1
|
Xu L, Gao J, Guo L, Yu H. Heat shock protein 70 (HmHsp70) from Hypsizygus marmoreus confers thermotolerance to tobacco. AMB Express 2020; 10:12. [PMID: 31955280 PMCID: PMC6969874 DOI: 10.1186/s13568-020-0947-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
The 70-kD heat shock proteins (Hsp70s) have been proved to be important for stress tolerance and protein folding and unfolding in almost all organisms. However, the functions of Hsp70s in mushroom are not well understood. In the present study, a hsp70 gene from Hypsizygus marmoreus, hmhsp70, was cloned and transferred to tobacco (Nicotiana tabacum) to evaluate its function in thermotolerance. Sequence alignments and phylogenetic analysis revealed that HmHsp70 may be located in the mitochondria region. qPCR analysis revealed that the transcription level of hmhsp70 in H. marmoreus mycelia increased after heat shock treatment in high temperature (42 °C) compared with untreated mycelia (at 25 °C). Transgenic tobaccos expressing hmhsp70 gene showed enhanced resistance to lethal temperature compared with the wild type (WT) plants. Nearly 30% of the transgenic tobaccos survived after treated at a high temperature (50 °C and 52 °C for 4 h); however, almost all the WT tobaccos died after treated at 50 °C and no WT tobacco survived after heat shock at 52 °C. This study firstly showed the function of a hsp70 gene from H. marmoreus.
Collapse
|
2
|
Huang Z, Lei X, Feng X, Gao S, Wang G, Bian Y, Huang W, Liu Y. Identification of a Heat-Inducible Element of Cysteine Desulfurase Gene Promoter in Lentinula edodes. Molecules 2019; 24:molecules24122223. [PMID: 31197084 PMCID: PMC6632127 DOI: 10.3390/molecules24122223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Volatile organosulfur compounds are the main components that contribute to the unique aroma of dried Lentinula edodes. They are mainly generated during the hot-air drying process, and cysteine desulfurase is the key enzyme in this process. Temperature may be an essential factor of volatile organosulfur compound production by influencing the expression of the cysteine desulfurase gene. In this study, the promoter sequence of the cysteine desulfurase gene (pCS) was cloned and analyzed using bioinformatics tools. A series of 5′deletion fragments and site-directed mutations of pCS were constructed to identify the element that responds to heat stress. Six heat shock transcription factor (HSTF) binding sites were predicted by SCPD (The Promoter Database of Saccharomyces cerevisiae) and three of the binding sites were predicted by Yeastract (Yeast Search for Transcriptional Regulators and Consensus Tracking) in pCS. The results indicated that pCS was able to drive the expression of the EGFP (Enhanced Green Fluorescent Protein) gene in L. edodes. Moreover, the fluorescence intensity increased after heat stress. The changes in fluorescence intensity of different 5′deletion fragments showed that the heat response region was located between −500 bp and −400 bp in pCS. The site-directed mutation analysis further showed that the heat-inducible element was between −490 bp and −500 bp (TTTCTAGAAT) in pCS. Our results provide molecular insight for studying the formation of volatile organosulfur compounds in dried L. edodes.
Collapse
Affiliation(s)
- Zhicheng Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyu Lei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, California State University, San Jose, CA 95192, USA.
| | - Shuangshuang Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Gangzheng Wang
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yinbing Bian
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Sherman MS, Lorenz K, Lanier MH, Cohen BA. Cell-to-cell variability in the propensity to transcribe explains correlated fluctuations in gene expression. Cell Syst 2015; 1:315-325. [PMID: 26623441 DOI: 10.1016/j.cels.2015.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Random fluctuations in gene expression lead to wide cell-to-cell differences in RNA and protein counts. Most efforts to understand stochastic gene expression focus on local (intrinisic) fluctuations, which have an exact theoretical representation. However, no framework exists to model global (extrinsic) mechanisms of stochasticity. We address this problem by dissecting the sources of stochasticity that influence the expression of a yeast heat shock gene, SSA1. Our observations suggest that extrinsic stochasticity does not influence every step of gene expression, but rather arises specifically from cell-to-cell differences in the propensity to transcribe RNA. This led us to propose a framework for stochastic gene expression where transcription rates vary globally in combination with local, gene-specific fluctuations in all steps of gene expression. The proposed model better explains total expression stochasticity than the prevailing ON-OFF model and offers transcription as the specific mechanism underlying correlated fluctuations in gene expression.
