 5' end of the RPS14 gene, exhibited a strikingly similar methylation pattern, and the organization of CpG dinucleotides at other mammalian origins revealed the potential for high-density CpG methylation. Moreover, analysis of bromodeoxyuridine-labeled nascent DNA confirmed that active replication origins were methylated. These results suggest that a high-density cluster of mCpG dinucleotides may play a role in either the establishment or the regulation of mammalian replication origins.
Collapse
Affiliation(s)
- T Rein
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA.
| | | | | |
Collapse
|
6
|
Pelizon C, Diviacco S, Falaschi A, Giacca M. High-resolution mapping of the origin of DNA replication in the hamster dihydrofolate reductase gene domain by competitive PCR. Mol Cell Biol 1996; 16:5358-64. [PMID: 8816447 PMCID: PMC231534 DOI: 10.1128/mcb.16.10.5358] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
By the use of a highly sensitive mapping procedure allowing the identification of the start sites of DNA replication in single-copy genomic regions of untreated, exponentially growing cultured cells (M. Giacca, L. Zentilin, P. Norio, S. Diviacco, D. Dimitrova, G. Contreas, G. Biamonti, G. Perini, F. Weighardt, S. Riva, and A. Falaschi, Proc. Natl. Acad. Sci. USA 91:7119-7123, 1994), the pattern of DNA replication of the Chinese hamster dihydrofolate reductase (DHFR) gene domain was investigated. The method entails the purification of short stretches of nascent DNA issuing from DNA replication origin regions and quantification, within this sample, of the abundance of different adjacent segments by competitive PCR. Distribution of marker abundance peaks around the site from which newly synthesized DNA had emanated. The results obtained by analysis of the genomic region downstream of the DHFR single-copy gene in asynchronous cultures of hamster CHO K1 cells are consistent with the presence of a single start site for DNA replication, located approximately 17 kb downstream of the gene. This site is coincident with the one detected by other studies using different techniques in CHO cell lines containing an amplified DHFR gene domain.
Collapse
Affiliation(s)
- C Pelizon
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | |
Collapse
|
7
|
Kalejta RF, Lin HB, Dijkwel PA, Hamlin JL. Characterizing replication intermediates in the amplified CHO dihydrofolate reductase domain by two novel gel electrophoretic techniques. Mol Cell Biol 1996; 16:4923-31. [PMID: 8756651 PMCID: PMC231494 DOI: 10.1128/mcb.16.9.4923] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using neutral/neutral and neutral/alkaline two-dimensional (2-D) gel techniques, we previously obtained evidence that initiation can occur at any of a large number of sites distributed throughout a broad initiation zone in the dihydrofolate reductase (DHFR) domain of Chinese hamster ovary (CHO) cells. However, other techniques have suggested a much more circumscribed mode of initiation in this locus. This dichotomy has raised the issue whether the patterns of replicating DNA on 2-D gels have been misinterpreted and, in some cases, may represent such noncanonical replication intermediates as broken bubbles or microbubbles. In an accompanying study (R. F. Kalejta and J. L. Hamlin, Mol. Cell. Biol. 16:4915-4922, 1996), we have shown that broken bubbles migrate to unique positions in three different gel systems and therefore are not likely to be confused with classic replication intermediates. Here, we have applied a broken bubble assay developed from that study to an analysis of the amplified DHFR locus in CHO cells. This assay gives information about the number and positions of initiation sites within a fragment. In addition, we have analyzed the DHFR locus by a novel stop-and-go-alkaline gel technique that measures the size of nascent strands at all positions along each arc in a neutral/neutral 2-D gel. Results of these analyses support the view that the 2-D gel patterns previously assigned to classic, intact replication bubbles and single-forked structures indeed correspond to these entities. Furthermore, potential nascent-strand start sites appear to be distributed at very frequent intervals along the template in the intergenic region in the DHFR domain.
