1
|
Xie J, Lan Y, Zou C, He J, Huang Q, Zeng J, Pan M, Mei Y, Luo J, Zou D. Single-nucleus analysis reveals microenvironment-specific neuron and glial cell enrichment in Alzheimer's disease. BMC Genomics 2024; 25:526. [PMID: 38807051 PMCID: PMC11134750 DOI: 10.1186/s12864-024-10447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complicated neurodegenerative disease. Neuron-glial cell interactions are an important but not fully understood process in the progression of AD. We used bioinformatic methods to analyze single-nucleus RNA sequencing (snRNA-seq) data to investigate the cellular and molecular biological processes of AD. METHOD snRNA-seq data were downloaded from Gene Expression Omnibus (GEO) datasets and reprocessed to identify 240,804 single nuclei from healthy controls and patients with AD. The cellular composition of AD was further explored using Uniform Manifold Approximation and Projection (UMAP). Enrichment analysis for the functions of the DEGs was conducted and cell development trajectory analyses were used to reveal underlying cell fate decisions. iTALK was performed to identify ligand-receptor pairs among various cell types in the pathological ecological microenvironment of AD. RESULTS Six cell types and multiple subclusters were identified based on the snRNA-seq data. A subcluster of neuron and glial cells co-expressing lncRNA-SNHG14, myocardin-related transcription factor A (MRTFA), and MRTFB was found to be more abundant in the AD group. This subcluster was enriched in mitogen-activated protein kinase (MAPK)-, immune-, and apoptosis-related pathways. Through molecular docking, we found that lncRNA-SNHG14 may bind MRTFA and MRTFB, resulting in an interaction between neurons and glial cells. CONCLUSIONS The findings of this study describe a regulatory relationship between lncRNA-SNHG14, MRTFA, and MRTFB in the six main cell types of AD. This relationship may contribute to microenvironment remodeling in AD and provide a theoretical basis for a more in-depth analysis of AD.
Collapse
Affiliation(s)
- Jieqiong Xie
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, People's Republic of China
| | - Yating Lan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, People's Republic of China
| | - Cuihua Zou
- Department of Quality Control, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Jingfeng He
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, People's Republic of China
| | - Qi Huang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, People's Republic of China
| | - Jingyi Zeng
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, People's Republic of China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, People's Republic of China
| | - Yujia Mei
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, People's Republic of China.
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, People's Republic of China.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, People's Republic of China.
| |
Collapse
|
2
|
Malik V, Zimmer D, Jauch R. Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cell Mol Life Sci 2018; 75:1587-1612. [PMID: 29335749 PMCID: PMC11105716 DOI: 10.1007/s00018-018-2748-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
The POU (Pit-Oct-Unc) protein family is an evolutionary ancient group of transcription factors (TFs) that bind specific DNA sequences to direct gene expression programs. The fundamental importance of POU TFs to orchestrate embryonic development and to direct cellular fate decisions is well established, but the molecular basis for this activity is insufficiently understood. POU TFs possess a bipartite 'two-in-one' DNA binding domain consisting of two independently folding structural units connected by a poorly conserved and flexible linker. Therefore, they represent a paradigmatic example to study the molecular basis for the functional versatility of TFs. Their modular architecture endows POU TFs with the capacity to accommodate alternative composite DNA sequences by adopting different quaternary structures. Moreover, associations with partner proteins crucially influence the selection of their DNA binding sites. The plentitude of DNA binding modes confers the ability to POU TFs to regulate distinct genes in the context of different cellular environments. Likewise, different binding modes of POU proteins to DNA could trigger alternative regulatory responses in the context of different genomic locations of the same cell. Prominent POU TFs such as Oct4, Brn2, Oct6 and Brn4 are not only essential regulators of development but have also been successfully employed to reprogram somatic cells to pluripotency and neural lineages. Here we review biochemical, structural, genomic and cellular reprogramming studies to examine how the ability of POU TFs to select regulatory DNA, alone or with partner factors, is tied to their capacity to epigenetically remodel chromatin and drive specific regulatory programs that give cells their identities.
Collapse
Affiliation(s)
- Vikas Malik
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dennis Zimmer
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Organista-Nava J, Gómez-Gómez Y, Ocadiz-Delgado R, García-Villa E, Bonilla-Delgado J, Lagunas-Martínez A, Tapia JSO, Lambert PF, García-Carrancá A, Gariglio P. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal. Virology 2016; 499:230-242. [PMID: 27693927 DOI: 10.1016/j.virol.2016.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 01/24/2023]
Abstract
Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E2) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E2 on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E2 in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México; Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Yazmín Gómez-Gómez
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México; Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Rodolfo Ocadiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Enrique García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - José Bonilla-Delgado
- Unidad de Investigación, Hospital Juárez de México, Ciudad de México 07760, México
| | - Alfredo Lagunas-Martínez
- División de Biología Molecular de Patógenos, CISEI, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Jesús Santa-Olalla Tapia
- Unidad de Diagnóstico y Medicina Molecular, "Dr. Ruy Pérez Tamayo", Hospital del Niño y el Adolescente Morelense, Cuernavaca, Morelos, México; Facultad de Medicina, Universidad Autonóma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM) and División de Investigación Básica, Instituto Nacional de Cancerología (INCan), Secretaría de Salud, Ciudad de México 14080, México.
