1
|
Shu L, Hou G, Zhao H, Huang W, Song G, Ma H. Resveratrol improves high-fat diet-induced insulin resistance in mice by downregulating the lncRNA NONMMUT008655.2. Am J Transl Res 2020; 12:1-18. [PMID: 32051733 PMCID: PMC7013227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
As essential players in the field of diabetes treatment, resveratrol (RSV) has received much attention in recent years. However, it is unclear whether it can improve insulin resistance by regulating the long-chain non-coding RNA (lncRNA). The objective of this study was to investigate whether RSV improves high-fat diet-induced insulin resistance in mice by regulating thelncRNANONMMUT008655.2 in vivo and in vitro. To this end, animal and cell insulin resistance models were developed. Specifically, C57BL/6J mice were fed a high-fat diet (HFD) and administered RSV for eight weeks. Additionally, mouse Hepa cells were treated with palmitic acid, transfected with siRNA NONMMUT008655.2, and treated with RSV. Treated mice and cells were then compared to normal controls that were not exposed to RSV. In the animal model, RSV was found to decrease the levels of fasting blood glucose, triglycerides, and low-density lipoprotein cholesterol, as well as the insulin index and area under the curve; while increasing the insulin sensitivity index. Besides, RSV decreased the expression levels of SOCS3, G6PC, and FOXO1 yet increased that of p-Akt and p-FOXO1 in mice. The same results were observed following knockdown of NONMMUT008655.2 in cells. Overall, our results suggest that RSV may improve hepatic insulin resistance and control blood glucose levels by downregulating lncRNA NONMMUT008655.2.
Collapse
Affiliation(s)
- Linyi Shu
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Guangsen Hou
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Hang Zhao
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Wenli Huang
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical UniversityShijiazhuang 050017, Hebei, People’s Republic of China
- Endocrinology Department, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General HospitalShijiazhuang 050051, Hebei, People’s Republic of China
| |
Collapse
|
2
|
David-Silva A, Esteves JV, Morais MRPT, Freitas HS, Zorn TM, Correa-Giannella ML, Machado UF. Dual SGLT1/SGLT2 Inhibitor Phlorizin Ameliorates Non-Alcoholic Fatty Liver Disease and Hepatic Glucose Production in Type 2 Diabetic Mice. Diabetes Metab Syndr Obes 2020; 13:739-751. [PMID: 32231437 PMCID: PMC7085338 DOI: 10.2147/dmso.s242282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE NAFLD is a hepatic component of type 2 diabetes mellitus (T2D), in which impaired hepatic glucose production plays an important role. Inhibitors of sodium glucose transporter 2 (SGLT2) reduce glycemia and exert beneficial effects on diabetic complications. Recently, dual SGLT1/2 inhibition has been proposed to be more effective in reducing glycemia. We hypothesized that improving hepatic glucose metabolism induced by SGLT1/2 inhibition could be accompanied by beneficial effects on NAFLD progression. METHODS Glycemic homeostasis, hepatic glucose production and NAFLD features were investigated in obese T2D mice, treated with SGLT1/2 inhibitor phlorizin for 1 week. RESULTS T2D increased glycemia; insulinemia; hepatic expression of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and glucose transporter 2 (Slc2a2 gene); hepatocyte nuclear factors 1A/4A/3B-binding activity in Slc2a2; endogenous glucose production; liver weight, plasma transaminase concentration as well as hepatic inflammation markers, and induced histological signals of non-alcoholic steatohepatitis (NASH, according to NASH-CRN Pathology Committee System). Phlorizin treatment restored all these parameters (mean NASH score reduced from 5.25 to 2.75 P<0.001); however, plasma transaminase concentration was partially reverted and some hepatic inflammation markers remained unaltered. CONCLUSION NAFLD accompanies altered hepatic glucose metabolism in T2D mice and that greatly ameliorated through short-term treatment with the dual SGLT1/2 inhibitor. This suggests that altered hepatic glucose metabolism participates in T2D-related NAFLD and highlights the pharmacological inhibition of SGLTs as a useful approach not only for controlling glycemia but also for mitigating development and/or progression of NAFLD.
Collapse
Affiliation(s)
- Aline David-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Victor Esteves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mychel Raony P T Morais
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helayne Soares Freitas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Telma Maria Zorn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Correspondence: Ubiratan Fabres Machado Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, SP05508-900, BrazilTel +55 11 30917494 Email
| |
Collapse
|
3
|
Guillory B, Jawanmardi N, Iakova P, Anderson B, Zang P, Timchenko NA, Garcia JM. Ghrelin deletion protects against age-associated hepatic steatosis by downregulating the C/EBPα-p300/DGAT1 pathway. Aging Cell 2018; 17. [PMID: 29024407 PMCID: PMC5771394 DOI: 10.1111/acel.12688] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. NAFLD usually begins as low‐grade hepatic steatosis which further progresses in an age‐dependent manner to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma in some patients. Ghrelin is a hormone known to promote adiposity in rodents and humans, but its potential role in hepatic steatosis is unknown. We hypothesized that genetic ghrelin deletion will protect against the development of age‐related hepatic steatosis. To examine this hypothesis, we utilized ghrelin knockout (KO) mice. Although no different in young animals (3 months old), we found that at 20 months of age, ghrelin KO mice have significantly reduced hepatic steatosis compared to aged‐matched wild‐type (WT) mice. Examination of molecular pathways by which deletion of ghrelin reduces steatosis showed that the increase in expression of diacylglycerol O‐acyltransferase‐1 (DGAT1), one of the key enzymes of triglyceride (TG) synthesis, seen with age in WT mice, is not present in KO mice. This was due to the lack of activation of CCAAT/enhancer binding protein‐alpha (C/EBPα) protein and subsequent reduction of C/EBPα‐p300 complexes. These complexes were abundant in livers of old WT mice and were bound to and activated the DGAT1 promoter. However, the C/EBPα‐p300 complexes were not detected on the DGAT1 promoter in livers of old KO mice resulting in lower levels of the enzyme. In conclusion, these studies demonstrate the mechanism by which ghrelin deletion prevents age‐associated hepatic steatosis and suggest that targeting this pathway may offer therapeutic benefit for NAFLD.
