1
|
Kovács D, Kovács M, Ahmed S, Barna J. Functional diversification of heat shock factors. Biol Futur 2022; 73:427-439. [PMID: 36402935 DOI: 10.1007/s42977-022-00138-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Heat shock transcription factors (HSFs) are widely known as master regulators of the heat shock response. In invertebrates, a single heat shock factor, HSF1, is responsible for the maintenance of protein homeostasis. In vertebrates, seven members of the HSF family have been identified, namely HSF1, HSF2, HSF3, HSF4, HSF5, HSFX, and HSFY, of which HSF1 and HSF2 are clearly associated with heat shock response, while HSF4 is involved in development. Other members of the family have not yet been studied as extensively. Besides their role in cellular proteostasis, HSFs influence a plethora of biological processes such as aging, development, cell proliferation, and cell differentiation, and they are implicated in several pathologies such as neurodegeneration and cancer. This is achieved by regulating the expression of a great variety of genes including chaperones. Here, we review our current knowledge on the function of HSF family members and important aspects that made possible the functional diversification of HSFs.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Márton Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Saqib Ahmed
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary. .,ELKH-ELTE Genetics Research Group, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary.
| |
Collapse
|
2
|
Lueangjaroenkit P, Kunitake E, Sakka M, Kimura T, Teerapatsakul C, Sakka K, Chitradon L. Light Regulation of Two New Manganese Peroxidase-Encoding Genes in Trametes polyzona KU-RNW027. Microorganisms 2020; 8:microorganisms8060852. [PMID: 32517022 PMCID: PMC7355636 DOI: 10.3390/microorganisms8060852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/02/2022] Open
Abstract
To better understand the light regulation of ligninolytic systems in Trametes polyzona KU-RNW027, ligninolytic enzymes-encoding genes were identified and analyzed to determine their transcriptional regulatory elements. Elements of light regulation were investigated in submerged culture. Three ligninolytic enzyme-encoding genes, mnp1, mnp2, and lac1, were found. Cloning of the genes encoding MnP1 and MnP2 revealed distinct deduced amino acid sequences with 90% and 86% similarity to MnPs in Lenzites gibbosa, respectively. These were classified as new members of short-type hybrid MnPs in subfamily A.2 class II fungal secretion heme peroxidase. A light responsive element (LRE), composed of a 5′-CCRCCC-3′ motif in both mnp promoters, is reported. Light enhanced MnP activity 1.5 times but not laccase activity. The mnp gene expressions under light condition increased 6.5- and 3.8-fold, respectively. Regulation of laccase gene expression by light was inconsistent with the absence of LREs in their promoter. Blue light did not affect gene expressions but impacted their stability. Reductions of MnP and laccase production under blue light were observed. The details of the molecular mechanisms underlying enzyme production in this white-rot fungus provide useful knowledge for wood degradation relative to illumination condition. These novel observations demonstrate the potential of enhancing ligninolytic enzyme production by this fungus for applications with an eco-friendly approach to bioremediation.
Collapse
Affiliation(s)
- Piyangkun Lueangjaroenkit
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.L.); (C.T.)
| | - Emi Kunitake
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Makiko Sakka
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Tetsuya Kimura
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Churapa Teerapatsakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.L.); (C.T.)
| | - Kazuo Sakka
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Lerluck Chitradon
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.L.); (C.T.)
- Correspondence: ; Tel.: +66-(0)2-562-5555 (ext. 646624)
| |
Collapse
|
3
|
Masser AE, Kang W, Roy J, Mohanakrishnan Kaimal J, Quintana-Cordero J, Friedländer MR, Andréasson C. Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1. eLife 2019; 8:47791. [PMID: 31552827 PMCID: PMC6779467 DOI: 10.7554/elife.47791] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Hsf1 is an ancient transcription factor that responds to protein folding stress by inducing the heat-shock response (HSR) that restore perturbed proteostasis. Hsp70 chaperones negatively regulate the activity of Hsf1 via stress-responsive mechanisms that are poorly understood. Here, we have reconstituted budding yeast Hsf1-Hsp70 activation complexes and find that surplus Hsp70 inhibits Hsf1 DNA-binding activity. Hsp70 binds Hsf1 via its canonical substrate binding domain and Hsp70 regulates Hsf1 DNA-binding activity. During heat shock, Hsp70 is out-titrated by misfolded proteins derived from ongoing translation in the cytosol. Pushing the boundaries of the regulatory system unveils a genetic hyperstress program that is triggered by proteostasis collapse and involves an enlarged Hsf1 regulon. The findings demonstrate how an apparently simple chaperone-titration mechanism produces diversified transcriptional output in response to distinct stress loads.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Wenjing Kang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Joydeep Roy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Jany Quintana-Cordero
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Huang Z, Lei X, Feng X, Gao S, Wang G, Bian Y, Huang W, Liu Y. Identification of a Heat-Inducible Element of Cysteine Desulfurase Gene Promoter in Lentinula edodes. Molecules 2019; 24:molecules24122223. [PMID: 31197084 PMCID: PMC6632127 DOI: 10.3390/molecules24122223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Volatile organosulfur compounds are the main components that contribute to the unique aroma of dried Lentinula edodes. They are mainly generated during the hot-air drying process, and cysteine desulfurase is the key enzyme in this process. Temperature may be an essential factor of volatile organosulfur compound production by influencing the expression of the cysteine desulfurase gene. In this study, the promoter sequence of the cysteine desulfurase gene (pCS) was cloned and analyzed using bioinformatics tools. A series of 5′deletion fragments and site-directed mutations of pCS were constructed to identify the element that responds to heat stress. Six heat shock transcription factor (HSTF) binding sites were predicted by SCPD (The Promoter Database of Saccharomyces cerevisiae) and three of the binding sites were predicted by Yeastract (Yeast Search for Transcriptional Regulators and Consensus Tracking) in pCS. The results indicated that pCS was able to drive the expression of the EGFP (Enhanced Green Fluorescent Protein) gene in L. edodes. Moreover, the fluorescence intensity increased after heat stress. The changes in fluorescence intensity of different 5′deletion fragments showed that the heat response region was located between −500 bp and −400 bp in pCS. The site-directed mutation analysis further showed that the heat-inducible element was between −490 bp and −500 bp (TTTCTAGAAT) in pCS. Our results provide molecular insight for studying the formation of volatile organosulfur compounds in dried L. edodes.