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México.
| |
Collapse
|
4
|
Garg V, Morgani S, Hadjantonakis AK. Capturing Identity and Fate Ex Vivo: Stem Cells from the Mouse Blastocyst. Curr Top Dev Biol 2016; 120:361-400. [PMID: 27475857 DOI: 10.1016/bs.ctdb.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During mouse preimplantation development, three molecularly, morphologically, and spatially distinct lineages are formed, the embryonic epiblast, the extraembryonic primitive endoderm, and the trophectoderm. Stem cell lines representing each of these lineages have now been derived and can be indefinitely maintained and expanded in culture, providing an unlimited source of material to study the interplay of tissue-specific transcription factors and signaling pathways involved in these fundamental cell fate decisions. Here we outline our current understanding of the derivation, maintenance, and properties of these in vitro stem cell models representing the preimplantation embryonic lineages.
Collapse
Affiliation(s)
- V Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - S Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.
| |
Collapse
|
5
|
Rizzino A, Wuebben EL. Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:780-91. [PMID: 26992828 DOI: 10.1016/j.bbagrm.2016.03.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
Abstract
Considerable progress has been made in understanding the roles of Sox2 and Oct4 in embryonic stem cells and mammalian embryogenesis. Specifically, significant progress has been made in answering three questions about the functions of Sox2 and Oct4, which are the focus of this review. 1) Are the first or second cell lineage decisions during embryogenesis controlled by Oct4 and/or Sox2? 2) Do the levels of Oct4 and Sox2 need to be maintained within narrow limits to promote normal development and to sustain the self-renewal of pluripotent stem cells? 3) Do Oct4 and Sox2 work closely together or is the primary role of Sox2 in pluripotent cells to ensure the expression of Oct4? Although significant progress has been made in answering these questions, additional studies are needed to resolve several important remaining issues. Nonetheless, the preponderance of the evidence suggests there is considerable crosstalk between Sox2 and Oct4, and further suggests Sox2 and Oct4 function as molecular rheostats and utilize negative feedback loops to carefully balance their expression and other critical genes during embryogenesis. This article is part of a Special Issue entitled: The Oct transcription factor family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States.
| | - Erin L Wuebben
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States
| |
Collapse
|
6
|
Sarlak G, Htoo H, Hernandez JF, Iizasa H, Checler F, Konietzko U, Song W, Vincent B. Sox2 functionally interacts with βAPP, the βAPP intracellular domain and ADAM10 at a transcriptional level in human cells. Neuroscience 2016; 312:153-64. [DOI: 10.1016/j.neuroscience.2015.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023]
|
7
|
Dailey L. High throughput technologies for the functional discovery of mammalian enhancers: new approaches for understanding transcriptional regulatory network dynamics. Genomics 2015; 106:151-158. [PMID: 26072436 DOI: 10.1016/j.ygeno.2015.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/18/2015] [Accepted: 06/08/2015] [Indexed: 01/08/2023]
Abstract
Completion of the human and mouse genomes has inspired new initiatives to obtain a global understanding of the functional regulatory networks governing gene expression. Enhancers are primary regulatory DNA elements determining precise spatio- and temporal gene expression patterns, but the observation that they can function at any distance from the gene(s) they regulate has made their genome-wide characterization challenging. Since traditional, single reporter approaches would be unable to accomplish this enormous task, high throughput technologies for mapping chromatin features associated with enhancers have emerged as an effective surrogate for enhancer discovery. However, the last few years have witnessed the development of several new innovative approaches that can effectively screen for and discover enhancers based on their functional activation of transcription using massively parallel reporter systems. In addition to their application for genome annotation, these new high throughput functional approaches open new and exciting avenues for modeling gene regulatory networks.