Collapse
Affiliation(s)
- Bobby Guillory
- Department of Medicine; Baylor College of Medicine; Division of Endocrinology; Diabetes and Metabolism, MCL; Center for Translational Research in Inflammatory Diseases; Michael E. DeBakey Veterans Affairs Medical Center; Houston TX 77030 USA
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
| | - Nicole Jawanmardi
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
- Department of Pathology and Immunology; Baylor College of Medicine; Houston TX 77030 USA
| | - Polina Iakova
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
- Department of Pathology and Immunology; Baylor College of Medicine; Houston TX 77030 USA
| | - Barbara Anderson
- GRECC; VA Puget Sound Health Care System; University of Washington; Seattle WA 98108 USA
| | - Pu Zang
- GRECC; VA Puget Sound Health Care System; University of Washington; Seattle WA 98108 USA
- Department of Endocrinology; Nanjing Jinling Hospital; Nanjing 210002 China
| | - Nikolai A. Timchenko
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
- Department of Pathology and Immunology; Baylor College of Medicine; Houston TX 77030 USA
- Cincinnati Children's Hospital Medical Center; Cincinnati OH 45229 USA
| | - Jose M. Garcia
- Department of Medicine; Baylor College of Medicine; Division of Endocrinology; Diabetes and Metabolism, MCL; Center for Translational Research in Inflammatory Diseases; Michael E. DeBakey Veterans Affairs Medical Center; Houston TX 77030 USA
- Huffington Center on Aging; Baylor College of Medicine; Houston TX 77030 USA
- GRECC; VA Puget Sound Health Care System; University of Washington; Seattle WA 98108 USA
| |
Collapse
|
4
|
Lu FH, Ou HY, Wu HT, Hung HC, Wu JS, Yang YC, Chang CJ. Serum hepassocin concentrations in diabetic patients with or without nonalcoholic fatty liver disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/dmt.14.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Vida M, Serrano A, Romero-Cuevas M, Pavón FJ, González-Rodriguez A, Gavito AL, Cuesta AL, Valverde AM, Rodríguez de Fonseca F, Baixeras E. IL-6 cooperates with peroxisome proliferator-activated receptor-α-ligands to induce liver fatty acid binding protein (LFABP) up-regulation. Liver Int 2013; 33:1019-28. [PMID: 23534555 DOI: 10.1111/liv.12156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/24/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND LFABP plays a critical role in the uptake and intracellular transport of fatty acids (FA) and other peroxisome proliferator-activated receptor alpha (PPARα) ligands. PPARα activation by PPARα ligands bound to LFABP results in gene expression of FA oxidation enzymes and de novo LFABP. The cytokine IL-6 is involved in regulating liver lipid oxidation. AIMS To study the ability of IL-6 to modulate the expression of the LFABP in hepatocytes. METHODS HepG2 and mouse primary hepatocytes were used to test LFABP mRNA and protein expression after IL-6 and PPARα-ligand treatments. Mice lacking IL-6 and wild-type C57Bl/6 were subjected to a fasting/re-feeding cycle to monitor hepatic LFABP mRNA kinetics after food intake. RESULTS In hepatocyte cultures, IL-6 treatment stimulated a LFABP mRNA sustained expression. Combined treatment of IL-6 plus PPARα ligands further enhanced LFABP gene and protein expression. In contrast, pretreatment with the PPARα-antagonist GW-6471 prevented the up-regulation of LFABP mRNA induced by IL-6 in the late phase of LFABP kinetics. Furthermore, the up-regulation of LFABP mRNA observed in the liver of wild-type mice 8 h after re-feeding was absent in mice lacking IL-6. CONCLUSIONS IL-6 induces LFABP kinetics in hepatocytes and is partially dependent on PPARα. The maximum increase in LFABP expression occurs when the stimulation with IL-6 and PPARα-ligands takes place simultaneously. The in vivo results indicate a postprandial regulation of LFABP that correlates with the presence of IL-6. These effects may have important implications in the postprandial increase in FA uptake and intracellular trafficking in the liver.
Collapse
Affiliation(s)
- Margarita Vida
- Laboratorio de Medicina Regenerativa, IBIMA, Málaga, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
7
|
Clément S, Juge-Aubry C, Sgroi A, Conzelmann S, Pazienza V, Pittet-Cuenod B, Meier CA, Negro F. Monocyte chemoattractant protein-1 secreted by adipose tissue induces direct lipid accumulation in hepatocytes. Hepatology 2008; 48:799-807. [PMID: 18570214 DOI: 10.1002/hep.22404] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED For many years, adipose tissue has been mainly considered as an inert reservoir for storing triglycerides. Since the discovery that adipocytes may secrete a variety of bioactive molecules (hormones, chemokines, and cytokines), an endocrine and paracrine role for white adipose tissue (WAT) in the regulation of energy balance and other physiological processes has been established, particularly with regard to brain and muscle. In contrast, little is known about the interactions of WAT with liver. Hence, we examined the effect of the secretory products of WAT on hepatocytes. Conditioned medium of human WAT explants induced significant steatosis in hepatocyte cell lines. Factor(s) responsible for the conditioned medium-induced steatosis were screened by a battery of blocking antibodies against different cytokines/chemokines shown to be secreted by WAT. In contrast to interleukin-8 and interleukin-6, the monocyte chemoattractant protein-1 was capable of inducing steatosis in hepatocytes in a time-dependent manner at concentrations similar to those found in conditioned medium. Incubation of conditioned medium with antimonocyte chemoattractant protein-1 antibodies prevented triglyceride accumulation. Investigation of the mechanism leading to the triglyceride accumulation showed that both a diminution of apolipoprotein B secretion and an increase in phosphoenolpyruvate carboxykinase messenger RNA may be involved. CONCLUSION The monocyte chemoattractant protein-1 secreted by adipose tissue may induce steatosis not only recruiting macrophages but also acting directly on hepatocytes.
Collapse
Affiliation(s)
- Sophie Clément
- Division of Clinical Pathology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Staloch LJ, Divine JK, Witten JT, Simon TC. C/EBP and Cdx family factors regulate liver fatty acid binding protein transgene expression in the small intestinal epithelium. ACTA ACUST UNITED AC 2005; 1731:168-78. [PMID: 16321657 DOI: 10.1016/j.bbaexp.2005.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 08/09/2005] [Accepted: 08/25/2005] [Indexed: 11/23/2022]
Abstract
A transgene constructed from the rat liver fatty acid binding protein gene (Fabp1) promoter is active in all murine small intestinal crypt and villus epithelial cells. Coincident Cdx and C/EBP transcription factor binding sites were identified spanning Fabp1 nucleotides -90 to -78. CDX-1, CDX-2, C/EBPalpha, and C/EBPbeta activated the Fabp1 transgene in CaCo-2 cells, and mutagenizing the -78 site prevented activation by these factors. CDX but not C/EBP factors bound to the site in vitro, although C/EBP factors competed with CDX factors for transgene activation. The -78 site adjoins an HNF-1 site, and CDX and C/EBP family factors cooperated with HNF-1alpha but not HNF-1beta to activate the transgene. Furthermore, CDX-1, CDX-2, C/EBPalpha, and C/EBPbeta bound to HNF-1alpha and HNF-1beta. The transgene with a mutagenized -78 site was silenced in vivo specifically in small intestinal crypt epithelial cells but remained active in villus cells. These results demonstrate functional interactions between HNF-1, C/EBP, and CDX family factors and suggest that these interactions may contribute to differential transcriptional regulation in the small intestinal crypt and villus compartments.