Collapse
Affiliation(s)
- Marc S Sherman
- Computational and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States. ; Center for Genome Sciences, Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - Kim Lorenz
- Center for Genome Sciences, Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - M Hunter Lanier
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Barak A Cohen
- Center for Genome Sciences, Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
4
|
Jarnuczak AF, Eyers CE, Schwartz JM, Grant CM, Hubbard SJ. Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae. Proteomics 2015; 15:3126-39. [PMID: 25689132 PMCID: PMC4979674 DOI: 10.1002/pmic.201400527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/13/2015] [Accepted: 02/11/2015] [Indexed: 12/11/2022]
Abstract
Molecular chaperones play an important role in protein homeostasis and the cellular response to stress. In particular, the HSP70 chaperones in yeast mediate a large volume of protein folding through transient associations with their substrates. This chaperone interaction network can be disturbed by various perturbations, such as environmental stress or a gene deletion. Here, we consider deletions of two major chaperone proteins, SSA1 and SSB1, from the chaperone network in Sacchromyces cerevisiae. We employ a SILAC-based approach to examine changes in global and local protein abundance and rationalise our results via network analysis and graph theoretical approaches. Although the deletions result in an overall increase in intracellular protein content, correlated with an increase in cell size, this is not matched by substantial changes in individual protein concentrations. Despite the phenotypic robustness to deletion of these major hub proteins, it cannot be simply explained by the presence of paralogues. Instead, network analysis and a theoretical consideration of folding workload suggest that the robustness to perturbation is a product of the overall network structure. This highlights how quantitative proteomics and systems modelling can be used to rationalise emergent network properties, and how the HSP70 system can accommodate the loss of major hubs.
Collapse
Affiliation(s)
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | - Simon J Hubbard
- Faculty of Life Sciences, Michael Smith Building, Manchester, UK
| |
Collapse
|
5
|
Matsumura CY, Menezes de Oliveira B, Durbeej M, Marques MJ. Isobaric Tagging-Based Quantification for Proteomic Analysis: A Comparative Study of Spared and Affected Muscles from mdx Mice at the Early Phase of Dystrophy. PLoS One 2013; 8:e65831. [PMID: 23823696 PMCID: PMC3688818 DOI: 10.1371/journal.pone.0065831] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common childhood myopathy, characterized by muscle loss and cardiorespiratory failure. While the genetic basis of DMD is well established, secondary mechanisms associated with dystrophic pathophysiology are not fully clarified yet. In order to obtain new insights into the molecular mechanisms of muscle dystrophy during earlier stages of the disease, we performed a comparative proteomic profile of the spared extraocular muscles (EOM) vs. affected diaphragm from the mdx mice, using a label based shotgun proteomic approach. Out of the 857 identified proteins, 42 to 62 proteins had differential abundance of peptide ions. The calcium-handling proteins sarcalumenin and calsequestrin-1 were increased in control EOM compared with control DIA, reinforcing the view that constitutional properties of EOM are important for their protection against myonecrosis. The finding that galectin-1 (muscle regeneration), annexin A1 (anti-inflammatory) and HSP 47 (fibrosis) were increased in dystrophic diaphragm provides novel insights into the mechanisms through which mdx affected muscles are able to counteract dystrophy, during the early stage of the disease. Overall, the shotgun technique proved to be suitable to perform quantitative comparisons between distinct dystrophic muscles and allowed the suggestion of new potential biomarkers and drug targets for dystrophinopaties.