Collapse
Affiliation(s)
- Lisa Dailey
- NYU School of Medicine, Department of Microbiology, Kimmel Center for Stem Cell Biology, 550 First Avenue, MSB 252, New York, NY 10016, United States.
| |
Collapse
|
8
|
Li D, Zhang T, Gu W, Li P, Cheng X, Tong T, Wang W. The ALDH1⁺ subpopulation of the human NMFH-1 cell line exhibits cancer stem-like characteristics. Oncol Rep 2015; 33:2291-8. [PMID: 25760144 DOI: 10.3892/or.2015.3842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/23/2015] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) have been reported in many tissues. However, CSCs have yet to be identified in a human malignant fibrous histiocytoma (MFH) cell line. Elevated aldehyde dehydrogenase 1 (ALDH1) has been proposed as a stem cell marker for isolating CSCs from cancer. The aim of the present study was to identify a population with elevated ALDH in the human NMFH-1 cell line. ALDH⁺ and ALDH- cell populations were isolated and compared for CSC characteristics. ALDH enzymatic activity was used as a marker to identify the cells in the NMFH-1 line. Self-renewal, differentiation capacity, and tumorigenicity of the NMFH-1 ALDH⁺ cell population were then examined using a spheroid formation assay and xenograft model in nude mice. Chemoresistance levels, ABCG2 drug transport gene expression, and stem cell-associated gene expression were compared in these NMFH-1 populations. The ALDH⁺ population was better able to form spheres in anchorage-independent serum-starved conditions. Furthermore, the mRNA expression of key stem cell-related genes was enhanced in these cells. Increased expression of the drug transporter gene, ABCG2, was detected. Compared with ALDH-, the ALDH⁺ subpopulation had higher levels of chemoresistance to doxorubicin (DXR) and cisplatin (CDDP). Additionally, the ALDH⁺ cells more efficiently formed tumors when implanted into BALB/c nude mice. ALDH1 may therefore be used as a marker for the isolation of cells that exhibit several characteristics of CSCs from the NMFH-1 cell line. This finding may lead to the development of novel therapies to specifically kill ALDH1⁺ subpopulations (CSCs).
Collapse
Affiliation(s)
- Dejian Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tao Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenguang Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Peng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiangyang Cheng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tiejun Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenbo Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
9
|
Sarlak G, Vincent B. The Roles of the Stem Cell-Controlling Sox2 Transcription Factor: from Neuroectoderm Development to Alzheimer's Disease? Mol Neurobiol 2015; 53:1679-1698. [PMID: 25691455 DOI: 10.1007/s12035-015-9123-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/04/2015] [Indexed: 12/23/2022]
Abstract
Sox2 is a component of the core transcriptional regulatory network which maintains the totipotency of the cells during embryonic preimplantation period, the pluripotency of embryonic stem cells, and the multipotency of neural stem cells. This maintenance is controlled by internal loops between Sox2 and other transcription factors of the core such as Oct4, Nanog, Dax1, and Klf4, downstream proteins of extracellular ligands, epigenetic modifiers, and miRNAs. As Sox2 plays an important role in the balance between stem cells maintenance and commitment to differentiated lineages throughout the lifetime, it is supposed that Sox2 could regulate stem cells aging processes. In this review, we provide an update concerning the involvement of Sox2 in neurogenesis during normal aging and discuss its possible role in Alzheimer's disease.
Collapse
Affiliation(s)
- Golmaryam Sarlak
- Research Center for Neuroscience, Mahidol University, Nakhon Pathom, 73170, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Research Center for Neuroscience, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Centre National de la Recherche Scientifique, 2 rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
10
|
Fang L, Zhang L, Wei W, Jin X, Wang P, Tong Y, Li J, Du JX, Wong J. A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell 2014; 55:537-51. [PMID: 25042802 DOI: 10.1016/j.molcel.2014.06.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/08/2014] [Accepted: 06/06/2014] [Indexed: 11/16/2022]
Abstract
Sox2 is a key factor for maintaining embryonic stem cell (ESS) pluripotency, but little is known about its posttranslational regulation. Here we present evidence that the precise level of Sox2 proteins in ESCs is regulated by a balanced methylation and phosphorylation switch. Set7 monomethylates Sox2 at K119, which inhibits Sox2 transcriptional activity and induces Sox2 ubiquitination and degradation. The E3 ligase WWP2 specifically interacts with K119-methylated Sox2 through its HECT domain to promote Sox2 ubiquitination. In contrast, AKT1 phosphorylates Sox2 at T118 and stabilizes Sox2 by antagonizing K119me by Set7 and vice versa. In mouse ESCs, AKT1 activity toward Sox2 is greater than that of Set7, leading to Sox2 stabilization and ESC maintenance. In early development, increased Set7 expression correlates with Sox2 downregulation and appropriate differentiation. Our study highlights the importance of a Sox2 methylation-phosphorylation switch in determining ESC fate.