Collapse
Affiliation(s)
- Lora J Staloch
- Department of Pediatrics, Washington University School of Medicine, Campus Box 8208, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
9
|
Cassuto H, Kochan K, Chakravarty K, Cohen H, Blum B, Olswang Y, Hakimi P, Xu C, Massillon D, Hanson RW, Reshef L. Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit. J Biol Chem 2005; 280:33873-84. [PMID: 16100117 DOI: 10.1074/jbc.m504119200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatic transcriptional regulation by glucocorticoids of the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK-C) gene is coordinated by interactions of specific transcription factors at the glucocorticoid regulatory unit (GRU). We propose an extended GRU that consists of four accessory sites, two proximal AF1 and AF2 sites and their distal counterpart dAF1 (-993) and a new site, dAF2 (-1365); together, these four sites form a palindrome. Sequencing and gel shift binding assays of hepatic nuclear proteins interacting with these sites indicated similarity of dAF1 and dAF2 sites to the GRU proximal AF1 and AF2 sites. Chromatin immunoprecipitation assays demonstrated that glucocorticoids enhanced the binding of FOXO1 and peroxisome proliferator-activated receptor-alpha to AF2 and dAF2 sites and not to dAF1 site but enhanced the binding of hepatic nuclear transcription factor-4alpha only to the dAF1 site. Insulin inhibited the binding of these factors to their respective sites but intensified the binding of phosphorylated FOXO1. Transient transfections in HepG2 human hepatoma cells showed that glucocorticoid receptor interacts with several non-steroid nuclear receptors, yielding a synergistic response of the PEPCK-C gene promoter to glucocorticoids. The synergistic stimulation by glucocorticoid receptor together with peroxisome proliferator-activated receptor-alpha or hepatic nuclear transcription factor-4alpha requires all four accessory sites, i.e. a mutation of each of these markedly affects the synergistic response. Mice with a targeted mutation of the dAF1 site confirmed this requirement. This mutation inhibited the full response of hepatic PEPCK-C gene to diabetes by reducing PEPCK-C mRNA level by 3.5-fold and the level of circulating glucose by 25%.
Collapse
Affiliation(s)
- Hanoch Cassuto
- Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, 91120 Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kamiya A, Inoue Y, Kodama T, Gonzalez FJ. Hepatocyte nuclear factors 1alpha and 4alpha control expression of proline oxidase in adult liver. FEBS Lett 2005; 578:63-8. [PMID: 15581617 DOI: 10.1016/j.febslet.2004.10.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 10/25/2004] [Accepted: 10/25/2004] [Indexed: 11/27/2022]
Abstract
Adult liver functions are regulated by several hepatocyte nuclear factors (HNFs). HNF4alpha and HNF1alpha are involved in metabolic functions in the liver. The expression of proline oxidase (PO) and proline dehydrogenase was downregulated in the HNF4alpha liver-specific null mice. In addition, the expression of PO was also diminished in the liver derived from HNF1alpha-null mice. The -160 bp proximal promoter region of the PO gene has two HNF4alpha- and HNF1alpha-binding consensus sites. Transactivation, electrophoretic mobility shift and chromatin immunoprecipitation studies revealed that these regions are important for PO promoter activity. These results suggested that HNF4alpha and HNF1alpha regulate proline metabolism in adult liver.
Collapse
Affiliation(s)
- Akihide Kamiya
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bldg 37, Rm 3106B1, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
11
|
Cassuto H, Olswang Y, Heinemann S, Sabbagh K, Hanson RW, Reshef L. The transcriptional regulation of phosphoenolpyruvate carboxykinase gene in the kidney requires the HNF-1 binding site of the gene. Gene 2003; 318:177-84. [PMID: 14585510 DOI: 10.1016/s0378-1119(03)00775-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription of the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK-C) gene is differentially regulated in each of the several PEPCK-C-expressing tissues. In the kidney, it is regulated by glucocorticoids and acidosis. Previously, we reported that in LLC-PK1 and derived kidney cell lines, mutation of the hepatic nuclear factor 1 (HNF-1) binding site in PEPCK-C gene promoter markedly reduced both the basal activity of the gene promoter and its response to acidic pH. Using the same kidney cell line, we now report that nuclear receptors robustly stimulate transcription from the PEPCK-C gene promoter. This stimulation is markedly reduced by mutation of the accessory factor 1 (AF1) site in the glucocorticoid responsive unit (GRU) residing within the glucocorticoid-responsive domain. The stimulation is likewise reduced by mutation of the HNF-1 site, residing outside the nuclear receptor-responsive domain of the PEPCK-C gene promoter. There is no binding similarity between HNF-1 and AF1 binding sites, as is evident from gel shift assays showing a lack of competition of either site for the binding of renal nuclear proteins to the other. We further assessed that the regulation of PEPCK-C gene transcription by acidosis is not mediated by nuclear receptors. This became evident from studies of transgenic mice harboring a rat PEPCK-C transgene driven by truncated 5' flanking region of the gene, which contains the HNF-1 site but lacks the glucocorticoid responsive domain. The full transcriptional response of this transgene to acidosis establishes that the truncated 5' flanking region (362 bp) of the PEPCK-C gene contains the information required for the acidosis-mediated regulation independent of the glucocorticoid domain. Taking together the previous and present results, it appears that acidosis and nuclear receptors regulate the renal transcription of the PEPCK-C gene via two independent domains in the 5' flanking region of the gene. These two modulations, as well as the basal activity of the gene, require intact HNF-1 binding site in the gene promoter.
Collapse
MESH Headings
- Ammonium Chloride/pharmacology
- Animals
- Binding Sites/genetics
- Cell Line
- DNA-Binding Proteins
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Enzymologic/drug effects
- Hepatocyte Nuclear Factor 1
- Hepatocyte Nuclear Factor 1-alpha
- Hepatocyte Nuclear Factor 1-beta
- Hydrogen-Ion Concentration
- Kidney/enzymology
- Kidney/metabolism
- Mice
- Mice, Transgenic
- Mutation
- Nuclear Proteins/metabolism
- Phosphoenolpyruvate Carboxykinase (GTP)/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Interferon/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Hanoch Cassuto
- Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Divine JK, McCaul SP, Simon TC. HNF-1alpha and endodermal transcription factors cooperatively activate Fabpl: MODY3 mutations abrogate cooperativity. Am J Physiol Gastrointest Liver Physiol 2003; 285:G62-72. [PMID: 12646418 DOI: 10.1152/ajpgi.00074.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor (HNF)-1alpha plays a central role in intestinal and hepatic gene regulation and is required for hepatic expression of the liver fatty acid binding protein gene (Fabpl). An Fabpl transgene was directly activated through cognate sites by HNF-1alpha and HNF-1beta, as well as five other endodermal factors: CDX-1, C/EBPbeta, GATA-4, FoxA2, and HNF-4alpha. HNF-1alpha activated the Fabpl transgene by as much as 60-fold greater in the presence of the other five endodermal factors than in their absence, accounting for up to one-half the total transgene activation by the group of six factors. This degree of synergistic interaction suggests that multifactor cooperativity is a critical determinant of endodermal gene activation by HNF-1alpha. Mutations in HNF-1alpha that result in maturity onset diabetes of the young (MODY3) provide evidence for the in vivo significance of these synergistic interactions. An R131Q HNF-1alpha MODY3 mutant exhibits complete loss of synergistic activation in concert with the other endodermal transcription factors despite wild-type transactivation ability in their absence. Furthermore, whereas wild-type HNF-1alpha exhibited pairwise cooperative synergy with each of the other five factors, the R131Q mutant could synergize only with GATA-4 and C/EBPbeta. Selective loss of synergy with other endodermal transcription factors accompanied by retention of native transactivation ability in an HNF-1alpha MODY mutant suggests in vivo significance for cooperative synergy.