Collapse
Affiliation(s)
- R F Kalejta
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
8
|
Kumar S, Giacca M, Norio P, Biamonti G, Riva S, Falaschi A. Utilization of the same DNA replication origin by human cells of different derivation. Nucleic Acids Res 1996; 24:3289-94. [PMID: 8811079 PMCID: PMC146094 DOI: 10.1093/nar/24.17.3289] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the past, a highly sensitive and efficient method was developed to map DNA replication origins in human cells, based on quantitative PCR performed on nascent DNA samples. This method allowed the identification of a replication origin in the myeloid HL-60 cell line, located on chromosome 19 within an approximately 500 bp segment near the lamin B2 gene [Giacca et al. (1994) Proc. Natl. Acad. Sci. USA, 91, 7119]. The same procedure has now been further simplified and extended to a variety of other exponentially growing human cells of different histological derivation (three neural, one connectival and one epithelial), with a nearly diploid chromosomal content. In all the six cell lines tested, the origin activity within the lamin B2 gene domain was localized to the same region. Furthermore, the lamin B2 origin was also found to be active in stimulated, but not in quiescent, peripheral blood lymphocytes.
Collapse
Affiliation(s)
- S Kumar
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Waltz SE, Trivedi AA, Leffak M. DNA replication initiates non-randomly at multiple sites near the c-myc gene in HeLa cells. Nucleic Acids Res 1996; 24:1887-94. [PMID: 8657570 PMCID: PMC145880 DOI: 10.1093/nar/24.10.1887] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The origin of replication of the c-myc gene in HeLa cells was previously identified at low resolution within 3.5 kb 5' to the P1 promoter, based on replication fork polarity and the location of DNA nascent strands. To define the initiation events in the c-myc origin at higher resolution the template bias of nascent DNAs in a 12 kb c-myc domain has been analyzed by hybridization to strand specific probes. Strong switches in the asymmetry of nascent strand template preference confirm that replication initiates non-randomly at multiple sites within 2.4 kb 5' to the c-myc P1 promoter, and at other sites over a region of 12 kb or more. The strongest template biases occur in the 2.4 kb region 5' of the P1 promoter, shown earlier to contain sequences which allow the autonomous semiconservative replication of c-myc plasmids. An asymmetric pyrimidine heptanucleotide consensus sequence has been identified which occurs 12 times in the c-myc origin zone, and whose polarity exactly correlates with the polarity of nascent strand synthesis.
Collapse
Affiliation(s)
- S E Waltz
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
10
|
Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol 1996; 16:2002-14. [PMID: 8628266 PMCID: PMC231187 DOI: 10.1128/mcb.16.5.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Extrachromosomal circular DNA molecules are associated with genomic instability, and circles containing inverted repeats were suggested to be the early amplification products. Here we present for the first time the use of neutral-neutral two-dimensional (2D) gel electrophoresis as a technique for the identification, isolation, and characterization of heterogeneous populations of circular molecules. Using this technique, we demonstrated that in N-methyl-N'-nitro-N-nitrosoguanidine-treated simian virus 40-transformed Chinese hamster cells (CO60 cells), the viral sequences are amplified as circular molecules of various sizes. The supercoiled circular fraction was isolated and was shown to contain molecules with inverted repeats. 2D gel analysis of extrachromosomal DNA from CHO cells revealed circular molecules containing highly repetitive DNA which are similar in size to the simian virus 40-amplified molecules. Moreover, enhancement of the amount of circular DNA was observed upon N-methyl-N'-nitro-N-nitrosoguanidine treatment of CHO cells. The implications of these findings regarding the processes of gene amplification and genomic instability and the possible use of the 2D gel technique to study these phenomena are discussed.
