1
|
Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity (Edinb) 2013; 111:410-21. [PMID: 23838690 DOI: 10.1038/hdy.2013.63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 04/09/2013] [Accepted: 05/17/2013] [Indexed: 11/08/2022] Open
Abstract
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.
Collapse
|
2
|
Hall TMT. Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 2005; 15:367-73. [PMID: 15963892 DOI: 10.1016/j.sbi.2005.04.004] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 02/07/2005] [Accepted: 04/26/2005] [Indexed: 11/26/2022]
Abstract
Zinc finger proteins are generally thought of as DNA-binding transcription factors; however, certain classes of zinc finger proteins, including the common C(2)H(2) zinc fingers, function as RNA-binding proteins. Recent structural studies of the C(2)H(2) zinc fingers of transcription factor IIIA (TFIIIA) and the CCCH zinc fingers of Tis11d in complex with their RNA targets have revealed new modes of zinc finger interaction with nucleic acid. The three C(2)H(2) zinc fingers of TFIIIA use two modes of RNA recognition that differ from the classical mode of DNA recognition, whereas the CCCH zinc fingers of Tis11d recognize specific AU-rich sequences through backbone atom interaction with the Watson-Crick edges of the adenine and uracil bases.
Collapse
Affiliation(s)
- Traci M Tanaka Hall
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
3
|
Ohkura N, Yaguchi H, Tsukada T, Yamaguchi K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 2002; 277:535-43. [PMID: 11673470 DOI: 10.1074/jbc.m109018200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In extraskeletal myxoid chondrosarcoma, chromosomal translocation creates a gene fusion between EWS and the orphan nuclear receptor NOR1. The resulting fusion gene product, EWS/NOR1, has been believed to lead to malignant transformation by functioning as a transcriptional activator, but an alternative mechanism may also be involved. Here, using a newly developed functional complementation screening in yeast, we found that EWS/NOR1, but not EWS or NOR1, complemented the loss of function of the small nuclear ribonucleoprotein Snu23p, an essential factor for pre-mRNA splicing in yeast. To verify the potential function of EWS/NOR1 in mammalian cells, we next showed that overexpression of EWS/NOR1 caused increased usage of the distal 5'-splice site of pre-mRNA splicing and that EWS/NOR1 interacted with the human splicing protein U1C; neither EWS nor NOR1 had the same activity or interaction as EWS/NOR1. Altogether, our findings reveal that EWS/NOR1 gains a novel activity affecting pre-mRNA splicing.
Collapse
Affiliation(s)
- Naganari Ohkura
- Growth Factor Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | |
Collapse
|
4
|
Searles MA, Lu D, Klug A. The role of the central zinc fingers of transcription factor IIIA in binding to 5 S RNA. J Mol Biol 2000; 301:47-60. [PMID: 10926492 DOI: 10.1006/jmbi.2000.3946] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the nine-zinc finger Xenopus transcription factor TFIIIA the central group of fingers, fingers 4 to 7, have been shown to bind to 5 S RNA. In this study, we have attempted to assess the role of this region of the TFIIIA molecule in more detail than hitherto. High-resolution footprinting by RNases A and CV1 has been used to probe the binding to 5 S RNA of three TFIIIA peptides Tf(1-6), Tf(4-6) and Tf(4-7), consisting of fingers 1 to 6, 4 to 6, and 4 to 7, respectively, and of full-length TFIIIA. The results pinpoint the outer margins of binding of the central fingers within helices IV and II of TFIIIA. A comparison of the footprints reveals that the presence of finger 7 affords protection at positions C19 and U55, the distal portion of helix II and the proximal portion of loop B. In addition, our footprints suggest that the central fingers bind in the same manner, whether in an isolated group or in the intact TFIIIA molecule. In a companion study, we have determined the binding affinities of Tf(4-6) and Tf(4-7) for full-length and three truncated 5 S RNA molecules, the latter selected on the basis of the regions of the 5 S RNA molecule known to be important in the binding of TFIIIA. The analysis uses only fully active protein involved in the binding and the results are consistent with the corresponding footprinting results. This is the first time that a detailed study of the binding site of one particular zinc finger to RNA has been reported; the results should be of use in the design of 5 S RNA molecules and TFIIIA peptides for structural studies of the interaction between zinc fingers and RNA.