Collapse
Affiliation(s)
- Zhicheng Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyu Lei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, California State University, San Jose, CA 95192, USA.
| | - Shuangshuang Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Gangzheng Wang
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yinbing Bian
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Joutsen J, Sistonen L. Tailoring of Proteostasis Networks with Heat Shock Factors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034066. [PMID: 30420555 DOI: 10.1101/cshperspect.a034066] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the heat shock response and indispensable for maintaining cellular proteostasis. HSFs mediate their protective functions through diverse genetic programs, which are composed of genes encoding molecular chaperones and other genes crucial for cell survival. The mechanisms that are used to tailor HSF-driven proteostasis networks are not yet completely understood, but they likely comprise from distinct combinations of both genetic and proteomic determinants. In this review, we highlight the versatile HSF-mediated cellular functions that extend from cellular stress responses to various physiological and pathological processes, and we underline the key advancements that have been achieved in the field of HSF research during the last decade.
Collapse
Affiliation(s)
- Jenny Joutsen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
6
|
Arce D, Spetale F, Krsticevic F, Cacchiarelli P, Las Rivas JD, Ponce S, Pratta G, Tapia E. Regulatory motifs found in the small heat shock protein (sHSP) gene family in tomato. BMC Genomics 2018; 19:860. [PMID: 30537925 PMCID: PMC6288846 DOI: 10.1186/s12864-018-5190-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In living organisms, small heat shock proteins (sHSPs) are triggered in response to stress situations. This family of proteins is large in plants and, in the case of tomato (Solanum lycopersicum), 33 genes have been identified, most of them related to heat stress response and to the ripening process. Transcriptomic and proteomic studies have revealed complex patterns of expression for these genes. In this work, we investigate the coregulation of these genes by performing a computational analysis of their promoter architecture to find regulatory motifs known as heat shock elements (HSEs). We leverage the presence of sHSP members that originated from tandem duplication events and analyze the promoter architecture diversity of the whole sHSP family, focusing on the identification of HSEs. RESULTS We performed a search for conserved genomic sequences in the promoter regions of the sHSPs of tomato, plus several other proteins (mainly HSPs) that are functionally related to heat stress situations or to ripening. Several computational analyses were performed to build multiple sequence motifs and identify transcription factor binding sites (TFBS) homologous to HSF1AE and HSF21 in Arabidopsis. We also investigated the expression and interaction of these proteins under two heat stress situations in whole tomato plants and in protoplast cells, both in the presence and in the absence of heat shock transcription factor A2 (HsfA2). The results of these analyses indicate that different sHSPs are up-regulated depending on the activation or repression of HsfA2, a key regulator of HSPs. Further, the analysis of protein-protein interaction between the sHSP protein family and other heat shock response proteins (Hsp70, Hsp90 and MBF1c) suggests that several sHSPs are mediating alternative stress response through a regulatory subnetwork that is not dependent on HsfA2. CONCLUSIONS Overall, this study identifies two regulatory motifs (HSF1AE and HSF21) associated with the sHSP family in tomato which are considered genomic HSEs. The study also suggests that, despite the apparent redundancy of these proteins, which has been linked to gene duplication, tomato sHSPs showed different up-regulation and different interaction patterns when analyzed under different stress situations.
Collapse
Affiliation(s)
- Debora Arce
- IICAR-CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, S2125ZAA Argentina
| | - Flavio Spetale
- CIFASIS - CONICET, Ocampo y Esmeralda, Rosario, S2000EZP Argentina
| | | | - Paolo Cacchiarelli
- IICAR-CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, S2125ZAA Argentina
| | - Javier De Las Rivas
- Cancer Research Center CiC-IBMCC, CSIC/USAL, Campus Miguel de Unamuno s/n, Salamanca, 37007 Spain
| | - Sergio Ponce
- GADIB-FRSN-UTN, Colon 332, San Nicolas, B2900LWH Argentina
| | - Guillermo Pratta
- IICAR-CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, S2125ZAA Argentina
| | - Elizabeth Tapia
- CIFASIS - CONICET, Ocampo y Esmeralda, Rosario, S2000EZP Argentina
- Faculty of Exact Sciences, Engineering and Surveying, Av. Pellegrini 250, Rosario, S2000BTP Argentina
| |
Collapse
|
7
|
Ishida Y, Nguyen TTM, Kitajima S, Izawa S. Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae. Front Microbiol 2016; 7:1059. [PMID: 27458450 PMCID: PMC4933698 DOI: 10.3389/fmicb.2016.01059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/23/2016] [Indexed: 01/10/2023] Open
Abstract
Vanillin is a potent fermentation inhibitor derived from the lignocellulosic biomass in biofuel production, and high concentrations of vanillin result in the pronounced repression of bulk translation in Saccharomyces cerevisiae. Studies on genes that are efficiently translated even in the presence of high concentrations of vanillin will be useful for improving yeast vanillin tolerance and fermentation efficiency. The BDH1 and BDH2 genes encode putative medium-chain alcohol dehydrogenase/reductases and their amino acid sequences are very similar to each other. Although BDH2 was previously suggested to be involved in vanillin tolerance, it has yet to be clarified whether Bdh1/Bdh2 actually contribute to vanillin tolerance and reductions in vanillin. Therefore, we herein investigated the effects of Bdh1 and Bdh2 on vanillin tolerance. bdh2Δ cells exhibited hypersensitivity to vanillin and slower reductions in vanillin than wild-type cells and bdh1Δ cells. Additionally, the overexpression of the BDH2 gene improved yeast tolerance to vanillin more efficiently than that of BDH1. Only BDH2 mRNA was efficiently translated under severe vanillin stress, however, both BDH genes were transcriptionally up-regulated. These results reveal the importance of Bdh2 in vanillin detoxification and confirm the preferential translation of the BDH2 gene in the presence of high concentrations of vanillin. The BDH2 promoter also enabled the expression of non-native genes under severe vanillin stress and furfural stress, suggesting its availability to improve of the efficiency of bioethanol production through modifications in gene expression in the presence of fermentation inhibitors.