Collapse
MESH Headings
- Animals
- CHO Cells
- Carcinogens/toxicity
- Cell Line
- Cell Line, Transformed
- Cell Transformation, Viral
- Cricetinae
- DNA Replication/drug effects
- DNA, Circular/biosynthesis
- DNA, Circular/chemistry
- DNA, Circular/ultrastructure
- DNA, Viral/biosynthesis
- DNA, Viral/chemistry
- DNA, Viral/ultrastructure
- Methylnitronitrosoguanidine/toxicity
- Microscopy, Electron
- Models, Structural
- Nucleic Acid Conformation
- Repetitive Sequences, Nucleic Acid
- Simian virus 40/genetics
Collapse
Affiliation(s)
- S Cohen
- Department of Cell Research and Immunology, Tel Aviv University, Israel
| | | |
Collapse
|
11
|
Kelly RE, DeRose ML, Draper BW, Wahl GM. Identification of an origin of bidirectional DNA replication in the ubiquitously expressed mammalian CAD gene. Mol Cell Biol 1995; 15:4136-48. [PMID: 7623808 PMCID: PMC230652 DOI: 10.1128/mcb.15.8.4136] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Most DNA replication origins in eukaryotes localize to nontranscribed regions, and there are no reports of origins within constitutively expressed genes. This observation has led to the proposal that there may be an incompatibility between origin function and location within a ubiquitously expressed gene. The biochemical and functional evidence presented here demonstrates that an origin of bidirectional replication (OBR) resides within the constitutively expressed housekeeping gene CAD, which encodes the first three reactions of de novo uridine biosynthesis (carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, and dihydroorotase). The OBR was localized to a 5-kb region near the center of the Syrian hamster CAD transcriptional unit. DNA replication initiates within this region in the single-copy CAD gene in Syrian baby hamster kidney cells and in the large chromosomal amplicons that were generated after selection with N-phosphonacetyl-L-aspartate, a specific inhibitor of CAD. DNA synthesis also initiates within this OBR in autonomously replicating extrachromosomal amplicons (CAD episomes) located in an N-phosphonacetyl-L-aspartate-resistant clone (5P20) of CHOK1 cells. CAD episomes consist entirely of a multimer of Syrian hamster CAD cosmid sequences (cCAD1). These data limit the functional unit of replication initiation and timing control to the 42 kb of Syrian hamster sequences contained in cCAD1. In addition, the data indicate that the origin recognition machinery is conserved across species, since the same OBR region functions in both Syrian and Chinese hamster cells. Importantly, while cCAD1 exhibits characteristics of a complete replicon, we have not detected autonomous replication directly following transfection. Since the CAD episome was generated after excision of chromosomally integrated transfected cCAD1 sequences, we propose that prior localization within a chromosome may be necessary to "license" some biochemically defined OBRs to render them functional.
Collapse
Affiliation(s)
- R E Kelly
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
12
|
Gilbert DM, Miyazawa H, DePamphilis ML. Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol Cell Biol 1995; 15:2942-54. [PMID: 7760792 PMCID: PMC230525 DOI: 10.1128/mcb.15.6.2942] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have shown that Xenopus egg extract can initiate DNA replication in purified DNA molecules once the DNA is organized into a pseudonucleus. DNA replication under these conditions is independent of DNA sequence and begins at many sites distributed randomly throughout the molecules. In contrast, DNA replication in the chromosomes of cultured animal cells initiates at specific, heritable sites. Here we show that Xenopus egg extract can initiate DNA replication at specific sites in mammalian chromosomes, but only when the DNA is presented in the form of an intact nucleus. Initiation of DNA synthesis in nuclei isolated from G1-phase Chinese hamster ovary cells was distinguished from continuation of DNA synthesis at preformed replication forks in S-phase nuclei by a delay that preceded DNA synthesis, a dependence on soluble Xenopus egg factors, sensitivity to a protein kinase inhibitor, and complete labeling of nascent DNA chains. Initiation sites for DNA replication were mapped downstream of the amplified dihydrofolate reductase gene region by hybridizing newly replicated DNA to unique probes and by hybridizing Okazaki fragments to the two individual strands of unique probes. When G1-phase nuclei were prepared by methods that preserved the integrity of the nuclear membrane, Xenopus egg extract initiated replication specifically at or near the origin of bidirectional replication utilized by hamster cells (dihydrofolate reductase ori-beta). However, when nuclei were prepared by methods that altered nuclear morphology and damaged the nuclear membrane, preference for initiation at ori-beta was significantly reduced or eliminated. Furthermore, site-specific initiation was not observed with bare DNA substrates, and Xenopus eggs or egg extracts replicated prokaryotic DNA or hamster DNA that did not contain a replication origin as efficiently as hamster DNA containing ori-beta. We conclude that initiation sites for DNA replication in mammalian cells are established prior to S phase by some component of nuclear structure and that these sites can be activated by soluble factors in Xenopus eggs.