Collapse
Affiliation(s)
- Cintia Yuri Matsumura
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Madeleine Durbeej
- Muscle Biology Unit, Department of Experimental Medical Science, University of Lund, Lund, Sweden
| | - Maria Julia Marques
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Erkina TY, Erkine AM. Displacement of histones at promoters of Saccharomyces cerevisiae heat shock genes is differentially associated with histone H3 acetylation. Mol Cell Biol 2006; 26:7587-600. [PMID: 17015479 PMCID: PMC1636863 DOI: 10.1128/mcb.00666-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin remodeling at promoters of activated genes spans from mild histone modifications to outright displacement of nucleosomes in trans. Factors affecting these events are not always clear. Our results indicate that histone H3 acetylation associated with histone displacement differs drastically even between promoters of such closely related heat shock genes as HSP12, SSA4, and HSP82. The HSP12 promoter, with the highest level of histone displacement, showed the highest level of H3 acetylation, while the SSA4 promoter, with a lower histone displacement, showed only modest H3 acetylation. Moreover, for the HSP12 promoter, the level of acetylated H3 is temporarily increased prior to nucleosome departure. Individual promoters in strains expressing truncated versions of heat shock factor (HSF) showed that deletion of either one of two activating regions in HSF led to the diminished histone displacement and correspondingly lower H3 acetylation. The deletion of both regions simultaneously severely decreased histone displacement for all promoters tested, showing the dependence of these processes on HSF. The level of histone H3 acetylation at individual promoters in strains expressing truncated HSF also correlated with the extent of histone displacement. The beginning of chromatin remodeling coincides with the polymerase II loading on heat shock gene promoters and is regulated either by HSF binding or activation of preloaded HSF.
Collapse
Affiliation(s)
- T Y Erkina
- Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | |
Collapse
|
7
|
Eastmond DL, Nelson HCM. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem 2006; 281:32909-21. [PMID: 16926161 PMCID: PMC2243236 DOI: 10.1074/jbc.m602454200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to elevated temperatures, cells from many organisms rapidly transcribe a number of mRNAs. In Saccharomyces cerevisiae, this protective response involves two regulatory systems: the heat shock transcription factor (Hsf1) and the Msn2 and Msn4 (Msn2/4) transcription factors. Both systems modulate the induction of specific heat shock genes. However, the contribution of Hsf1, independent of Msn2/4, is only beginning to emerge. To address this question, we constructed an msn2/4 double mutant and used microarrays to elucidate the genome-wide expression program of Hsf1. The data showed that 7.6% of the genome was heat-induced. The up-regulated genes belong to a wide range of functional categories, with a significant increase in the chaperone and metabolism genes. We then focused on the contribution of the activation domains of Hsf1 to the expression profile and extended our analysis to include msn2/4Delta strains deleted for the N-terminal or C-terminal activation domain of Hsf1. Cluster analysis of the heat-induced genes revealed activation domain-specific patterns of expression, with each cluster also showing distinct preferences for functional categories. Computational analysis of the promoters of the induced genes affected by the loss of an activation domain showed a distinct preference for positioning and topology of the Hsf1 binding site. This study provides insight into the important role that both activation domains play for the Hsf1 regulatory system to rapidly and effectively transcribe its regulon in response to heat shock.
Collapse
Affiliation(s)
- Dawn L. Eastmond
- From the Department of Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Hillary C. M. Nelson
- From the Department of Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
8
|
Hashikawa N, Sakurai H. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol Cell Biol 2004; 24:3648-59. [PMID: 15082761 PMCID: PMC387759 DOI: 10.1128/mcb.24.9.3648-3659.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock transcription factor (HSF) binds to the heat shock element (HSE) and regulates transcription, where the divergence of HSE architecture provides gene- and stress-specific responses. The phosphorylation state of HSF, regulated by stress, is involved in the activation and inactivation of the transcription activation function. A domain designated as CTM (C-terminal modulator) of the Saccharomyces cerevisiae HSF is required for the activation of genes containing atypical HSE but not typical HSE. Here, we demonstrate that CTM function is conserved among yeast HSFs and is necessary not only for HSE-specific activation but also for the hyperphosphorylation of HSF upon heat shock. Moreover, both transcription and phosphorylation defects due to CTM mutations were restored concomitantly by a set of intragenic suppressor mutations. Therefore, the hyperphosphorylation of HSF is correlated with the activation of genes with atypical HSE but is not involved in that of genes with typical HSE. The function of CTM was circumvented in an HSF derivative lacking CE2, a yeast-specific repression domain. Taken together, we suggest that CTM alleviates repression by CE2, which allows HSF to be heat-inducibly phosphorylated and presume that phosphorylation is a prerequisite for the activator function of HSF when it binds to an atypical HSE.