Collapse
Affiliation(s)
- Yoko Ishida
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| | - Trinh T M Nguyen
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| |
Collapse
|
8
|
Nguyen AD, Gotelli NJ, Cahan SH. The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. BMC Evol Biol 2016; 16:15. [PMID: 26787420 PMCID: PMC4717527 DOI: 10.1186/s12862-015-0573-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/19/2015] [Indexed: 01/22/2023] Open
Abstract
Background The eusocial Hymenoptera have radiated across a wide range of thermal environments, exposing them to significant physiological stressors. We reconstructed the evolutionary history of three families of Heat Shock Proteins (Hsp90, Hsp70, Hsp40), the primary molecular chaperones protecting against thermal damage, across 12 Hymenopteran species and four other insect orders. We also predicted and tested for thermal inducibility of eight Hsps from the presence of cis-regulatory heat shock elements (HSEs). We tested whether Hsp induction patterns in ants were associated with different thermal environments. Results We found evidence for duplications, losses, and cis-regulatory changes in two of the three gene families. One member of the Hsp90 gene family, hsp83, duplicated basally in the Hymenoptera, with shifts in HSE motifs in the novel copy. Both copies were retained in bees, but ants retained only the novel HSE copy. For Hsp70, Hymenoptera lack the primary heat-inducible orthologue from Drosophila melanogaster and instead induce the cognate form, hsc70-4, which also underwent an early duplication. Episodic diversifying selection was detected along the branch predating the duplication of hsc70-4 and continued along one of the paralogue branches after duplication. Four out of eight Hsp genes were heat-inducible and matched the predictions based on presence of conserved HSEs. For the inducible homologues, the more thermally tolerant species, Pogonomyrmex barbatus, had greater Hsp basal expression and induction in response to heat stress than did the less thermally tolerant species, Aphaenogaster picea. Furthermore, there was no trade-off between basal expression and induction. Conclusions Our results highlight the unique evolutionary history of Hsps in eusocial Hymenoptera, which has been shaped by gains, losses, and changes in cis-regulation. Ants, and most likely other Hymenoptera, utilize lineage-specific heat inducible Hsps, whose expression patterns are associated with adaptive variation in thermal tolerance between two ant species. Collectively, our analyses suggest that Hsp sequence and expression patterns may reflect the forces of selection acting on thermal tolerance in ants and other social Hymenoptera. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0573-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew D Nguyen
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA.
| | - Nicholas J Gotelli
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA.
| | - Sara Helms Cahan
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
9
|
Erives AJ, Fassler JS. Metabolic and chaperone gene loss marks the origin of animals: evidence for Hsp104 and Hsp78 chaperones sharing mitochondrial enzymes as clients. PLoS One 2015; 10:e0117192. [PMID: 25710177 PMCID: PMC4339202 DOI: 10.1371/journal.pone.0117192] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/17/2014] [Indexed: 12/31/2022] Open
Abstract
The evolution of animals involved acquisition of an emergent gene repertoire for gastrulation. Whether loss of genes also co-evolved with this developmental reprogramming has not yet been addressed. Here, we identify twenty-four genetic functions that are retained in fungi and choanoflagellates but undetectable in animals. These lost genes encode: (i) sixteen distinct biosynthetic functions; (ii) the two ancestral eukaryotic ClpB disaggregases, Hsp78 and Hsp104, which function in the mitochondria and cytosol, respectively; and (iii) six other assorted functions. We present computational and experimental data that are consistent with a joint function for the differentially localized ClpB disaggregases, and with the possibility of a shared client/chaperone relationship between the mitochondrial Fe/S homoaconitase encoded by the lost LYS4 gene and the two ClpBs. Our analyses lead to the hypothesis that the evolution of gastrulation-based multicellularity in animals led to efficient extraction of nutrients from dietary sources, loss of natural selection for maintenance of energetically expensive biosynthetic pathways, and subsequent loss of their attendant ClpB chaperones.
Collapse
Affiliation(s)
- Albert J. Erives
- Department of Biology, University of Iowa, Iowa City, IA, 52242–1324, United States of America
- * E-mail: (AJE); (JSF)
| | - Jan S. Fassler
- Department of Biology, University of Iowa, Iowa City, IA, 52242–1324, United States of America
- * E-mail: (AJE); (JSF)
| |
Collapse
|
10
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
11
|
Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2012; 189:705-36. [PMID: 22084422 DOI: 10.1534/genetics.111.127019] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms.