Collapse
Affiliation(s)
- D M Gilbert
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110-1199, USA
| | | | | |
Collapse
|
13
|
Yoon Y, Sanchez JA, Brun C, Huberman JA. Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis. Mol Cell Biol 1995; 15:2482-9. [PMID: 7739533 PMCID: PMC230478 DOI: 10.1128/mcb.15.5.2482] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
New techniques for mapping mammalian DNA replication origins are needed. We have modified the existing nascent-strand size analysis technique (L. Vassilev and E.M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989) to provide an independent means of studying replication initiation sites. We call the new method nascent-strand abundance analysis. We confirmed the validity of this method with replicating simian virus 40 DNA as a model. We then applied nascent-strand abundance and nascent-strand size analyses to mapping of initiation sites in human (HeLa) ribosomal DNA (rDNA), a region previously examined exclusively by two-dimensional gel electrophoresis methods (R.D. Little, T.H.K. Platt, and C.L. Schildkraut, Mol. Cell. Biol. 13:6600-6613, 1993). Our results partly confirm those obtained by two-dimensional gel electrophoresis techniques. Both studies suggest that replication initiates at relatively high frequency a few kilobase pairs upstream of the transcribed region and that many additional low-frequency initiation sites are distributed through most of the remainder of the ribosomal DNA repeat unit.
Collapse
Affiliation(s)
- Y Yoon
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
14
|
A novel DNA replication origin identified in the human heat shock protein 70 gene promoter. Mol Cell Biol 1994. [PMID: 8065368 DOI: 10.1128/mcb.14.9.6386] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A general and sensitive method for the mapping of initiation sites of DNA replication in vivo, developed by Vassilev and Johnson, has revealed replication origins in the region of simian virus 40 ori, in the regions upstream from the human c-myc gene and downstream from the Chinese hamster dihydrofolate reductase gene, and in the enhancer region of the mouse immunoglobulin heavy-chain gene. Here we report that the region containing the promoter of the human heat shock protein 70 (hsp70) gene was identified as a DNA replication origin in HeLa cells by this method. Several segments of the region were cloned into pUC19 and examined for autonomously replicating sequence (ARS) activity. The plasmids carrying the segments replicated episomally and semiconservatively when transfected into HeLa cells. The segments of ARS activity contained the sequences previously identified as binding sequences for a c-myc protein complex (T. Taira, Y. Negishi, F. Kihara, S. M. M. Iguchi-Ariga, and H. Ariga, Biochem. Biophys. Acta 1130:166-174, 1992). Mutations introduced within the c-myc protein complex binding sequences abolished the ARS activity. Moreover, the ARS plasmids stably replicated at episomal state for a long time in established cell lines. The results suggest that the promoter region of the human hsp70 gene plays a role in DNA replication as well as in transcription.