Collapse
Affiliation(s)
- Naoya Hashikawa
- School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-0942, Japan
| | | |
Collapse
|
9
|
Morano KA, Santoro N, Koch KA, Thiele DJ. A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress. Mol Cell Biol 1999; 19:402-11. [PMID: 9858564 PMCID: PMC83898 DOI: 10.1128/mcb.19.1.402] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/1998] [Accepted: 10/06/1998] [Indexed: 11/20/2022] Open
Abstract
Gene expression in response to heat shock is mediated by the heat shock transcription factor (HSF), which in yeast harbors both amino- and carboxyl-terminal transcriptional activation domains. Yeast cells bearing a truncated form of HSF in which the carboxyl-terminal transcriptional activation domain has been deleted [HSF(1-583)] are temperature sensitive for growth at 37 degreesC, demonstrating a requirement for this domain for sustained viability during thermal stress. Here we demonstrate that HSF(1-583) cells undergo reversible cell cycle arrest at 37 degreesC in the G2/M phase of the cell cycle and exhibit marked reduction in levels of the molecular chaperone Hsp90. As in higher eukaryotes, yeast possesses two nearly identical isoforms of Hsp90: one constitutively expressed and one highly heat inducible. When expressed at physiological levels in HSF(1-583) cells, the inducible Hsp90 isoform encoded by HSP82 more efficiently suppressed the temperature sensitivity of this strain than the constitutively expressed gene HSC82, suggesting that different functional roles may exist for these chaperones. Consistent with a defect in Hsp90 production, HSF(1-583) cells also exhibited hypersensitivity to the Hsp90-binding ansamycin antibiotic geldanamycin. Depletion of Hsp90 from yeast cells wild type for HSF results in cell cycle arrest in both G1/S and G2/M phases, suggesting a complex requirement for chaperone function in mitotic division during stress.
Collapse
Affiliation(s)
- K A Morano
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
10
|
Santoro N, Johansson N, Thiele DJ. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol Cell Biol 1998; 18:6340-52. [PMID: 9774650 PMCID: PMC109220 DOI: 10.1128/mcb.18.11.6340] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The baker's yeast Saccharomyces cerevisiae possesses a single gene encoding heat shock transcription factor (HSF), which is required for the activation of genes that participate in stress protection as well as normal growth and viability. Yeast HSF (yHSF) contains two distinct transcriptional activation regions located at the amino and carboxyl termini. Activation of the yeast metallothionein gene, CUP1, depends on a nonconsensus heat shock element (HSE), occurs at higher temperatures than other heat shock-responsive genes, and is highly dependent on the carboxyl-terminal transactivation domain (CTA) of yHSF. The results described here show that the noncanonical (or gapped) spacing of GAA units in the CUP1 HSE (HSE1) functions to limit the magnitude of CUP1 transcriptional activation in response to heat and oxidative stress. The spacing in HSE1 modulates the dependence for transcriptional activation by both stresses on the yHSF CTA. Furthermore, a previously uncharacterized HSE in the CUP1 promoter, HSE2, modulates the magnitude of the transcriptional activation of CUP1, via HSE1, in response to stress. In vitro DNase I footprinting experiments suggest that the occupation of HSE2 by yHSF strongly influences the manner in which yHSF occupies HSE1. Limited proteolysis assays show that HSF adopts a distinct protease-sensitive conformation when bound to the CUP1 HSE1, providing evidence that the HSE influences DNA-bound HSF conformation. Together, these results suggest that CUP1 regulation is distinct from that of other classic heat shock genes through the interaction of yHSF with two nonconsensus HSEs. Consistent with this view, we have identified other gene targets of yHSF containing HSEs with sequence and spacing features similar to those of CUP1 HSE1 and show a correlation between the spacing of the GAA units and the relative dependence on the yHSF CTA.