Collapse
|
12
|
Li Q, An J, Liu X, Zhang M, Ling Y, Wang C, Zhao J, Yu L. SNIP1: a new activator of HSE signaling pathway. Mol Cell Biochem 2011; 362:1-6. [PMID: 22020748 DOI: 10.1007/s11010-011-1120-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/07/2011] [Indexed: 01/15/2023]
Abstract
In the last 10 years, more and more attention has been focused on SNIP1 (Smad nuclear interacting protein 1), which functions as a transcriptional coactivator. We report here that through quantitative real-time PCR analysis in 18 different human tissues, SNIP1 was found to be expressed ubiquitously. When overexpressed in HeLa cells, SNIP1-EGFP fused protein exhibited a nuclear localization with a characteristic subnuclear distribution in speckles or formed larger discrete nuclear bodies in some cells. Reporter gene assay showed that overexpression of SNIP1 in HEK 293 cells or H1299 cells strongly activated the HSE signaling pathway. Moreover, SNIP1 could selectively regulate the transcription of HSP70A1A and HSP27. Taken together, our findings suggest that SNIP1 might also be a positive regulator of HSE signaling pathway.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tian S, Haney RA, Feder ME. Phylogeny disambiguates the evolution of heat-shock cis-regulatory elements in Drosophila. PLoS One 2010; 5:e10669. [PMID: 20498853 PMCID: PMC2871787 DOI: 10.1371/journal.pone.0010669] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/23/2010] [Indexed: 11/19/2022] Open
Abstract
Heat-shock genes have a well-studied control mechanism for their expression that is mediated through cis-regulatory motifs known as heat-shock elements (HSEs). The evolution of important features of this control mechanism has not been investigated in detail, however. Here we exploit the genome sequencing of multiple Drosophila species, combined with a wealth of available information on the structure and function of HSEs in D. melanogaster, to undertake this investigation. We find that in single-copy heat shock genes, entire HSEs have evolved or disappeared 14 times, and the phylogenetic approach bounds the timing and direction of these evolutionary events in relation to speciation. In contrast, in the multi-copy gene Hsp70, the number of HSEs is nearly constant across species. HSEs evolve in size, position, and sequence within heat-shock promoters. In turn, functional significance of certain features is implicated by preservation despite this evolutionary change; these features include tail-to-tail arrangements of HSEs, gapped HSEs, and the presence or absence of entire HSEs. The variation among Drosophila species indicates that the cis-regulatory encoding of responsiveness to heat and other stresses is diverse. The broad dimensions of variation uncovered are particularly important as they suggest a substantial challenge for functional studies.
Collapse
Affiliation(s)
- Sibo Tian
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Robert A. Haney
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Martin E. Feder
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Bandhakavi S, Xie H, O'Callaghan B, Sakurai H, Kim DH, Griffin TJ. Hsf1 activation inhibits rapamycin resistance and TOR signaling in yeast revealed by combined proteomic and genetic analysis. PLoS One 2008; 3:e1598. [PMID: 18270585 PMCID: PMC2225505 DOI: 10.1371/journal.pone.0001598] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 01/18/2008] [Indexed: 01/07/2023] Open
Abstract
TOR kinases integrate environmental and nutritional signals to regulate cell growth in eukaryotic organisms. Here, we describe results from a study combining quantitative proteomics and comparative expression analysis in the budding yeast, S. cerevisiae, to gain insights into TOR function and regulation. We profiled protein abundance changes under conditions of TOR inhibition by rapamycin treatment, and compared this data to existing expression information for corresponding gene products measured under a variety of conditions in yeast. Among proteins showing abundance changes upon rapamycin treatment, almost 90% of them demonstrated homodirectional (i.e., in similar direction) transcriptomic changes under conditions of heat/oxidative stress. Because the known downstream responses regulated by Tor1/2 did not fully explain the extent of overlap between these two conditions, we tested for novel connections between the major regulators of heat/oxidative stress response and the TOR pathway. Specifically, we hypothesized that activation of regulator(s) of heat/oxidative stress responses phenocopied TOR inhibition and sought to identify these putative TOR inhibitor(s). Among the stress regulators tested, we found that cells (hsf1-R206S, F256S and ssa1-3 ssa2-2) constitutively activated for heat shock transcription factor 1, Hsf1, inhibited rapamycin resistance. Further analysis of the hsf1-R206S, F256S allele revealed that these cells also displayed multiple phenotypes consistent with reduced TOR signaling. Among the multiple Hsf1 targets elevated in hsf1-R206S, F256S cells, deletion of PIR3 and YRO2 suppressed the TOR-regulated phenotypes. In contrast to our observations in cells activated for Hsf1, constitutive activation of other regulators of heat/oxidative stress responses, such as Msn2/4 and Hyr1, did not inhibit TOR signaling. Thus, we propose that activated Hsf1 inhibits rapamycin resistance and TOR signaling via elevated expression of specific target genes in S. cerevisiae. Additionally, these results highlight the value of comparative expression analyses between large-scale proteomic and transcriptomic datasets to reveal new regulatory connections.
Collapse
Affiliation(s)
- Sricharan Bandhakavi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hongwei Xie
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brennon O'Callaghan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hiroshi Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- *E-mail:
| |
Collapse
|
15
|
Eastmond DL, Nelson HCM. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem 2006; 281:32909-21. [PMID: 16926161 PMCID: PMC2243236 DOI: 10.1074/jbc.m602454200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to elevated temperatures, cells from many organisms rapidly transcribe a number of mRNAs. In Saccharomyces cerevisiae, this protective response involves two regulatory systems: the heat shock transcription factor (Hsf1) and the Msn2 and Msn4 (Msn2/4) transcription factors. Both systems modulate the induction of specific heat shock genes. However, the contribution of Hsf1, independent of Msn2/4, is only beginning to emerge. To address this question, we constructed an msn2/4 double mutant and used microarrays to elucidate the genome-wide expression program of Hsf1. The data showed that 7.6% of the genome was heat-induced. The up-regulated genes belong to a wide range of functional categories, with a significant increase in the chaperone and metabolism genes. We then focused on the contribution of the activation domains of Hsf1 to the expression profile and extended our analysis to include msn2/4Delta strains deleted for the N-terminal or C-terminal activation domain of Hsf1. Cluster analysis of the heat-induced genes revealed activation domain-specific patterns of expression, with each cluster also showing distinct preferences for functional categories. Computational analysis of the promoters of the induced genes affected by the loss of an activation domain showed a distinct preference for positioning and topology of the Hsf1 binding site. This study provides insight into the important role that both activation domains play for the Hsf1 regulatory system to rapidly and effectively transcribe its regulon in response to heat shock.