Collapse
Affiliation(s)
- Joyce K Divine
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
13
|
Olswang Y, Blum B, Cassuto H, Cohen H, Biberman Y, Hanson RW, Reshef L. Glucocorticoids repress transcription of phosphoenolpyruvate carboxykinase (GTP) gene in adipocytes by inhibiting its C/EBP-mediated activation. J Biol Chem 2003; 278:12929-36. [PMID: 12560325 DOI: 10.1074/jbc.m300263200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cytosolic form of the phosphoenolpyruvate carboxykinase (PEPCK-C) gene is selectively expressed in several tissues, primarily in the liver, kidney, and adipose tissue. The transcription of the gene is reciprocally regulated by glucocorticoids in these tissues. It is induced in the liver and kidney but repressed in the white adipose tissue. To elucidate which adipocyte-specific transcription factors participate in the repression of the gene, DNase I footprinting analyses of nuclear proteins from 3T3-F442A adipocytes and transient transfection experiments in NIH3T3 cells were utilized. Glucocorticoid treatment slightly reduced the nuclear C/EBP alpha concentration but prominently diminished the binding of adipocyte-derived nuclear proteins to CCAAT/enhancer-binding protein (C/EBP) recognition sites, without affecting the binding to nuclear receptor sites in the PEPCK-C gene promoter. Of members of the C/EBP family of transcription factors, C/EBP alpha was the strongest trans-activator of the PEPCK-C gene promoter in the NIH3T3 cell line. The glucocorticoid receptor (GR), in the presence of its hormone ligand, inhibited the activation of the PEPCK-C gene promoter by C/EBP alpha or C/EBP beta but not by the adipocyte-specific peroxisome proliferator-activated receptor gamma 2. This inhibition effect was similar using the wild type or mutant GR and did not depend on GR binding to the DNA. The glucocorticoid response unit (GRU) in the PEPCK-C gene promoter (-2000 to +73) restrained C/EBP alpha-mediated trans-activation, because mutation of each single GRU element increased this activation by 3-4-fold. This series of GRU mutations were repressed by wild type GR to the same percent as was the nonmutated PEPCK-C gene promoter. In contrast, the repression by mutant GR depended on the intact AF1 site in the gene promoter, whereby mutation of the AF1 element abolished the repression.
Collapse
Affiliation(s)
- Yael Olswang
- Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Haaxma CA, Kim PK, Andrejko KM, Raj NR, Deutschman CS. Transcription factors C/EBP-alpha and HNF-1alpha are associated with decreased expression of liver-specific genes in sepsis. Shock 2003; 19:45-9. [PMID: 12558143 DOI: 10.1097/00024382-200301000-00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated sepsis-specific changes in the transcription of key hepatic genes. However, the role of hepatic transcription factors in sepsis-associated organ dysfunction has not been well established. We hypothesize that the binding activities of C/EBPalpha and beta, HNF-1alpha, and HNF-3 transiently decrease during mild sepsis but persistently decrease after fulminant sepsis, and that the decrease in this binding activity correlates in time and severity with previously described decreases in the transcription of key hepatic genes. Male C57/BL6 mice had nonlethal sepsis induced by cecal ligation and single puncture (CLP) and fulminant sepsis via cecal ligation and double puncture (2CLP). Sham-operated and unoperated animals served as controls. Transcription factor binding activity was assessed with electrophoretic mobility shift assays. C/EBP-a and HNF-1alpha binding activity decreased transiently after CLP and persistently after 2CLP. Binding activity of both C/EBP-beta and HNF-3 were unchanged. The decrease in C/EBP-a and HNF-1alpha binding activities correlated in time and magnitude with the decreased hepatic gene transcription previously observed in sepsis. Furthermore, the loss of activity after 2CLP correlated in time with outcome. Sepsis decreases DNA binding activities of C/EBPalpha and HNF-1alpha, two key hepatocyte transcription factors, in a time course consistent with down-regulation of their target hepatic genes. Therefore, alterations in transcription factor binding are likely important in the transcriptional modulation that is characteristic of hepatic dysfunction in sepsis.
Collapse
Affiliation(s)
- Charlotte A Haaxma
- Department of Anesthesia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
15
|
Naiki T, Nagaki M, Shidoji Y, Kojima H, Imose M, Kato T, Ohishi N, Yagi K, Moriwaki H. Analysis of gene expression profile induced by hepatocyte nuclear factor 4alpha in hepatoma cells using an oligonucleotide microarray. J Biol Chem 2002; 277:14011-9. [PMID: 11834723 DOI: 10.1074/jbc.m105403200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF-4alpha), a liver-specific transcription factor, plays a significant role in many liver-specific functions, including lipid, glucose, drug, and ammonia metabolism, and also in embryonal liver development. However, its functions and regulation are not yet clearly understood. In this study, we constructed an adenovirus vector carrying rat HNF-4alpha cDNA and transfected the adenovirus to human hepatoma cells, HuH-7, to enforce expression of the exogenous HNF-4alpha gene. We analyzed HNF-4alpha-induced genes using cDNA microarray technology, which included over 9000 genes. As a result, 62 genes showed a greater than 2.0-fold change in expression level after the viral transfection. Fifty-six genes were consistently induced by HNF-4alpha overexpression, and six genes were repressed. To assess HNF-4alpha function, we attempted to classify the genes, which had been classified by their encoding protein functions in a previous report. We could classify 45 genes. The rest of the HNF-4alpha-sensitive genes were unclassified (4 genes) or not identified (13 genes). Among the classified genes, almost half of the induced genes (26 of 40) were related to metabolism genes and particularly to lipid metabolism-related genes. This cDNA microarray analysis showed that HNF-4alpha is one of the central liver metabolism regulators.