Collapse
Affiliation(s)
- N Santoro
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | |
Collapse
|
11
|
Szent-Gyorgyi C. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82. Mol Cell Biol 1995; 15:6754-69. [PMID: 8524241 PMCID: PMC230929 DOI: 10.1128/mcb.15.12.6754] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although key genetic regulators of early meiotic transcription in Saccharomyces cerevisiae have been well characterized, the activation of meiotic genes is still poorly understood in terms of cis-acting DNA elements and their associated factors. I report here that induction of HSP82 is regulated by the early meiotic IME1-IME2 transcriptional cascade. Vegetative repression and meiotic induction depend on interactions of the promoter-proximal heat shock element (HSE) with a nearby bipartite repression element, composed of the ubiquitous early meiotic motif, URS1 (upstream repression sequence 1), and a novel ancillary repression element. The ancillary repression element is required for efficient vegetative repression, is spatially separable from URS1, and continues to facilitate repression during sporulation. In contrast, URS1 also functions as a vegetative repression element but is converted early in meiosis into an HSE-dependent activation element. An early step in this transformation may be the antagonism of URS1-mediated repression by IME1. The HSE also nonspecifically supports a second major mode of meiotic activation that does not require URS1 but does require expression of IME2 and concurrent starvation. Interestingly, increased rather than decreased URS1-mediated vegetative transcription can be artificially achieved by introducing rare point mutations into URS1 or by deleting the UME6 gene. These lesions offer insight into mechanisms of URS-dependent repression and activation. Experiments suggest that URS1-bound factors functionally modulate heat shock factor during vegetative transcription and early meiotic induction but not during heat shock. The loss of repression and activation observed when the IME2 activation element, T4C, is substituted for the HSE suggests specific requirements for URS1-upstream activation sequence interactions.
Collapse
Affiliation(s)
- C Szent-Gyorgyi
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
12
|
Kropat J, von Gromoff ED, Müller FW, Beck CF. Heat shock and light activation of a Chlamydomonas HSP70 gene are mediated by independent regulatory pathways. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:727-34. [PMID: 7476876 DOI: 10.1007/bf02191713] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Induction of HSP70 heat shock genes by light has been demonstrated in Chlamydomonas. Our aim was to establish whether this induction by light is mediated by the heat stress sensing pathway or by an independent signal chain. Inhibitors of cytoplasmic protein synthesis revealed an initial difference. Cycloheximide and other inhibitors of protein synthesis prevented HSP70A induction upon illumination but not during heat stress. Analysis of HSP70A induction in cells that had differentiated into gametes revealed a second difference. While heat shock resulted in elevated HSP70A mRNA levels, light was no longer able to serve as an inducer in gametes. To identify the regulatory sequences that mediate the response of the HSP70A gene to either heat stress or light we introduced a series of progressive 5' truncations into its promoter sequence. Analyses of the levels of mRNA transcribed from these deletion constructs showed that in most of them the responses to heat shock and light were similar, suggesting that light induction is mediated by a light-activated heat shock factor. However, we show that the HSP70A promoter also contains cis-acting sequences involved in light induction that do not participate in induction by heat stress. Together, these results provide evidence for a regulation of HSP70A gene expression by light through a heat shock-independent signal pathway.
Collapse
Affiliation(s)
- J Kropat
- Institut für Biologie III, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | | |
Collapse
|
13
|
Halladay JT, Craig EA. A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant. Mol Cell Biol 1995; 15:4890-7. [PMID: 7651408 PMCID: PMC230735 DOI: 10.1128/mcb.15.9.4890] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Strains carrying deletions in both the SSA1 and SSA2 HSP70 genes of Saccharomyces cerevisiae exhibit pleiotropic phenotypes, including the inability to grow at 37 degrees C or higher, reduced growth rate at permissive temperatures, increased HSP gene expression, and constitutive thermotolerance. A screen for extragenic suppressors of the ssa1 ssa2 slow-growth phenotype identified a spontaneous dominant suppressor mutation, EXA3-1 (R.J. Nelson, M. Heschl, and E.A. Craig, Genetics 131:277-285, 1992). Here we report that EXA3-1 is an allele of HSF1, which encodes the heat shock transcription factor (HSF). Strains containing the EXA3-1 allele in a wild-type background exhibit a 10- to 15-fold reduction in HSF activity during steady-state growth conditions as well as a delay in the accumulation of the SSA4, HSP26, and HSP104 mRNAs after a heat shock. EXA3-1-mediated suppression is the result of a single amino acid substitution of a highly conserved residue in the HSF DNA-binding domain which drastically reduces the ability of HSF to bind to heat shock elements as evaluated by band shift analysis. Together, these results indicate that the poor growth of ssa1 ssa2 strains is the result, at least in part, of the overproduction of a deleterious heat shock protein(s). This conclusion is supported by the fact that the levels of at least some heat shock proteins are reduced in ssa1 ssa2 cells containing the EXA3-1 allele. Surprisingly, strains containing the EXA3-1 allele in a wild-type HSP70 background grow early as well as the wild-type strain over a wide temperature range, displaying only a slight reduction in growth rate at 37 degrees Celsius, indicating that cells contain significantly more HSF activity than is require for growth under steady-state conditions.