Collapse
Affiliation(s)
- Lan Fang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ling Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueling Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - James X Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
11
|
Hosseinpour B, Bakhtiarizadeh MR, Khosravi P, Ebrahimie E. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network. Gene 2013; 531:212-9. [DOI: 10.1016/j.gene.2013.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/23/2022]
|
12
|
Li C, Ito H, Fujita K, Shiwaku H, Qi Y, Tagawa K, Tamura T, Okazawa H. Sox2 transcriptionally regulates PQBP1, an intellectual disability-microcephaly causative gene, in neural stem progenitor cells. PLoS One 2013; 8:e68627. [PMID: 23874697 PMCID: PMC3713010 DOI: 10.1371/journal.pone.0068627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022] Open
Abstract
PQBP1 is a nuclear-cytoplasmic shuttling protein that is engaged in RNA metabolism and transcription. In mouse embryonic brain, our previous in situ hybridization study revealed that PQBP1 mRNA was dominantly expressed in the periventricular zone region where neural stem progenitor cells (NSPCs) are located. Because the expression patterns in NSPCs are related to the symptoms of intellectual disability and microcephaly in PQBP1 gene-mutated patients, we investigated the transcriptional regulation of PQBP1 by NSPC-specific transcription factors. We selected 132 genome sequences that matched the consensus sequence for the binding of Sox2 and POU transcription factors upstream and downstream of the mouse PQBP1 gene. We then screened the binding affinity of these sequences to Sox2-Pax6 or Sox2-Brn2 with gel mobility shift assays and found 18 genome sequences that interacted with the NSPC-specific transcription factors. Some of these sequences had cis-regulatory activities in Luciferase assays and in utero electroporation into NSPCs. Furthermore we found decreased levels of expression of PQBP1 protein in NSPCs of heterozygous Sox2-knockout mice in vivo by immunohistochemistry and western blot analysis. Collectively, these results indicated that Sox2 regulated the transcription of PQBP1 in NSPCs.
Collapse
Affiliation(s)
- Chan Li
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hikaru Ito
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Shiwaku
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yunlong Qi
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
Zhao J, Lambert G, Meijer AH, Rosa FM. The transcription factor Vox represses endoderm development by interacting with Casanova and Pou2. Development 2013; 140:1090-9. [DOI: 10.1242/dev.082008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Endoderm and mesoderm are both formed upon activation of Nodal signaling but how endoderm differentiates from mesoderm is still poorly explored. The sox-related gene casanova (sox32) acts downstream of the Nodal signal, is essential for endoderm development and requires the co-factor Pou2 (Pou5f1, Oct3, Oct4) in this process. Conversely, BMP signals have been shown to inhibit endoderm development by an as yet unexplained mechanism. In a search for Casanova regulators in zebrafish, we identified two of its binding partners as the transcription factors Pou2 and Vox, a member of the Vent group of proteins also involved in the patterning of the gastrula. In overexpression studies we show that vox and/or Vent group genes inhibit the capacity of Casanova to induce endoderm, even in the presence of its co-factor Pou2, and that Vox acts as a repressor in this process. We further show that vox, but not other members of the Vent group, is essential for defining the proper endodermal domain size at gastrulation. In this process, vox acts downstream of BMPs. Cell fate analysis further shows that Vox plays a key role downstream of BMP signals in regulating the capacity of Nodal to induce endoderm versus mesoderm by modulating the activity of the Casanova/Pou2 regulatory system.
Collapse
Affiliation(s)
- Jue Zhao
- INSERM U1024, F-75005 Paris, France
- CNRS UMR 8197, F-75005 Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, F-75230 Paris, France
- College of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Guillaume Lambert
- INSERM U1024, F-75005 Paris, France
- CNRS UMR 8197, F-75005 Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, F-75230 Paris, France
| | | | - Frederic M. Rosa
- INSERM U1024, F-75005 Paris, France
- CNRS UMR 8197, F-75005 Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, F-75230 Paris, France
| |
Collapse
|
14
|
Abstract
Embryonic stem cells have the ability to differentiate into nearly all cell types. However, the molecular mechanism of its pluripotency is still unclear. Oct3/4, Sox2 and Nanog are important factors of pluripotency. Oct3/4 (hereafter referred to as Oct4), in particular, has been an irreplaceable factor in the induction of pluripotency in adult cells. Proteins interacting with Oct4 and Nanog have been identified via affinity purification and mass spectrometry. These data, together with iterative purifications of interacting proteins allowed a protein interaction network to be constructed. The network currently includes 77 transcription factors, all of which are interconnected in one network. In-depth studies of some of these transcription factors show that they all recruit the NuRD complex. Hence, transcription factor clustering and chromosomal remodeling are key mechanism used by embryonic stem cells. Studies using RNA interference suggest that more pluripotency genes are yet to be discovered via protein-protein interactions. More work is required to complete and curate the embryonic stem cell protein interaction network. Analysis of a saturated protein interaction network by system biology tools can greatly aid in the understanding of the embryonic stem cell pluripotency network.