Collapse
Affiliation(s)
- Dawn L. Eastmond
- From the Department of Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Hillary C. M. Nelson
- From the Department of Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
16
|
Anckar J, Hietakangas V, Denessiouk K, Thiele DJ, Johnson MS, Sistonen L. Inhibition of DNA binding by differential sumoylation of heat shock factors. Mol Cell Biol 2006; 26:955-64. [PMID: 16428449 PMCID: PMC1347039 DOI: 10.1128/mcb.26.3.955-964.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Covalent modification of proteins by the small ubiquitin-related modifier SUMO regulates diverse biological functions. Sumoylation usually requires a consensus tetrapeptide, through which the binding of the SUMO-conjugating enzyme Ubc9 to the target protein is directed. However, additional specificity determinants are in many cases required. To gain insights into SUMO substrate selection, we have utilized the differential sumoylation of highly similar loop structures within the DNA-binding domains of heat shock transcription factor 1 (HSF1) and HSF2. Site-specific mutagenesis in combination with molecular modeling revealed that the sumoylation specificity is determined by several amino acids near the consensus site, which are likely to present the SUMO consensus motif to Ubc9. Importantly, we also demonstrate that sumoylation of the HSF2 loop impedes HSF2 DNA-binding activity, without affecting its oligomerization. Hence, SUMO modification of the HSF2 loop contributes to HSF-specific regulation of DNA binding and broadens the concept of sumoylation in the negative regulation of gene expression.
Collapse
Affiliation(s)
- Julius Anckar
- Turku Centre for Biotechnology, P.O. Box 123, FI-20521 Turku, Finland
| | | | | | | | | | | |
Collapse
|
17
|
Ahn SG, Liu PC, Klyachko K, Morimoto RI, Thiele DJ. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev 2001; 15:2134-45. [PMID: 11511544 PMCID: PMC312766 DOI: 10.1101/gad.894801] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic heat shock transcription factors (HSF) regulate an evolutionarily conserved stress-response pathway essential for survival against a variety of environmental and developmental stresses. Although the highly similar HSF family members have distinct roles in responding to stress and activating target gene expression, the mechanisms that govern these roles are unknown. Here we identify a loop within the HSF1 DNA-binding domain that dictates HSF isoform specific DNA binding in vitro and preferential target gene activation by HSF family members in both a yeast transcription assay and in mammalian cells. These characteristics of the HSF1 loop region are transposable to HSF2 and sufficient to confer DNA-binding specificity, heat shock inducible HSP gene expression and protection from heat-induced apoptosis in vivo. In addition, the loop suppresses formation of the HSF1 trimer under basal conditions and is required for heat-inducible trimerization in a purified system in vitro, suggesting that this domain is a critical part of the HSF1 heat-stress-sensing mechanism. We propose that this domain defines a signature for HSF1 that constitutes an important determinant for how cells utilize a family of transcription factors to respond to distinct stresses.
Collapse
Affiliation(s)
- S G Ahn
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | | | |
Collapse
|
18
|
Venturi CB, Erkine AM, Gross DS. Cell cycle-dependent binding of yeast heat shock factor to nucleosomes. Mol Cell Biol 2000; 20:6435-48. [PMID: 10938121 PMCID: PMC86119 DOI: 10.1128/mcb.20.17.6435-6448.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the nucleus, transcription factors must contend with the presence of chromatin in order to gain access to their cognate regulatory sequences. As most nuclear DNA is assembled into nucleosomes, activators must either invade a stable, preassembled nucleosome or preempt the formation of nucleosomes on newly replicated DNA, which is transiently free of histones. We have investigated the mechanism by which heat shock factor (HSF) binds to target nucleosomal heat shock elements (HSEs), using as our model a dinucleosomal heat shock promoter (hsp82-DeltaHSE1). We find that activated HSF cannot bind a stable, sequence-positioned nucleosome in G(1)-arrested cells. It can do so readily, however, following release from G(1) arrest or after the imposition of either an early S- or late G(2)-phase arrest. Surprisingly, despite the S-phase requirement, HSF nucleosomal binding activity is restored in the absence of hsp82 replication. These results contrast with the prevailing paradigm for activator-nucleosome interactions and implicate a nonreplicative, S-phase-specific event as a prerequisite for HSF binding to nucleosomal sites in vivo.
Collapse
Affiliation(s)
- C B Venturi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
19
|
Bonner JJ, Carlson T, Fackenthal DL, Paddock D, Storey K, Lea K. Complex regulation of the yeast heat shock transcription factor. Mol Biol Cell 2000; 11:1739-51. [PMID: 10793148 PMCID: PMC14880 DOI: 10.1091/mbc.11.5.1739] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast heat shock transcription factor (HSF) is regulated by posttranslational modification. Heat and superoxide can induce the conformational change associated with the heat shock response. Interaction between HSF and the chaperone hsp70 is also thought to play a role in HSF regulation. Here, we show that the Ssb1/2p member of the hsp70 family can form a stable, ATP-sensitive complex with HSF-a surprising finding because Ssb1/2p is not induced by heat shock. Phosphorylation and the assembly of HSF into larger, ATP-sensitive complexes both occur when HSF activity decreases, whether during adaptation to a raised temperature or during growth at low glucose concentrations. These larger HSF complexes also form during recovery from heat shock. However, if HSF is assembled into ATP-sensitive complexes (during growth at a low glucose concentration), heat shock does not stimulate the dissociation of the complexes. Nor does induction of the conformational change induce their dissociation. Modulation of the in vivo concentrations of the SSA and SSB proteins by deletion or overexpression affects HSF activity in a manner that is consistent with these findings and suggests the model that the SSA and SSB proteins perform distinct roles in the regulation of HSF activity.