Collapse
Affiliation(s)
- J T Halladay
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
14
|
Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol 1994. [PMID: 7969152 DOI: 10.1128/mcb.14.12.8155] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallothioneins constitute a class of low-molecular-weight, cysteine-rich metal-binding stress proteins which are biosynthetically regulated at the level of gene transcription in response to metals, hormones, cytokines, and other physiological and environmental stresses. In this report, we demonstrate that the Saccharomyces cerevisiae metallothionein gene, designated CUP1, is transcriptionally activated in response to heat shock and glucose starvation through the action of heat shock transcription factor (HSF) and a heat shock element located within the CUP1 promoter upstream regulatory region. CUP1 gene activation in response to both stresses occurs rapidly; however, heat shock activates CUP1 gene expression transiently, whereas glucose starvation activates CUP1 gene expression in a sustained manner for at least 2.5 h. Although a carboxyl-terminal HSF transcriptional activation domain is critical for the activation of CUP1 transcription in response to both heat shock stress and glucose starvation, this region is dispensable for transient heat shock activation of at least two genes encoding members of the S. cerevisiae hsp70 family. Furthermore, inactivation of the chromosomal SNF1 gene, encoding a serine-threonine protein kinase, or the SNF4 gene, encoding a SNF1 cofactor, abolishes CUP1 transcriptional activation in response to glucose starvation without altering heat shock-induced transcription. These studies demonstrate that the S. cerevisiae HSF responds to multiple, distinct stimuli to activate yeast metallothionein gene transcription and that these stimuli elicit responses through nonidentical, genetically separable signalling pathways.
Collapse
|
15
|
Tamai KT, Liu X, Silar P, Sosinowski T, Thiele DJ. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol 1994; 14:8155-65. [PMID: 7969152 PMCID: PMC359354 DOI: 10.1128/mcb.14.12.8155-8165.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Metallothioneins constitute a class of low-molecular-weight, cysteine-rich metal-binding stress proteins which are biosynthetically regulated at the level of gene transcription in response to metals, hormones, cytokines, and other physiological and environmental stresses. In this report, we demonstrate that the Saccharomyces cerevisiae metallothionein gene, designated CUP1, is transcriptionally activated in response to heat shock and glucose starvation through the action of heat shock transcription factor (HSF) and a heat shock element located within the CUP1 promoter upstream regulatory region. CUP1 gene activation in response to both stresses occurs rapidly; however, heat shock activates CUP1 gene expression transiently, whereas glucose starvation activates CUP1 gene expression in a sustained manner for at least 2.5 h. Although a carboxyl-terminal HSF transcriptional activation domain is critical for the activation of CUP1 transcription in response to both heat shock stress and glucose starvation, this region is dispensable for transient heat shock activation of at least two genes encoding members of the S. cerevisiae hsp70 family. Furthermore, inactivation of the chromosomal SNF1 gene, encoding a serine-threonine protein kinase, or the SNF4 gene, encoding a SNF1 cofactor, abolishes CUP1 transcriptional activation in response to glucose starvation without altering heat shock-induced transcription. These studies demonstrate that the S. cerevisiae HSF responds to multiple, distinct stimuli to activate yeast metallothionein gene transcription and that these stimuli elicit responses through nonidentical, genetically separable signalling pathways.
Collapse
Affiliation(s)
- K T Tamai
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606
| | | | | | | | | |
Collapse
|