Collapse
Affiliation(s)
- Takafumi Naiki
- First Department of Internal Medicine and the Department of Neurology and Psychiatry, Gifu University School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Memon RA, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. In vivo and in vitro regulation of sterol 27-hydroxylase in the liver during the acute phase response. potential role of hepatocyte nuclear factor-1. J Biol Chem 2001; 276:30118-26. [PMID: 11406622 DOI: 10.1074/jbc.m102516200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The host response to infection is associated with several alterations in lipid metabolism that promote lipoprotein production. These changes can be reproduced by lipopolysaccharide (LPS) administration. LPS stimulates hepatic cholesterol synthesis and suppresses the conversion of cholesterol to bile acids. LPS down-regulates hepatic cholesterol 7alpha-hydroxylase, the rate-limiting enzyme in the classic pathway of bile acid synthesis. We now demonstrate that LPS markedly decreases the activity of sterol 27-hydroxylase, the rate-limiting enzyme in the alternate pathway of bile acid synthesis, in the liver of Syrian hamsters. Moreover, LPS progressively decreases hepatic sterol 27-hydroxylase mRNA levels by 75% compared with controls over a 24-h treatment period. LPS also decreases oxysterol 7alpha-hydroxylase mRNA levels in mouse liver. In vitro studies in HepG2 cells demonstrate that tumor necrosis factor and interleukin (IL)-1 decrease sterol 27-hydroxylase mRNA levels by 48 and 80%, respectively, whereas IL-6 has no such effect. The IL-1-induced decrease in sterol 27-hydroxylase mRNA expression occurs early, is sustained for 48 h, and requires very low doses. In vivo IL-1 treatment also lowers hepatic sterol 27-hydroxylase mRNA levels in Syrian hamsters. Studies investigating the molecular mechanisms of LPS-induced decrease in sterol 27-hydroxylase show that LPS markedly decreases mRNA and protein levels of hepatocyte nuclear factor-1 (HNF-1), a transcription factor that regulates sterol 27-hydroxylase, in the liver. Moreover, LPS decreases the binding activity of HNF-1 by 70% in nuclear extracts in hamster liver, suggesting that LPS may down-regulate sterol 27-hydroxylase by decreasing the binding of HNF-1 to its promoter. Coupled with our earlier studies on cholesterol 7alpha-hydroxylase, these data indicate that LPS suppresses both the classic and alternate pathways of bile acid synthesis. A decrease in bile acid synthesis in liver would reduce cholesterol catabolism and thereby contribute to the increase in hepatic lipoprotein production that is induced by LPS and cytokines.
Collapse
Affiliation(s)
- R A Memon
- Departments of Medicine, University of California, San Francisco and the Metabolism Section, Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | | | | | |
Collapse
|
17
|
Routes JM, Colton LA, Ryan S, Klemm DJ. CREB (cAMP response element binding protein) and C/EBPalpha (CCAAT/enhancer binding protein) are required for the superstimulation of phosphoenolpyruvate carboxykinase gene transcription by adenoviral E1a and cAMP. Biochem J 2000; 352 Pt 2:335-42. [PMID: 11085926 PMCID: PMC1221464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In the present study, we observed superstimulated levels of cAMP-stimulated transcription from the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter in cells infected with wild-type adenovirus expressing 12 S and 13 S E1a proteins, or in cells expressing 13 S E1a alone. cAMP-stimulated transcription was inhibited in cells expressing only 12 S E1a, but slightly elevated in cells expressing E1a proteins with mutations in conserved regions 1 or 2, leading us to conclude that the superstimulation was mediated by conserved region 3 of 13 S E1a. E1a failed to enhance cAMP-stimulated transcription from promoters containing mutations that abolish binding by cAMP response element binding protein (CREB) or CCAAT/enhancer binding proteins (C/EBPs). This result was supported by experiments in which expression of dominant-negative CREB and/or C/EBP proteins repressed E1a- and cAMP-stimulated transcription from the PEPCK gene promoter. In reconstitution experiments using a Gal4-responsive promoter, E1a enhanced cAMP-stimulated transcription when chimaeric Gal4-CREB and Gal4-C/EBPalpha were co-expressed. Phosphorylation of CREB on serine-133 was stimulated in cells treated with dibutyryl cAMP, whereas phosphorylation of C/EBPalpha was increased by E1a expression. Our data support a model in which cAMP agonists increase CREB activity and stimulate PEPCK gene transcription, a process that is enhanced by E1a through the phosphorylation of C/EBPalpha.
Collapse
Affiliation(s)
- J M Routes
- Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The response of cells to physical or biochemical stress involves concerted changes in the expression of a large number of genes encoding various functions. We have used a quantitative kinetic RT-PCR technique to follow the dynamics of changes in transcription factor and acute-phase mRNA levels in cultured rat hepatocytes subjected to either elevated temperature (40 degrees C) or exposure to the inflammatory cytokine interleukin-6. The profiles of transcription factor gene expression displayed rapid and coordinate regulation, attainment of new steady-states, transitions in some instances from up-regulation to down-regulation (or vice versa), and, for elevated temperature, multiple spikes of up-regulation. Transcripts of acute-phase genes generally displayed relatively small changes during the first few hours followed by more significant changes over the course of tens of hours (elevated temperature) to days (IL-6 exposure). These observations are all consistent with the notion of genetic reprogramming due to a network of interacting transcription factor proteins and transcripts. We utilized a simple transcription/translation model incorporating autoregulation to describe the dynamics of transcription factor gene expression. This model successfully described key features of the transcription factor dynamics, most notably the multiple spikes observed after exposure to elevated temperature. The dynamics of gene expression are rich in information that, with considerably more study, may eventually be exploited to provide insights into the interplay of genetic networks in regulating a variety of cellular responses.
Collapse
Affiliation(s)
- A Jayaraman
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School and Shriners Burns Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
19
|
Cassuto H, Aran A, Cohen H, Eisenberger CL, Reshef L. Repression and activation of transcription of phosphoenolpyruvate carboxykinase gene during liver development. FEBS Lett 1999; 457:441-4. [PMID: 10471825 DOI: 10.1016/s0014-5793(99)01080-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcriptional activation of the hepatic phosphoenolpyruvate carboxykinase (PEPCK) gene at birth is critical since PEPCK appearance initiates hepatic gluconeogenesis. A delayed appearance results in hypoglycemia, while a premature appearance results in neonatal diabetes, both are incompatible with sustaining life. Experiments using transgenic mice and transfected hepatoma cells suggest that both repression and activation underlie the correct onset of hepatic PEPCK gene transcription. In transgenic mice, transgenes driven by the proximal PEPCK promoter are prematurely expressed in the fetal liver and over-expressed in the neonatal liver, indicating that sequences upstream of the proximal promoter restrain perinatal expression. In Hepa1c1c7 cells, which mimic the fetal liver, the proximal PEPCK promoter (597 bp) exhibited a 3. 5-10-fold higher activity than longer promoters. Repression of the longer promoter (2000 bp) was diminished upon deletion of the sequence spanning positions(-840) to(- 1116) which contains a PPAR/RXR recognition element. The intact 2000 bp PEPCK promoter could be markedly activated by co-transfecting the transcription factor HNF-1 together with C/EBP. It could be repressed by co-transfection with RXRalpha and adding PPARalpha relieved this inhibition.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CCAAT-Enhancer-Binding Proteins
- Carcinoma, Hepatocellular/genetics
- Chloramphenicol O-Acetyltransferase/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Developmental
- Liver/embryology
- Liver/enzymology
- Liver/growth & development
- Mice
- Mice, Transgenic
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoenolpyruvate Carboxykinase (GTP)/genetics
- Phosphoenolpyruvate Carboxykinase (GTP)/metabolism
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Response Elements
- Retinoid X Receptors
- Sequence Deletion
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- H Cassuto
- The Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
20
|
Abstract
Members of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors are pivotal regulators of liver functions such as nutrient metabolism and its control by hormones, acute-phase response and liver regeneration. Recent progress in clarification of regulatory mechanisms for the C/EBP family members gives insight into understanding the liver functions at the molecular level.