Collapse
Affiliation(s)
- Patricia Miang-Lon Ng
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | | |
Collapse
|
15
|
Abstract
Pluripotency is a "blank" cellular state characteristic of specific cells within the early embryo (e.g., epiblast cells) and of certain cells propagated in vitro (e.g., embryonic stem cells, ESCs). The terms pluripotent cell and stem cell are often used interchangeably to describe cells capable of differentiating into multiple cell types. In this review, we discuss the prevailing molecular and functional definitions of pluripotency and the working parameters employed to describe this state, both in the context of cells residing within the early embryo and cells propagated in vitro.
Collapse
Affiliation(s)
- Marion Dejosez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
16
|
Osorno R, Chambers I. Transcription factor heterogeneity and epiblast pluripotency. Philos Trans R Soc Lond B Biol Sci 2011; 366:2230-7. [PMID: 21727128 DOI: 10.1098/rstb.2011.0043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cells are defined by the simultaneous possession of the seemingly incongruent properties of self-renewal and multi-lineage differentiation potential. To maintain a stem cell population, these opposing forces must be balanced. Transcription factors that function to direct pluripotent cell identity are not all equally distributed throughout the pluripotent cell population. While Oct4 levels are relatively homogeneous, other transcription factors, such as Nanog, are more heterogeneously expressed. Moreover, Oct4 positive cells fluctuate between states of high Nanog expression associated with a high probability of self-renewal and low Nanog expression associated with an increased propensity to differentiate. As embryonic stem (ES) cells transit to the more developmentally advanced epiblast stem cell (EpiSC) state, the levels of pluripotency transcription factors are modulated. Such modulations are blunted in cells that overexpress Nanog and this may underlie the resistance of Nanog-overexpressing cells to transit to an EpiSC state. Interestingly, increasing the levels of Nanog in EpiSC can facilitate reversion to the ES cell state. Together these observations suggest that Nanog lies close to the top of the hierarchy of pluripotent transcription factor regulation.
Collapse
Affiliation(s)
- Rodrigo Osorno
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, UK
| | | |
Collapse
|
17
|
Cox JL, Mallanna SK, Ormsbee BD, Desler M, Wiebe MS, Rizzino A. Banf1 is required to maintain the self-renewal of both mouse and human embryonic stem cells. J Cell Sci 2011; 124:2654-65. [PMID: 21750191 DOI: 10.1242/jcs.083238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Self-renewal is a complex biological process necessary for maintaining the pluripotency of embryonic stem cells (ESCs). Recent studies have used global proteomic techniques to identify proteins that associate with the master regulators Oct4, Nanog and Sox2 in ESCs or in ESCs during the early stages of differentiation. Through an unbiased proteomic screen, Banf1 was identified as a Sox2-associated protein. Banf1 has been shown to be essential for worm and fly development but, until now, its role in mammalian development and ESCs has not been explored. In this study, we examined the effect of knocking down Banf1 on ESCs. We demonstrate that the knockdown of Banf1 promotes the differentiation of mouse ESCs and decreases the survival of both mouse and human ESCs. For mouse ESCs, we demonstrate that knocking down Banf1 promotes their differentiation into cells that exhibit markers primarily associated with mesoderm and trophectoderm. Interestingly, knockdown of Banf1 disrupts the survival of human ESCs without significantly reducing the expression levels of the master regulators Sox2, Oct4 and Nanog or inducing the expression of markers of differentiation. Furthermore, we determined that the knockdown of Banf1 alters the cell cycle distribution of both human and mouse ESCs by causing an uncharacteristic increase in the proportion of cells in the G2-M phase of the cell cycle.
Collapse
Affiliation(s)
- Jesse L Cox
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
18
|
Addis RC, Prasad MK, Yochem RL, Zhan X, Sheets TP, Axelman J, Patterson ES, Shamblott MJ. OCT3/4 regulates transcription of histone deacetylase 4 (Hdac4) in mouse embryonic stem cells. J Cell Biochem 2011; 111:391-401. [PMID: 20506506 DOI: 10.1002/jcb.22707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OCT3/4 is a POU domain transcription factor that is critical for maintenance of pluripotency and self-renewal by embryonic stem (ES) cells and cells of the early mammalian embryo. It has been demonstrated to bind and regulate a number of genes, often in conjunction with the transcription factors SOX2 and NANOG. In an effort to further understand this regulatory network, chromatin immunoprecipitation was used to prepare a library of DNA segments specifically bound by OCT3/4 in undifferentiated mouse ES (mES) cell chromatin. One segment corresponds to a region within the first intron of the gene encoding histone deacetylase 4 (Hdac4), a Class II histone deacetylase. This region acts as a transcriptional repressor and contains at least two functional sites that are specifically bound by OCT3/4. HDAC4 is not expressed in the nuclei of OCT3/4+ mES cells and is upregulated upon differentiation. These findings demonstrate the participation of OCT3/4 in the repression of Hdac4 in ES cells.