Collapse
Affiliation(s)
- J J Bonner
- Department of Biology, Indiana University, Bloomington, Indiana 47405-3700, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Lee S, Carlson T, Christian N, Lea K, Kedzie J, Reilly JP, Bonner JJ. The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol Biol Cell 2000; 11:1753-64. [PMID: 10793149 PMCID: PMC14881 DOI: 10.1091/mbc.11.5.1753] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In vitro DNA-binding assays demonstrate that the heat shock transcription factor (HSF) from the yeast Saccharomyces cerevisiae can adopt an altered conformation when stressed. This conformation, reflected in a change in electrophoretic mobility, requires that two HSF trimers be bound to DNA. Single trimers do not show this change, which appears to represent an alteration in the cooperative interactions between trimers. HSF isolated from stressed cells displays a higher propensity to adopt this altered conformation. Purified HSF can be stimulated in vitro to undergo the conformational change by elevating the temperature or by exposing HSF to superoxide anion. Mutational analysis maps a region critical for this conformational change to the flexible loop between the minimal DNA-binding domain and the flexible linker that joins the DNA-binding domain to the trimerization domain. The significance of these findings is discussed in the context of the induction of the heat shock response by ischemic stroke, hypoxia, and recovery from anoxia, all known to stimulate the production of superoxide.
Collapse
Affiliation(s)
- S Lee
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana 47405-3700, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Morano KA, Santoro N, Koch KA, Thiele DJ. A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress. Mol Cell Biol 1999; 19:402-11. [PMID: 9858564 PMCID: PMC83898 DOI: 10.1128/mcb.19.1.402] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/1998] [Accepted: 10/06/1998] [Indexed: 11/20/2022] Open
Abstract
Gene expression in response to heat shock is mediated by the heat shock transcription factor (HSF), which in yeast harbors both amino- and carboxyl-terminal transcriptional activation domains. Yeast cells bearing a truncated form of HSF in which the carboxyl-terminal transcriptional activation domain has been deleted [HSF(1-583)] are temperature sensitive for growth at 37 degreesC, demonstrating a requirement for this domain for sustained viability during thermal stress. Here we demonstrate that HSF(1-583) cells undergo reversible cell cycle arrest at 37 degreesC in the G2/M phase of the cell cycle and exhibit marked reduction in levels of the molecular chaperone Hsp90. As in higher eukaryotes, yeast possesses two nearly identical isoforms of Hsp90: one constitutively expressed and one highly heat inducible. When expressed at physiological levels in HSF(1-583) cells, the inducible Hsp90 isoform encoded by HSP82 more efficiently suppressed the temperature sensitivity of this strain than the constitutively expressed gene HSC82, suggesting that different functional roles may exist for these chaperones. Consistent with a defect in Hsp90 production, HSF(1-583) cells also exhibited hypersensitivity to the Hsp90-binding ansamycin antibiotic geldanamycin. Depletion of Hsp90 from yeast cells wild type for HSF results in cell cycle arrest in both G1/S and G2/M phases, suggesting a complex requirement for chaperone function in mitotic division during stress.
Collapse
Affiliation(s)
- K A Morano
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
22
|
Santoro N, Johansson N, Thiele DJ. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol Cell Biol 1998; 18:6340-52. [PMID: 9774650 PMCID: PMC109220 DOI: 10.1128/mcb.18.11.6340] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The baker's yeast Saccharomyces cerevisiae possesses a single gene encoding heat shock transcription factor (HSF), which is required for the activation of genes that participate in stress protection as well as normal growth and viability. Yeast HSF (yHSF) contains two distinct transcriptional activation regions located at the amino and carboxyl termini. Activation of the yeast metallothionein gene, CUP1, depends on a nonconsensus heat shock element (HSE), occurs at higher temperatures than other heat shock-responsive genes, and is highly dependent on the carboxyl-terminal transactivation domain (CTA) of yHSF. The results described here show that the noncanonical (or gapped) spacing of GAA units in the CUP1 HSE (HSE1) functions to limit the magnitude of CUP1 transcriptional activation in response to heat and oxidative stress. The spacing in HSE1 modulates the dependence for transcriptional activation by both stresses on the yHSF CTA. Furthermore, a previously uncharacterized HSE in the CUP1 promoter, HSE2, modulates the magnitude of the transcriptional activation of CUP1, via HSE1, in response to stress. In vitro DNase I footprinting experiments suggest that the occupation of HSE2 by yHSF strongly influences the manner in which yHSF occupies HSE1. Limited proteolysis assays show that HSF adopts a distinct protease-sensitive conformation when bound to the CUP1 HSE1, providing evidence that the HSE influences DNA-bound HSF conformation. Together, these results suggest that CUP1 regulation is distinct from that of other classic heat shock genes through the interaction of yHSF with two nonconsensus HSEs. Consistent with this view, we have identified other gene targets of yHSF containing HSEs with sequence and spacing features similar to those of CUP1 HSE1 and show a correlation between the spacing of the GAA units and the relative dependence on the yHSF CTA.