Collapse
Affiliation(s)
- M Takiguchi
- Department of Biochemistry, Chiba University School of Medicine, Japan.
| |
Collapse
|
21
|
Song CS, Jung MH, Kim SC, Hassan T, Roy AK, Chatterjee B. Tissue-specific and androgen-repressible regulation of the rat dehydroepiandrosterone sulfotransferase gene promoter. J Biol Chem 1998; 273:21856-66. [PMID: 9705324 DOI: 10.1074/jbc.273.34.21856] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dehydroepiandrosterone sulfotransferase (Std) catalyzes sulfonation of androgenic steroids and certain aromatic procarcinogens. In rats, this enzyme is selectively expressed in the liver, and its expression is strongly repressed by androgens. DNase I footprinting and electrophoretic mobility shift analyses revealed two hepatocyte nuclear factor-1 (HNF1), three CCAAT/enhancer-binding protein (C/EBP), and one consensus palindromic thyroid hormone response elements within the first 215 base pairs (bp) of the promoter sequence of rat Std. This promoter is normally inactive in fibroblast-derived NIH 3T3 cells. However, overexpression of HNF1 and C/EBP resulted in synergistic activation of the Std promoter in this cell type, indicating essential roles of these two trans-regulators in liver-selective expression of the rat Std gene. On the other hand, point mutations at any one of five cis elements proximal to the -215 bp region markedly reduced reporter gene expression, suggesting that all of these sites are important for overall promoter function. Androgenic repression of the Std gene in rat liver can be recapitulated in androgen receptor (AR)-negative HepG2 hepatoma cells after cotransfection with an AR expression plasmid. Functional assay of a nested set of 5'-deleted promoters mapped the negative androgen response region between positions -235 and -310. Antibody supershift and oligonucleotide competition identified three OCT-1 and two C/EBP elements between bp -231 and -292. An additional OCT-1 site was found to overlap with a C/EBP element at the -262/-252 position. Mutational inactivation of any one of five cis elements within the -231/-292 region abolished negative androgen response. However, none of these cis elements showed DNase I protection by recombinant AR in footprinting assay, suggesting the absence of a direct AR-DNA interaction. Thus, these studies on rat Std promoter function indicate that (i) HNF1 and C/EBP are responsible for liver specificity of the rat Std gene; (ii) androgenic repression of the gene requires the presence of all of the OCT-1 and C/EBP elements between positions -231 and -292; and (iii) AR may exert its negative regulatory effect indirectly through transcriptional interference of OCT-1 and C/EBP rather than through a direct DNA-AR interaction.
Collapse
Affiliation(s)
- C S Song
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7762, USA
| | | | | | | | | | | |
Collapse
|
22
|
Croniger C, Trus M, Lysek-Stupp K, Cohen H, Liu Y, Darlington GJ, Poli V, Hanson RW, Reshef L. Role of the isoforms of CCAAT/enhancer-binding protein in the initiation of phosphoenolpyruvate carboxykinase (GTP) gene transcription at birth. J Biol Chem 1997; 272:26306-12. [PMID: 9334201 DOI: 10.1074/jbc.272.42.26306] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gene for phosphoenolpyruvate carboxykinase (PEPCK), a target of CCAAT/enhancer-binding protein-alpha (C/EBPalpha) and -beta (C/EBPbeta), begins to be expressed in the liver at birth. Mice homozygous for a deletion in the gene for CEBPalpha (C/EBPalpha-/- mice) die shortly after birth of hypoglycemia, with no detectable hepatic PEPCK mRNA and negligible hepatic glycogen stores. Half of the mice homozygous for a deletion in the gene for CEBPbeta (C/EBPbeta-/- mice) have normal glucose homeostasis (phenotype A), and the other half die at birth of hypoglycemia due to a failure to express the gene for PEPCK and to mobilize hepatic glycogen (phenotype B). Insulin deficiency induces C/EBPalpha and PEPCK gene transcription in the livers of 19-day fetal rats, whereas dibutyryl cyclic AMP (Bt2cAMP) increases the expression of the gene for C/EBPbeta and causes a transient burst of PEPCK mRNA. Bt2cAMP induces PEPCK mRNA in the livers of fetal C/EBPalpha-/- mice, but at only 20% of the level of control animals; however, there is no induction of PEPCK mRNA if the cyclic nucleotide is injected into C/EBPalpha-/- mice immediately after delivery. The expression of the gene for C/EBPbeta is markedly induced in the livers of C/EBPalpha-/- mice within 2 h after the administration of Bt2cAMP. C/EBPbeta-/- mice injected at 20 days of fetal life with Bt2cAMP have a normal pattern of induction of hepatic PEPCK mRNA. In C/EBPbeta-/- mice with phenotype B, the administration of Bt2cAMP immediately after delivery induces PEPCK mRNA, causes the mobilization of hepatic glycogen, and maintains normal glucose homeostasis for up to 4 h (duration of the experiment). We conclude that C/EBPalpha is required for the cAMP induction of PEPCK gene expression in the liver and that C/EBPbeta can compensate for the loss of C/EBPalpha if its concentration is induced to appropriate levels.
Collapse
Affiliation(s)
- C Croniger
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fukai K, Takada S, Yokosuka O, Saisho H, Omata M, Koike K. Characterization of a specific region in the hepatitis B virus enhancer I for the efficient expression of X gene in the hepatic cell. Virology 1997; 236:279-87. [PMID: 9325235 DOI: 10.1006/viro.1997.8750] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) enhancer I has been shown to consist of several cis-acting sequences for the HBV gene expression efficiently in certain types of cells. Transcriptional regulation of HBV X gene mediated by enhancer I might be one of the mechanisms by which HBV obtains hepatotropism. By mutagenesis analysis of enhancer I function in the enhancer I/X gene promoter complex, we characterized a specific transcriptional regulatory region (designated as a LSR element, nt 989-1030) of enhancer I for the X gene promoter by means of the transient transfection technique using hepatic and nonhepatic cells. Based on the analysis of protein factors interacting with the LSR element, liver-enriched transcriptional factors, HNF3 and HNF4 or retinoid X receptor alpha (RXR alpha), are probably implicated in the activity of enhancer I for the efficient expression of X gene through their interaction with the LSR element in the hepatic cell. Furthermore, the isolated LSR element was demonstrated to function alone as a specific cis-acting element and to be able to activate transcription from the X gene promoter efficiently in the hepatic cell in an orientation-independent manner.