Collapse
Affiliation(s)
- M A Searles
- Laboratory of Molecular Biology, M.R.C., Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|
5
|
Neely LS, Lee BM, Xu J, Wright PE, Gottesfeld JM. Identification of a minimal domain of 5 S ribosomal RNA sufficient for high affinity interactions with the RNA-specific zinc fingers of transcription factor IIIA. J Mol Biol 1999; 291:549-60. [PMID: 10448036 DOI: 10.1006/jmbi.1999.2985] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription factor IIIA of Xenopuslaevis serves a dual function during oogenesis and early development: this zinc finger protein binds to the internal promoter element of the 5 S ribosomal RNA genes and acts as a positive transcription factor; additionally, the protein functions in 5 S RNA storage. The central four zinc fingers (zf4-7) of the nine-finger protein have been shown to bind 5 S rRNA with comparable or higher affinity than the full-length protein. The role of finger seven in binding affinity has been examined by deletion analysis. A zf4-6 protein binds 5 S RNA with about a sevenfold reduction in binding affinity, compared to zf4-7. The effect of non-specific competitor DNA on binding affinities of the zinc finger peptides was examined and found to have a significant effect on the measured affinities of these peptides for full-length and truncated versions of 5 S RNA. The interaction of zf4-6 with full-length 5 S RNA was far more sensitive to non-specific competitor concentration than was the zf4-7:5 S RNA interaction, suggesting that finger seven contributes to both affinity and specificity in this protein:RNA interaction. In order to map zinc finger binding sites on the 5 S RNA molecule, we generated truncated versions of the RNA and tested these molecules for their binding affinities with zf4-7 and zf4-6. Previous studies showed that a 75 nucleotide long RNA, comprising loop A, helix II, helix V, region E and helix IV, bound zf4-7 with high affinity. Selection and amplification binding assays (selex) have now been used to generate smaller high-affinity binding RNAs. We find that a 55 nucleotide long RNA, comprising loop A, helix V, region E and helix IV, but lacking helix II, retains high affinity for zf4-6. These data are consistent with the proposal that fingers 4-6 bind this central core of 5 S RNA and that finger seven binds the helix II region.
Collapse
Affiliation(s)
- L S Neely
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
6
|
Wuttke DS, Foster MP, Case DA, Gottesfeld JM, Wright PE. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: determinants of affinity and sequence specificity. J Mol Biol 1997; 273:183-206. [PMID: 9367756 DOI: 10.1006/jmbi.1997.1291] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The high resolution solution structure of a protein containing the three amino-terminal zinc fingers of Xenopus laevis transcription factor IIIA (TFIIIA) bound to its cognate DNA duplex was determined by nuclear magnetic resonance spectroscopy. The protein, which is designated zf1-3, binds with all three fingers in the DNA major groove, with a number of amino acids making base-specific contacts. The DNA structure is close to B-form. Although the mode of interaction of zf1-3 with DNA is similar to that of zif268 and other structurally characterized zinc finger complexes, the TFIIIA complex exhibits several novel features. Each zinc finger contacts four to five base-pairs and the repertoire of known base contact residues is extended to include a tryptophan at position +2 of the helix (finger 1) and arginine at position +10 (finger 3). Sequence-specific base contacts are made over virtually the entire length of the finger 3 helix. Lysine and histidine side-chains involved in base recognition are dynamically disordered in the solution structure; in the case of lysine, in particular, this could significantly decrease the entropic cost of DNA binding. The TGEKP(N) linker sequences, which are highly flexible in the unbound protein, adopt ordered conformations on DNA binding. The linkers appear to play an active structural role in stabilization of the protein-DNA complex. Substantial protein-protein contact surfaces are formed between adjacent fingers. As a consequence of these protein-protein interactions, the orientation of finger 1 in the major groove differs from that of the other fingers. Contributions to high affinity binding by zf1-3 come from both direct protein-DNA contacts and from indirect protein-protein interactions associated with structural organization of the linkers and formation of well-packed interfaces between adjacent zinc fingers in the DNA complex. The structures provide a molecular level explanation for the large body of footprinting and mutagenesis data available for the TFIIIA-DNA complex.