Collapse
Affiliation(s)
- N Santoro
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | |
Collapse
|
23
|
Liu XD, Liu PC, Santoro N, Thiele DJ. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. EMBO J 1997; 16:6466-77. [PMID: 9351828 PMCID: PMC1170252 DOI: 10.1093/emboj/16.21.6466] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Heat shock factors (HSF) are important eukaryotic stress responsive transcription factors which are highly structurally conserved from yeast to mammals. HSFs bind as homotrimers to conserved promoter DNA recognition sites called HSEs. The baker's yeast Saccharomyces cerevisiae possesses a single essential HSF gene, while distinct HSF isoforms have been identified in humans. To ascertain the degree of functional similarity between the yeast and human HSF proteins, human HSF1 and HSF2 were expressed in yeast cells lacking the endogenous HSF gene. We demonstrate that human HSF2, but not HSF1, homotrimerizes and functionally complements the viability defect associated with a deletion of the yeast HSF gene. However, derivatives of hHSF1 that give rise to a trimerized protein, through disruption of a carboxyl- or aminoterminal coiled-coil domain thought to engage in intramolecular interactions that maintain the protein in a monomeric state, functionally substitute for yeast HSF. Surprisingly, hHSF2 expressed in yeast activates target gene transcription in response to thermal stress. Moreover, hHSF1 and hHSF2 exhibit selectivity for transcriptional activation of two distinct yeast heat shock responsive genes, which correlate with previously established mammalian HSF DNA binding preferences in vitro. These results provide new insight into the function of human HSF isoforms, and demonstrate the remarkable functional conservation between yeast and human HSFs, critical transcription factors required for responses to physiological, pharmacological and environmental stresses.
Collapse
Affiliation(s)
- X D Liu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Living cells, both prokaryotic and eukaryotic, employ specific sensory and signalling systems to obtain and transmit information from their environment in order to adjust cellular metabolism, growth, and development to environmental alterations. Among external factors that trigger such molecular communications are nutrients, ions, drugs and other compounds, and physical parameters such as temperature and pressure. One could consider stress imposed on cells as any disturbance of the normal growth condition and even as any deviation from optimal growth circumstances. It may be worthwhile to distinguish specific and general stress circumstances. Reasoning from this angle, the extensively studied response to heat stress on the one hand is a specific response of cells challenged with supra-optimal temperatures. This response makes use of the sophisticated chaperoning mechanisms playing a role during normal protein folding and turnover. The response is aimed primarily at protection and repair of cellular components and partly at acquisition of heat tolerance. In addition, heat stress conditions induce a general response, in common with other metabolically adverse circumstances leading to physiological perturbations, such as oxidative stress or osmostress. Furthermore, it is obvious that limitation of essential nutrients, such as glucose or amino acids for yeasts, leads to such a metabolic response. The purpose of the general response may be to promote rapid recovery from the stressful condition and resumption of normal growth. This review focuses on the changes in gene expression that occur when cells are challenged by stress, with major emphasis on the transcription factors involved, their cognate promoter elements, and the modulation of their activity upon stress signal transduction. With respect to heat shock-induced changes, a wealth of information on both prokaryotic and eukaryotic organisms, including yeasts, is available. As far as the concept of the general (metabolic) stress response is concerned, major attention will be paid to Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- W H Mager
- Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
25
|
Torres FA, Bonner JJ. Genetic identification of the site of DNA contact in the yeast heat shock transcription factor. Mol Cell Biol 1995; 15:5063-70. [PMID: 7651423 PMCID: PMC230753 DOI: 10.1128/mcb.15.9.5063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The heat shock transcription factor (HSF), a trimeric transcription factor, activates the expression of heat shock genes in eukaryotes. We have isolated mutations in the HSF1 gene from Saccharomyces cerevisiae that severely compromise the ability of HSF to bind to its normal binding site, repeats of the module nGAAn. One of these mutations, Q229R, shows a "new specificity" phenotype, in which the protein prefers the mutant sequence nGACn. These results identify the region of HSF that contacts DNA, in complete agreement with the crystal structure of HSF of Kluyveromyces lactis and the nuclear magnetic resonance data from HSF of Drosophila melanogaster. To determine the orientation of the DNA-binding domain on the nGAAn motif, we performed site-specific cross-linking between cysteine residues of single-cysteine substitutions. Cysteines placed at the N terminus of the DNA contact helix formed cross-links readily, while cysteines placed at the C terminus of the helix did not.
Collapse
Affiliation(s)
- F A Torres
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
26
|
Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol 1994. [PMID: 7969152 DOI: 10.1128/mcb.14.12.8155] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallothioneins constitute a class of low-molecular-weight, cysteine-rich metal-binding stress proteins which are biosynthetically regulated at the level of gene transcription in response to metals, hormones, cytokines, and other physiological and environmental stresses. In this report, we demonstrate that the Saccharomyces cerevisiae metallothionein gene, designated CUP1, is transcriptionally activated in response to heat shock and glucose starvation through the action of heat shock transcription factor (HSF) and a heat shock element located within the CUP1 promoter upstream regulatory region. CUP1 gene activation in response to both stresses occurs rapidly; however, heat shock activates CUP1 gene expression transiently, whereas glucose starvation activates CUP1 gene expression in a sustained manner for at least 2.5 h. Although a carboxyl-terminal HSF transcriptional activation domain is critical for the activation of CUP1 transcription in response to both heat shock stress and glucose starvation, this region is dispensable for transient heat shock activation of at least two genes encoding members of the S. cerevisiae hsp70 family. Furthermore, inactivation of the chromosomal SNF1 gene, encoding a serine-threonine protein kinase, or the SNF4 gene, encoding a SNF1 cofactor, abolishes CUP1 transcriptional activation in response to glucose starvation without altering heat shock-induced transcription. These studies demonstrate that the S. cerevisiae HSF responds to multiple, distinct stimuli to activate yeast metallothionein gene transcription and that these stimuli elicit responses through nonidentical, genetically separable signalling pathways.