Collapse
Affiliation(s)
- K Fukai
- Department of Gene Research, Cancer Institute, JFCR, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Cassuto H, Olswang Y, Livoff AF, Nechushtan H, Hanson RW, Reshef L. Involvement of HNF-1 in the regulation of phosphoenolpyruvate carboxykinase gene expression in the kidney. FEBS Lett 1997; 412:597-602. [PMID: 9276474 DOI: 10.1016/s0014-5793(97)00867-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (PEPCK) gene is differentially expressed in several tissues. A specific set of regulatory elements in the promoter are responsible for the control of PEPCK gene transcription and, in turn, determine its distinct metabolic role in each tissue. DNase I footprinting analysis of the PEPCK promoter, using nuclear proteins from tissues which express the gene for PEPCK, and transient expression assays in renal cell lines have demonstrated that the HNF-1 recognition motif (P2) in the PEPCK promoter characterizes kidney-specific expression. This site is required also for the response to acidosis. Since the P2 site is not involved in the expression of the PEPCK gene in the liver, we propose that its critical role in the kidney stems from a combination of abundance of HNF-1 together with low concentrations of members of the C/EBP family in this tissue.
Collapse
Affiliation(s)
- H Cassuto
- Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
25
|
Courjault-Gautier F, Antoine B, Bens M, Vallet V, Cluzeaud F, Pringault E, Kahn A, Toutain H, Vandewalle A. Activity and inducibility of drug-metabolizing enzymes in immortalized hepatocyte-like cells (mhPKT) derived from a L-PK/Tag1 transgenic mouse. Exp Cell Res 1997; 234:362-72. [PMID: 9260906 DOI: 10.1006/excr.1997.3626] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This report describes the establishment and characterization of the mhPKT cell line derived from the liver of a transgenic mouse harboring the simian virus (SV40) large T and small t antigens placed under the control of the 5' regulatory sequence of the rat L-type pyruvate kinase (L-PK) gene. mhPKT cells had a prolonged life span, expressed the SV40-encoded nuclear large T antigen when grown in glucose-enriched medium, and induced tumors when injected subcutaneously into athymic (nu-nu) mice. Growth on petri dishes or filters yielded multiple layers of cuboid cells, with numerous spaces between adjacent cells that were closed by junctional complexes. These bile canaliculi-like structures exhibited numerous microvilli in which villin, an actin-binding brush-border protein, colocalized with actin. These bile canaliculi-like structures appeared to be functional as they accumulated fluorescein. mhPKT cells conserved the expression of the liver-specific transcription factors HNF1, HNF3, HNF4, and DBP together with substantial levels of L-PK and albumin but not alpha-fetoprotein mRNA transcripts. mhPKT cells mainly metabolized testosterone into androstenedione and 6beta-hydroxytestosterone, as in vivo. 3-Methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) markedly increased ethoxyresorufin-O-deethylase activity and the related cytochrome P450 (CYP) 1A1/2 protein, whereas alpha-naphtoflavone antagonized the TCDD-elicited induction. Phenobarbital slightly increased the CYP2B-mediated activities of pentoxyresorufin-O-depentylase, 2beta- and 16beta-testosterone hydroxylase. mhPKT cells also had substantial sulfotransferase, UDP-glucuronyltransferase, and glutathione S-transferase activities. This model may serve as a tool for long-term in vitro studies of xenobiotic metabolism, potent CYP inducers, and hepatocyte damage due to drugs and other factors.
Collapse
Affiliation(s)
- F Courjault-Gautier
- Département Sécurité du Médicament, Centre de Recherche de Vitry-Alfortville, Rhône-Poulenc Rorer SA, Vitry-sur Seine, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chang SF, Scharf JG, Will H. Structural and functional analysis of the promoter of the hepatic lipase gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:148-59. [PMID: 9249021 DOI: 10.1111/j.1432-1033.1997.00148.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatic lipase (HL) gene transcription is almost exclusively limited to hepatocytes. Here we have studied sequences and transcription factors regulating basal and hepatocyte-restricted HL promoter activity. Sequencing of a cloned 3.4-kb HL promoter fragment revealed three Alu repeat sequences and a consensus hepatocyte-enriched nuclear transcription factor 1 (HNF1) binding site located upstream of one major and one minor transcription initiation site. By transfection of cell lines of hepatic and non-hepatic origin and of primary hepatocyte cultures, sequences controlling basic HL promoter activity and negative elements located downstream and upstream thereof which extinguish or enhance this activity were defined. Some HL-promoter fragments with internal deletions were active only in primary hepatocyte cultures. Human HNF1 protein was shown to bind to the HL-specific HNF1 response element and the activity of a heterologous promoter was enhanced by HL-HNF1 in rat primary hepatocyte cultures but not in the context of the authentic 3.4-kb HL promoter sequences. In cell lines the presence of HNF4 but not of HNF1 and vHNF1 mRNA was found to correlate with HL gene expression although no perfect consensus HNF4 binding motif was detected in the promoter region tested. Taken together, these data indicate that hepatocyte-specific HL gene transcription is controlled by positive and negative transcription regulatory proteins which bind to sequence motifs within and outside of the proximal 3.4-kb promoter fragment studied. For the elucidation of the control of HL promoter activity in vivo the use of primary hepatocyte cultures is essential.
Collapse
Affiliation(s)
- S F Chang
- Heinrich-Pette-Institut für experimentelle Virologie und Immunologie an der Universität Hamburg, Germany
| | | | | |
Collapse
|
27
|
Bulla GA. Selective loss of the hepatic phenotype due to the absence of a transcriptional activation pathway. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:185-201. [PMID: 9330630 DOI: 10.1007/bf02721370] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Liver-enriched trans-acting factors hepatocyte nuclear factor-1 alpha (HNF1 alpha) and -4 (HNF4) are components of a transcriptional activation pathway that is thought to play a major role in hepatic gene activation. We previously described the isolation and characterization of distinct classes of hepatoma variants which lack the HNF4-->HNF1 alpha pathway (1). In order to determine the influence of the HNF4-->HNF1 alpha pathway on hepatic gene expression, genetic rescue experiments were done using hepatoma variant line H11 as a model system. Results suggest that this pathway is required for basal expression of a number of endogenous hepatocyte-specific genes. Complementation groups were established by fusion of H11 cells with other variant lines. Lastly, introduction of human chromosome 20 (containing the HNF4 locus) or randomly-marked human chromosomes into H11 cells failed to rescue the hepatic phenotype, suggesting that what appears to be a 'simple' defect may involve multiple genetic loci.