Collapse
Affiliation(s)
- Russell C Addis
- Department of Cell and Developmental Biology, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Boer B, Cox JL, Claassen D, Mallanna SK, Desler M, Rizzino A. Regulation of the Nanog gene by both positive and negative cis-regulatory elements in embryonal carcinoma cells and embryonic stem cells. Mol Reprod Dev 2009; 76:173-82. [PMID: 18537119 DOI: 10.1002/mrd.20943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The transcription factor Nanog is essential for mammalian embryogenesis, as well as the pluripotency of embryonic stem (ES) cells. Work with ES cells and embryonal carcinoma (EC) cells previously identified positive and negative cis-regulatory elements that influence the activity of the Nanog promoter, including adjacent cis-regulatory elements that bind Sox2 and Oct-3/4. Given the importance of Nanog during mammalian development, we examined the cis-regulatory elements required for Nanog promoter activity more closely. In this study, we demonstrate that two positive cis-regulatory elements previously shown to be active in F9 EC cells are also active in ES cells. We also identify a novel negative regulatory region that is located in close proximity to two other positive Nanog cis-regulatory elements. Although this negative regulatory region is active in F9 EC cells and ES cells, it is inactive in P19 EC cells. Furthermore, we demonstrate that one of the positive cis-regulatory elements active in F9 EC cells and ES cells is inactive in P19 EC cells. Together, these and other studies suggest that Nanog transcription is regulated by the interplay of positive and negative cis-regulatory elements. Given that P19 appears to be more closely related to a later developmental stage of mammalian development than F9 and ES cells, differential utilization of cis-regulatory elements may reflect mechanisms used during development to achieve the correct level of Nanog expression as embryogenesis unfolds.
Collapse
Affiliation(s)
- Brian Boer
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
20
|
Chakravarthy H, Boer B, Desler M, Mallanna SK, McKeithan TW, Rizzino A. Identification of DPPA4 and other genes as putative Sox2:Oct-3/4 target genes using a combination of in silico analysis and transcription-based assays. J Cell Physiol 2008; 216:651-62. [PMID: 18366076 DOI: 10.1002/jcp.21440] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sox2 and Oct-3/4 function as master regulators during mammalian embryogenesis, where they are believed to regulate a critical gene regulatory network by cooperatively binding to DNA regulatory regions composed of adjacent HMG and POU motifs (HMG/POU cassettes). Previous studies have identified seven genes that contain highly active HMG/POU cassettes (referred to as Sox2:Oct-3/4 target genes). Importantly, nearly all known Sox2:Oct-3/4 target genes appear to be essential for embryogenesis. Recent genome-wide ChIP-chip studies identified over 300 genes that are co-occupied by Sox2 and Oct-3/4, which suggests that most Sox2:Oct-3/4 target genes remain to be identified. The work described here used a 3-step strategy for identifying additional Sox2:Oct-3/4 target genes. First, we employed in silico analysis to search for putative HMG/POU cassettes in 50 genes reported to be co-occupied by Sox2 and Oct-3/4 in embryonic stem cells. We identified 39 genes that contain putative HMG/POU cassettes. Next, we tested the activity of seven of the putative HMG/POU cassettes in a transcription-based assay and determined that nearly all are functional. Finally, as a proof-of-principle, we tested one of the seven cassettes (DPPA4) in the context of its endogenous promoter using a promoter/reporter gene construct. DPPA4 was tested in part because it was shown recently to play an important role in ES cell self-renewal. We determined that the 5' flanking region of the DPPA4 gene contains a functional HMG/POU cassette and behaves as a Sox2:Oct-3/4 target gene. Finally, we used a transcription-based assay to help develop a refined consensus sequence for HMG/POU cassettes.
Collapse
Affiliation(s)
- Harini Chakravarthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mallanna SK, Boer B, Desler M, Rizzino A. Differential regulation of the Oct-3/4 gene in cell culture model systems that parallel different stages of mammalian development. Mol Reprod Dev 2008; 75:1247-57. [PMID: 18213644 DOI: 10.1002/mrd.20871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oct-3/4 is an essential transcription factor that regulates stem cell fate during embryogenesis. Previous reports have shown that the Oct-3/4 gene utilizes different enhancers to regulate its expression as development proceeds. However, the cis-elements contributing to the differential activity of these enhancers require further study. Here, we investigated the function of the HMG/POU cassette and LRH-1 site present in the distal enhancer (DE) and the proximal enhancer, respectively. F9 and P19 EC cells were the focus of this study because their differential utilization of Oct-3/4 enhancers parallels the use of these enhancers during different stages of development. We determined that the LRH-1 site functions as a positive and a negative cis-regulatory element in P19 and F9 EC cells, respectively. Furthermore, we determined that the HMG/POU cassette in the DE strongly activates the Oct-3/4 promoter in F9 cells, but is a much weaker positive regulatory element in P19 cells. Given that HMG/POU cassettes play key roles in the regulation of at least seven essential genes, the Oct-3/4 HMG/POU cassette was examined more closely by focusing on Sox2, which can bind to HMG/POU cassettes. Although chromatin immunoprecipitation demonstrated that Sox2 binds to the Oct-3/4 gene equally well in both EC cell lines, tethering Sox2 to the region of the HMG/POU cassette only activated the Oct-3/4 promoter in F9 EC cells. These and other findings suggest that the differential activity of the HMG/POU cassette of the Oct-3/4 gene in EC cells is due to differential action of Sox2 and its associated co-factors.