Collapse
Affiliation(s)
- D S Wuttke
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
7
|
Rowland O, Segall J. Interaction of wild-type and truncated forms of transcription factor IIIA from Saccharomyces cerevisiae with the 5 S RNA gene. J Biol Chem 1996; 271:12103-10. [PMID: 8662611 DOI: 10.1074/jbc.271.20.12103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription factor (TF) IIIA, which contains nine zinc finger motifs, binds to the internal control region of the 5S RNA gene as the first step in the assembly of a multifactor complex that promotes accurate initiation of transcription by RNA polymerase III. We have monitored the interaction of wild-type and truncated forms of yeast TFIIIA with the 5 S RNA gene. The DNase I footprints obtained with full-length TFIIIA and a polypeptide containing the amino-terminal five zinc fingers (TF5) were indistinguishable, extending from nucleotides +64 to +99 of the 5 S RNA gene. This suggests that fingers 6 through 9 of yeast TFIIIA are not in tight association with DNA. The DNase I footprint obtained with a polypeptide containing the amino-terminal four zinc fingers (TF4) was 14 base pairs shorter than that of TF5, extending from nucleotides +78 to +99 on the nontranscribed strand and from nucleotides +79 to +98 on the transcribed strand of the 5 S RNA gene. Protection provided by a polypeptide containing the first three zinc fingers (TF3) was similar to that provided by TF4, with the exception that protection on the nontranscribed strand ended at nucleotide +80, rather than nucleotide +78. Methylation protection analysis indicated that finger 5 makes major groove contacts with guanines +73 and +74. The amino-terminal four zinc fingers make contacts that span the internal control region, which extends from nucleotides +81 to +94 of the 5 S RNA gene, with finger 4 appearing to contact guanine +82. Measurements of the apparent Kd values of the TFIIIA.DNA complexes indicated that the amino-terminal three zinc fingers of TFIIIA have a binding energy that is similar to that of the full-length protein.
Collapse
Affiliation(s)
- O Rowland
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
8
|
Abstract
Transcription factor IIIA is a very extensively studied eukaryotic gene specific factor. It is a special member of the zinc finger family of nucleic acid binding proteins with multiple functions. Its N-terminal polypeptide (280 amino acid residue containing peptide; finger containing region) carries out sequence specific DNA and RNA binding and the C-terminal peptide (65 amino acid residue containing peptide; non-finger region) is involved in the transactivation process possibly by interacting with other general factors. It is a unique factor in the sense that it binds to two structurally different nucleic acids, DNA and RNA. It accomplishes this function through its zinc fingers, which are arranged into a cluster of nine motifs. Over the past three years there has been considerable interest in determining the structural features of zinc fingers, identifying the fingers that preferentially recognize DNA and RNA, defining the role of metal binding ligands and the linker region in promotor recognition and the role of C-terminal amino acid sequence in the gene activation. This article briefly reviews our current knowledge on this special protein in these areas.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, MI 48309-4401, USA
| |
Collapse
|
9
|
Yong Y, Romano LJ. Nucleotide and DNA-induced conformational changes in the bacteriophage T7 gene 4 protein. J Biol Chem 1995; 270:24509-17. [PMID: 7592668 DOI: 10.1074/jbc.270.41.24509] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The bacteriophage T7 gene 4 protein is a multifunctional enzyme that has DNA helicase, primase, and deoxyribonucleotide 5'-triphosphatase activities. Prior studies have shown that in the presence of dTTP or dTDP the gene 4 protein assembles into a functionally active hexamer prior to binding to single-stranded DNA. In this study, we have examined the effects of different nucleotide cofactors on the conformation of the gene 4 protein in the presence and absence of DNA. Gel retardation analysis, partial protease digestion, and DNA footprinting all suggest that the gene 4 protein undergoes a conformational change when dTTP is hydrolyzed to dTTP and that in the presence of dTDP the complex with DNA is more open or extended. We have also found that the dissociation constant of the gene 4 protein.DNA complex in the presence of dTDP was 10-fold lower than that determined in the presence of dTTP, further suggesting that these cofactors exerts different allosteric effects on the DNA-binding site of the gene 4 protein.
Collapse
Affiliation(s)
- Y Yong
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
10
|
|