Collapse
Affiliation(s)
- G A Bulla
- Department of Pediatrics, St. Louis University Health Sciences Center, Missouri, USA
| |
Collapse
|
28
|
Cohen H, Trus M, Benvenisty N, Reshef L. Identification of differentially expressed genes during hepatocytes development and characterization of their prenatal hormonal induction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:550-6. [PMID: 9022681 DOI: 10.1111/j.1432-1033.1996.0550r.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Upon birth, the liver acquires new functions as a result of the initiation of expression of key enzymes. One example is the initiation of gluconeogenesis which depends on the induced appearance of phosphoenolpyruvate carboxykinase (P-pyruvate-CK) at birth. To characterize other genes that undergo such regulation, a differential screening was performed on a cDNA library from well-differentiated hepatoma cells. The pattern of tissue-specific and developmental-specific expression was determined for seven genes. Three clones, out of which two encode for the known genes alcohol dehydrogenase class I (ADH) and phenylalanine 4-monooxygenase (PAH) and a new gene (clone 116-3), exhibited a pattern of expression similar to that of the P-pyruvate-CK gene, i.e. their expression was liver and kidney specific and induced in the liver upon birth. Determination of the sequence of clone 116-3 revealed that it belonged to the UDP-glucuronosyltransferases type 2 (UGT2) family and thus was named UGT2B-rH4. To examine whether expression of the various genes could be prematurely induced by hormones in the fetal liver, either high levels of cAMP or low levels of insulin were induced in utero. The results demonstrated that cAMP induced a marked expression only of the genes for P-pyruvate-CK and ADH but not of those for PAH or UGT2B-rH4, while insulin deficiency induced premature expression of all four genes. We suggest that a set of genes whose expression is specifically induced in the liver upon birth can be prematurely induced by the hormones in utero.
Collapse
Affiliation(s)
- H Cohen
- Department of Developmental Biochemistry, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
29
|
Roesler WJ, Crosson SM, Vinson C, McFie PJ. The alpha-isoform of the CCAAT/enhancer-binding protein is required for mediating cAMP responsiveness of the phosphoenolpyruvate carboxykinase promoter in hepatoma cells. J Biol Chem 1996; 271:8068-74. [PMID: 8626491 DOI: 10.1074/jbc.271.14.8068] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The gene coding for phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) is expressed in all gluconeogenic tissues, but stimulation of its rate of transcription by cAMP is robust only in liver. Evidence has accumulated which suggests that a liver-enriched transcription factor, likely a member of the CCAAT/enhancer binding protein (C/EBP) family, is required along with other ubiquitously expressed transcription factors to mediate this liver-specific response to cAMP. In this study, we examined the ability of C/EBP to participate in the cAMP-mediated activation of phosphoenolpyruvate carboxykinase (PEPCK) gene transcription in hepatoma cells. Expression of a dominant repressor of C/EBP in hepatoma cells significantly inhibited the protein kinase A-stimulated transcription of the PEPCK promoter, suggesting that a C/EBP family member was required for maximal transcriptional activation by protein kinase A. To provide additional support for this hypothesis, we prepared GAL4 fusion proteins containing C/EBP domains. Both C/EBPalpha and C/EBPbeta GAL4 fusion proteins were capable of stimulating transcription from promoters containing binding sites for the DNA-binding domain of GAL4. However, only the GAL4-C/EBPalpha fusion protein demonstrated the ability to synergize with the other transcription factors bound to the PEPCK promoter which are required to mediate cAMP responsiveness. The DNA-binding domain of C/EBPalpha was not required for this activity in hepatoma cells, although in non-hepatoma cells the basic region leucine zipper domain appeared to inhibit the ability of C/EBPalpha to participate in mediating cAMP responsiveness. These results suggest that the liver-specific nature of the cAMP responsiveness of the PEPCK promoter involves the recruitment of C/EBPalpha to the cAMP response unit.
Collapse
Affiliation(s)
- W J Roesler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | | | | | | |
Collapse
|
30
|
Chowdhury S, Gotoh T, Mori M, Takiguchi M. CCAAT/enhancer-binding protein beta (C/EBP beta) binds and activates while hepatocyte nuclear factor-4 (HNF-4) does not bind but represses the liver-type arginase promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:500-9. [PMID: 8612622 DOI: 10.1111/j.1432-1033.1996.00500.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In an attempt to elucidate the mechanism governing liver-specific transcription of the arginase gene, we previously detected two protein-binding sites designated footprint areas A and B at positions around--90 and --55 bp, respectively, relative to the transcription start site of the rat arginase gene. Based on the finding that area A was bound by a liver-selective factor(s) related to CCAAT/enhancer-binding protein (C/EBP), we performed cotransfection assay and showed that C/EBP family members and a related factor, albumin D-element-binding protein (DBP) stimulate transcription from the arginase promoter. In addition to area A, a recombinant C/EBP beta protein bound to area B, which appeared to be primarily responsible for activation by C/EBPs. We unexpectedly found that the arginase promoter activity stimulated by C/EBPs and DBP was repressed by another liver-enriched transcription factor, hepatocyte nuclear factor-4 (HNF-4). Analysis of chimeras formed between the arginase promoter and the herpes simplex virus thymidine kinase promoter allowed us to delimit the negative HNF-4-responsive element into the region overlapping with footprint area B. However, no apparent binding of HNF-4 was observed in this negative element. We speculate that HNF-4 is involved in fine regulation of the arginase gene in the liver or shutdown of the gene in nonhepatic tissues without direct binding to the promoter region.
Collapse
Affiliation(s)
- S Chowdhury
- Department of Molecular Genetics, Kumamoto University School of Medicine, Japan
| | | | | | | |
Collapse
|
31
|
Aguanno A, Afar R, Albert VR. Tissue-specific expression of the nonneuronal promoter of the aromatic L-amino acid decarboxylase gene is regulated by hepatocyte nuclear factor 1. J Biol Chem 1996; 271:4528-38. [PMID: 8626808 DOI: 10.1074/jbc.271.8.4528] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The rat aromatic l-amino acid decarboxylase (AADC) gene contains alternative promoters which direct expression of neuronal and nonneuronal mRNAs that differ only in their 5'-untranslated regions (UTRs). We have analyzed the expression of the nonneuronal promoter of the rat AADC gene in the kidney epithelial cell line LLC-PK1 and in cells which do not express the nonneuronal form of AADC by transient transfection. These studies revealed that the first 1.1 kilobases of the nonneuronal promoter, including the nonneuronal-specific 5'-UTR (Exon 1), contains sufficient information to direct tissue-specific expression. Serial deletions of this promoter localized the cis-active element to a region between -52 and -28 base pairs upstream of the nonneuronal transcription start site. An A/T-rich sequence, within this region which we have termed KL-1, was found to bind a kidney and liver-specific factor by DNase footprint analysis and was capable of directing tissue-specific expression from a heterologous promoter. Moreover, when the KL-1 sequence was mutated in the context of the entire promoter sequence, all transcriptional activity was abolished. DNA sequence comparison revealed that the KL-1 fragment is highly homologous to the binding site for hepatocyte nuclear factor-1 (HNF-1). Mobility shift studies utilizing an antibody to HNF-1 demonstrated binding of HNF-1 to the KL-1 fragment and cotransfection of HNF-1 cDNA into cells which do not express the nonneuronal form of AADC resulted in activation of transfected AADC nonneuronal promoter constructs. These results strongly suggest that the transcription factor which regulates the tissue-specific expression of the nonneuronal form of AADC mRNA is HNF-1.
Collapse
Affiliation(s)
- A Aguanno
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110, USA
| | | | | |
Collapse
|