Collapse
|
15
|
A mammalian origin of bidirectional DNA replication within the Chinese hamster RPS14 locus. Mol Cell Biol 1994. [PMID: 8065299 DOI: 10.1128/mcb.14.9.5628] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Two complementary experimental approaches have been used to identify a chromosomal origin of bidirectional DNA replication within or immediately downstream of the Chinese hamster ribosomal protein S14 gene (RPS14). The replication origin, designated oriS14, maps within a 1.6- to 2.0-kbp region of RPS14 that includes the gene's third and fourth introns, exons IV plus V, and approximately 500 bp of proximal downstream flanking DNA. The nucleic acid sequence encoding oriS14 closely resembles the other mammalian chromosomal replication origins whose primary structures are known. It contains DNA binding sites for a large number of transcription factors, replication proteins, and mammalian oncogenes as well as several dinucleotide repeat motifs, an AT-rich region, and a sequence that is likely to bend the DNA. In contrast to the other well-characterized mammalian replication origins, which are autosomal and therefore carried as two copies per somatic cell, oriS14 is encoded by single-copy DNA within a hemizygous segment of chromosome 2q in CHO-K1 cells. Also, other known mammalian replication origins are situated in nontranscribed, intergenic DNA, whereas the DNA sequence encoding oriS14 substantially overlaps the transcribed portion of a constitutively expressed housekeeping gene.
Collapse
|
16
|
Taira T, Iguchi-Ariga SM, Ariga H. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter. Mol Cell Biol 1994; 14:6386-97. [PMID: 8065368 PMCID: PMC359164 DOI: 10.1128/mcb.14.9.6386-6397.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A general and sensitive method for the mapping of initiation sites of DNA replication in vivo, developed by Vassilev and Johnson, has revealed replication origins in the region of simian virus 40 ori, in the regions upstream from the human c-myc gene and downstream from the Chinese hamster dihydrofolate reductase gene, and in the enhancer region of the mouse immunoglobulin heavy-chain gene. Here we report that the region containing the promoter of the human heat shock protein 70 (hsp70) gene was identified as a DNA replication origin in HeLa cells by this method. Several segments of the region were cloned into pUC19 and examined for autonomously replicating sequence (ARS) activity. The plasmids carrying the segments replicated episomally and semiconservatively when transfected into HeLa cells. The segments of ARS activity contained the sequences previously identified as binding sequences for a c-myc protein complex (T. Taira, Y. Negishi, F. Kihara, S. M. M. Iguchi-Ariga, and H. Ariga, Biochem. Biophys. Acta 1130:166-174, 1992). Mutations introduced within the c-myc protein complex binding sequences abolished the ARS activity. Moreover, the ARS plasmids stably replicated at episomal state for a long time in established cell lines. The results suggest that the promoter region of the human hsp70 gene plays a role in DNA replication as well as in transcription.
Collapse
Affiliation(s)
- T Taira
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
17
|
Tasheva ES, Roufa DJ. A mammalian origin of bidirectional DNA replication within the Chinese hamster RPS14 locus. Mol Cell Biol 1994; 14:5628-35. [PMID: 8065299 PMCID: PMC359087 DOI: 10.1128/mcb.14.9.5628-5635.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two complementary experimental approaches have been used to identify a chromosomal origin of bidirectional DNA replication within or immediately downstream of the Chinese hamster ribosomal protein S14 gene (RPS14). The replication origin, designated oriS14, maps within a 1.6- to 2.0-kbp region of RPS14 that includes the gene's third and fourth introns, exons IV plus V, and approximately 500 bp of proximal downstream flanking DNA. The nucleic acid sequence encoding oriS14 closely resembles the other mammalian chromosomal replication origins whose primary structures are known. It contains DNA binding sites for a large number of transcription factors, replication proteins, and mammalian oncogenes as well as several dinucleotide repeat motifs, an AT-rich region, and a sequence that is likely to bend the DNA. In contrast to the other well-characterized mammalian replication origins, which are autosomal and therefore carried as two copies per somatic cell, oriS14 is encoded by single-copy DNA within a hemizygous segment of chromosome 2q in CHO-K1 cells. Also, other known mammalian replication origins are situated in nontranscribed, intergenic DNA, whereas the DNA sequence encoding oriS14 substantially overlaps the transcribed portion of a constitutively expressed housekeeping gene.