Collapse
|
27
|
Tamai KT, Liu X, Silar P, Sosinowski T, Thiele DJ. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol 1994; 14:8155-65. [PMID: 7969152 PMCID: PMC359354 DOI: 10.1128/mcb.14.12.8155-8165.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Metallothioneins constitute a class of low-molecular-weight, cysteine-rich metal-binding stress proteins which are biosynthetically regulated at the level of gene transcription in response to metals, hormones, cytokines, and other physiological and environmental stresses. In this report, we demonstrate that the Saccharomyces cerevisiae metallothionein gene, designated CUP1, is transcriptionally activated in response to heat shock and glucose starvation through the action of heat shock transcription factor (HSF) and a heat shock element located within the CUP1 promoter upstream regulatory region. CUP1 gene activation in response to both stresses occurs rapidly; however, heat shock activates CUP1 gene expression transiently, whereas glucose starvation activates CUP1 gene expression in a sustained manner for at least 2.5 h. Although a carboxyl-terminal HSF transcriptional activation domain is critical for the activation of CUP1 transcription in response to both heat shock stress and glucose starvation, this region is dispensable for transient heat shock activation of at least two genes encoding members of the S. cerevisiae hsp70 family. Furthermore, inactivation of the chromosomal SNF1 gene, encoding a serine-threonine protein kinase, or the SNF4 gene, encoding a SNF1 cofactor, abolishes CUP1 transcriptional activation in response to glucose starvation without altering heat shock-induced transcription. These studies demonstrate that the S. cerevisiae HSF responds to multiple, distinct stimuli to activate yeast metallothionein gene transcription and that these stimuli elicit responses through nonidentical, genetically separable signalling pathways.
Collapse
Affiliation(s)
- K T Tamai
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606
| | | | | | | | | |
Collapse
|
28
|
Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol Cell Biol 1994. [PMID: 7935474 DOI: 10.1128/mcb.14.11.7592] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple heat shock transcription factors (HSFs) have been discovered in several higher eukaryotes, raising questions about their respective functions in the cellular stress response. Previously, we had demonstrated that the two mouse HSFs (mHSF1 and mHSF2) interacted differently with the HSP70 heat shock element (HSE). To further address the issues of cooperativity and the interaction of multiple HSFs with the HSE, we selected new mHSF1 and mHSF2 DNA-binding sites through protein binding and PCR amplification. The selected sequences, isolated from a random population, were composed primarily of alternating inverted arrays of the pentameric consensus 5'-nGAAn-3', and the nucleotides flanking the core GAA motif were nonrandom. The average number of pentamers selected in each binding site was four to five for mHSF1 and two to three for mHSF2, suggesting differences in the potential for cooperative interactions between adjacent trimers. Our comparison of mHSF1 and mHSF2 binding to selected sequences further substantiated these differences in cooperativity as mHSF1, unlike mHSF2, was able to bind to extended HSE sequences, confirming previous observations on the HSP70 HSE. Certain selected sequences that exhibited preferential binding of mHSF1 or mHSF2 were mutagenized, and these studies demonstrated that the affinity of an HSE for a particular HSF and the extent of HSF interaction could be altered by single base substitutions. The domain of mHSF1 utilized for cooperative interactions was transferable, as chimeric mHSF1/mHSF2 proteins demonstrated that sequences within or adjacent to the mHSF1 DNA-binding domain were responsible. We have demonstrated that HSEs can have a greater affinity for a specific HSF and that in mice, mHSF1 utilizes a higher degree of cooperativity in DNA binding. This suggests two ways in which cells have developed to regulate the activity of closely related transcription factors: developing the ability to fully occupy the target binding site and alteration of the target site to favor interaction with a specific factor.
Collapse
|
29
|
Kroeger PE, Morimoto RI. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol Cell Biol 1994; 14:7592-603. [PMID: 7935474 PMCID: PMC359295 DOI: 10.1128/mcb.14.11.7592-7603.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Multiple heat shock transcription factors (HSFs) have been discovered in several higher eukaryotes, raising questions about their respective functions in the cellular stress response. Previously, we had demonstrated that the two mouse HSFs (mHSF1 and mHSF2) interacted differently with the HSP70 heat shock element (HSE). To further address the issues of cooperativity and the interaction of multiple HSFs with the HSE, we selected new mHSF1 and mHSF2 DNA-binding sites through protein binding and PCR amplification. The selected sequences, isolated from a random population, were composed primarily of alternating inverted arrays of the pentameric consensus 5'-nGAAn-3', and the nucleotides flanking the core GAA motif were nonrandom. The average number of pentamers selected in each binding site was four to five for mHSF1 and two to three for mHSF2, suggesting differences in the potential for cooperative interactions between adjacent trimers. Our comparison of mHSF1 and mHSF2 binding to selected sequences further substantiated these differences in cooperativity as mHSF1, unlike mHSF2, was able to bind to extended HSE sequences, confirming previous observations on the HSP70 HSE. Certain selected sequences that exhibited preferential binding of mHSF1 or mHSF2 were mutagenized, and these studies demonstrated that the affinity of an HSE for a particular HSF and the extent of HSF interaction could be altered by single base substitutions. The domain of mHSF1 utilized for cooperative interactions was transferable, as chimeric mHSF1/mHSF2 proteins demonstrated that sequences within or adjacent to the mHSF1 DNA-binding domain were responsible. We have demonstrated that HSEs can have a greater affinity for a specific HSF and that in mice, mHSF1 utilizes a higher degree of cooperativity in DNA binding. This suggests two ways in which cells have developed to regulate the activity of closely related transcription factors: developing the ability to fully occupy the target binding site and alteration of the target site to favor interaction with a specific factor.
Collapse
Affiliation(s)
- P E Kroeger
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|