Collapse
Affiliation(s)
- Sunil Kumar Mallanna
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | |
Collapse
|
22
|
Kopp JL, Ormsbee BD, Desler M, Rizzino A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 2008; 26:903-11. [PMID: 18238855 DOI: 10.1634/stemcells.2007-0951] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies have demonstrated that the transcription factor Sox2 is essential during the early stages of development. Furthermore, decreasing the expression of Sox2 severely interferes with the self-renewal and pluripotency of embryonic stem (ES) cells. Other studies have shown that Sox2, in conjunction with the transcription factor Oct-3/4, stimulates its own transcription as well as the expression of a growing list of genes (Sox2:Oct-3/4 target genes) that require the cooperative action of Sox2 and Oct-3/4. Remarkably, recent studies have shown that overexpression of Sox2 decreases expression of its own gene, as well as four other Sox2:Oct-3/4 target genes (Oct-3/4, Nanog, Fgf-4, and Utf1). This finding led to the prediction that overexpression of Sox2 in ES cells would trigger their differentiation. In the current study, we initially engineered mouse ES cells for inducible overexpression of Sox2. Using this model system, we demonstrate that small increases (twofold or less) in Sox2 protein trigger the differentiation of ES cells into cells that exhibit markers for a wide range of differentiated cell types, including neuroectoderm, mesoderm, and trophectoderm but not endoderm. We also demonstrate that elevating the levels of Sox2 quickly downregulates several developmentally regulated genes, including Nanog, and a newly identified Sox2:Oct-3/4 target gene, Lefty1. Together, these data argue that the self-renewal of ES cells requires that Sox2 levels be maintained within narrow limits. Thus, Sox2 appears to function as a molecular rheostat that controls the expression of a critical set of embryonic genes, as well as the self-renewal and differentiation of ES cells.
Collapse
Affiliation(s)
- Janel L Kopp
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | |
Collapse
|
23
|
Lavial F, Acloque H, Bertocchini F, Macleod DJ, Boast S, Bachelard E, Montillet G, Thenot S, Sang HM, Stern CD, Samarut J, Pain B. The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development 2007; 134:3549-63. [PMID: 17827181 DOI: 10.1242/dev.006569] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESC) have been isolated from pregastrulation mammalian embryos. The maintenance of their pluripotency and ability to self-renew has been shown to be governed by the transcription factors Oct4 (Pou5f1) and Nanog. Oct4 appears to control cell-fate decisions of ESC in vitro and the choice between embryonic and trophectoderm cell fates in vivo. In non-mammalian vertebrates, the existence and functions of these factors are still under debate, although the identification of the zebrafish pou2 (spg; pou5f1) and Xenopus Pou91 (XlPou91) genes, which have important roles in maintaining uncommitted putative stem cell populations during early development, has suggested that these factors have common functions in all vertebrates. Using chicken ESC (cESC), which display similar properties of pluripotency and long-term self-renewal to mammalian ESC, we demonstrated the existence of an avian homologue of Oct4 that we call chicken PouV (cPouV). We established that cPouV and the chicken Nanog gene are required for the maintenance of pluripotency and self-renewal of cESC. These findings show that the mechanisms by which Oct4 and Nanog regulate pluripotency and self-renewal are not exclusive to mammals.
Collapse
Affiliation(s)
- Fabrice Lavial
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang ZX, Teh CHL, Kueh JLL, Lufkin T, Robson P, Stanton LW. Oct4 and Sox2 directly regulate expression of another pluripotency transcription factor, Zfp206, in embryonic stem cells. J Biol Chem 2007; 282:12822-30. [PMID: 17344211 DOI: 10.1074/jbc.m611814200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well known that Oct4 and Sox2 play an important role in the maintenance of embryonic stem cell pluripotency. These transcription factors bind to regulatory regions within hundreds of target genes to control their expression. Zfp206 is a recently characterized transcription factor that has a role in maintaining stem cell pluripotency. We have demonstrated here that Zfp206 is a direct downstream target of Oct4 and Sox2. Two composite sox-oct binding sites have been identified within the first intron of Zfp206. We have demonstrated binding of Oct4 and Sox2 to this region. In addition, we have shown that Oct4 or Sox2 alone can activate transcription via one of these sox-oct elements, although the presence of both Oct4 and Sox2 gave rise to a synergistic effect. These studies extend our understanding of the transcriptional network that operates to regulate the differentiation potential of embryonic stem cells.