Collapse
Affiliation(s)
- E S Tasheva
- Division of Biology, Kansas State University, Manhattan 66506
| | | |
Collapse
|
18
|
Abstract
DNA amplification is a process whereby a limited part of the genome is increased in copy number with various consequences for the cell. It is frequently observed in cancer cells and it can be induced in mammalian cells grown in culture as well as in tumor cells when these are subjected to growth inhibiting drugs. In recent years new insights into the mechanisms involved in DNA amplification have been obtained; discussion of these will form the major subject of this short review.
Collapse
|
19
|
Masukata H, Satoh H, Obuse C, Okazaki T. Autonomous replication of human chromosomal DNA fragments in human cells. Mol Biol Cell 1993; 4:1121-32. [PMID: 8305734 PMCID: PMC275748 DOI: 10.1091/mbc.4.11.1121] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have examined whether a human chromosome has distinct segments that can replicate autonomously as extrachromosomal elements. Human 293S cells were transfected with a set of human chromosomal DNA fragments of 8-15 kilobase pairs that were cloned on an Escherichia coli plasmid vector. The transfected cells were subsequently cultured in the presence of 5-bromodeoxyuridine during two cell generations, and several plasmid clones labeled in both of the daughter DNA strands were isolated. Efficiency of replication of these clones, as determined from the ratios of heavy-heavy and one-half of heavy-light molecules to total molecules recovered from density-labeled cells, was 9.4% per cell generation on the average. Replication efficiency of control clones excluded during the selection was about 2.2% and that of the vector plasmid alone was 0.3%. A representative clone p1W1 replicated in a semiconservative manner only one round during the S phase of the cell cycle. It replicated extrachromosomally without integration into chromosome. The human segment of the clone was composed of several subsegments that promoted autonomous replication at different efficiencies. Our results suggest that certain specific nucleotide sequences are involved in autonomous replication of human segments.
Collapse
Affiliation(s)
- H Masukata
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | | | | | |
Collapse
|
20
|
Analysis of a replication initiation sequence from the adenosine deaminase region of the mouse genome. Mol Cell Biol 1993. [PMID: 8413198 DOI: 10.1128/mcb.13.10.5931] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A 4-kb HindIII fragment that supported the efficient autonomous replication of plasmid vector pDY-, a replication-defective construct based on Epstein-Barr virus sequences, in human K562 cells was rescued from amplified double-minute chromosomes containing the murine adenosine deaminase locus. Polymerase chain reaction assays of size-fractionated nascent strands demonstrated that replication initiation occurred within the same 1- to 2-kb region of this fragment in autonomously replicating plasmids containing the sequence in either orientation, in double-minute chromosomes, and in the single-copy locus at its normal chromosomal location. The complete sequence of this fragment was determined; it contains a 248-bp polypurine tract and consensus binding site sequences for several putative transcription and replication factors.
Collapse
|
21
|
Virta-Pearlman VJ, Gunaratne PH, Chinault AC. Analysis of a replication initiation sequence from the adenosine deaminase region of the mouse genome. Mol Cell Biol 1993; 13:5931-42. [PMID: 8413198 PMCID: PMC364638 DOI: 10.1128/mcb.13.10.5931-5942.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A 4-kb HindIII fragment that supported the efficient autonomous replication of plasmid vector pDY-, a replication-defective construct based on Epstein-Barr virus sequences, in human K562 cells was rescued from amplified double-minute chromosomes containing the murine adenosine deaminase locus. Polymerase chain reaction assays of size-fractionated nascent strands demonstrated that replication initiation occurred within the same 1- to 2-kb region of this fragment in autonomously replicating plasmids containing the sequence in either orientation, in double-minute chromosomes, and in the single-copy locus at its normal chromosomal location. The complete sequence of this fragment was determined; it contains a 248-bp polypurine tract and consensus binding site sequences for several putative transcription and replication factors.
Collapse
Affiliation(s)
- V J Virta-Pearlman
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|