Collapse
Affiliation(s)
- Zheng-Xu Wang
- Department of Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672
| | | | | | | | | | | |
Collapse
|
25
|
Garcia C, Calvo E, Nieto A. The transcription factor SOX17 is involved in the transcriptional control of the uteroglobin gene in rabbit endometrium. J Cell Biochem 2007; 102:665-79. [PMID: 17427959 DOI: 10.1002/jcb.21324] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The transcription of the uteroglobin gene (ug) is induced by progesterone in the rabbit endometrium, primarily through the binding of the progesterone receptor to the distal region of the ug promoter. However, other transcription factors participate in the progesterone action. The proximal ug promoter contains several putative consensus sequences for the binding of various progesterone-dependent endometrial nuclear factors (Perez Martinez et al. [1996] Arch Biochem Biophys 333: 12-18), suggesting that several transcription factors might be implicated in the hormonal induction of ug. We report here that one of these progesterone-dependent factors specifically binds to the sequence CACAATG (-183/-177) of the rabbit ug promoter. This sequence (hereafter called element G') is very similar to the consensus sequence for binding of the SOX family of transcription factors. Mutation of the element G' reduced transcription from the ug promoter in transient expression experiments. The endometrial factor was purified and analyzed by nano-liquid chromatography and ion trap coupled mass spectrometry yielding two partial amino acid sequences corresponding to a region of SOX17 that is highly conserved inter-species. This identification was confirmed by immunological techniques using a specific anti-SOX17 antibody. In agreement with the above findings, overexpression of SOX17 in transfected endometrial cells increased transcription from the ug promoter. SOX17 gradually accumulated in the nucleus in vivo concomitant with the induction of ug expression by progesterone in the endometrium. Thus, these findings implicate, for the first time, SOX17 in the transcriptional control of rabbit ug.
Collapse
Affiliation(s)
- Carlos Garcia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
26
|
Boer B, Bernadt CT, Desler M, Wilder PJ, Kopp JL, Rizzino A. Differential activity of the FGF-4 enhancer in F9 and P19 embryonal carcinoma cells. J Cell Physiol 2006; 208:97-108. [PMID: 16523502 DOI: 10.1002/jcp.20635] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transcription factors Oct-3/4 and Sox2 behave as global regulators during mammalian embryogenesis. They work together by binding co-operatively to closely spaced HMG and POU motifs (HMG/POU cassettes). Recently, it was suggested that a critical Sox2:Oct-3/4 target gene, FGF-4, is expressed at lower levels in P19 than in F9 embryonal carcinoma (EC) cells, due to lower levels of Sox2 in P19 than in F9 cells. We tested this possibility to better understand how FGF-4 expression is modulated during development. Although we found that P19 EC cells express approximately 10-fold less FGF-4 mRNA than F9 EC cells, we determined that Sox2 levels do not differ markedly in F9 and P19 EC cells. We also determined that Sox2 and Oct-3/4 work together equally well in both EC cell lines. Moreover, in contrast to an earlier prediction based on in vitro binding studies, we demonstrate that the function of the HMG/POU cassettes of the FGF-4 and UTF1 genes does not differ significantly in these EC cell lines when tested in the context of a natural enhancer. Importantly, we determined that the FGF-4 promoter is highly responsive to a heterologous enhancer in both EC cell lines; whereas, the FGF-4 enhancer is 7- to 10-fold less active in P19 than in F9 EC cells. Because F9 and P19 EC cells are likely to represent cells at different stages of mammalian development, we suggest that this difference in FGF-4 enhancer activity may reflect a mechanism used to decrease, but not abolish, FGF-4 expression as the early embryo develops.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line, Tumor
- Chromosomal Proteins, Non-Histone
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Electrophoretic Mobility Shift Assay
- Enhancer Elements, Genetic/genetics
- Enhancer Elements, Genetic/physiology
- Fibroblast Growth Factor 4/analysis
- Fibroblast Growth Factor 4/genetics
- Fibroblast Growth Factor 4/physiology
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Neoplastic/genetics
- HMG-Box Domains/genetics
- Mice
- Neoplasms, Germ Cell and Embryonal/chemistry
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/pathology
- Neoplasms, Germ Cell and Embryonal/physiopathology
- Octamer Transcription Factor-3/analysis
- Octamer Transcription Factor-3/genetics
- Octamer Transcription Factor-3/physiology
- POU Domain Factors/genetics
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- SOXB1 Transcription Factors
- Trans-Activators/analysis
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transfection
Collapse
Affiliation(s)
- Brian Boer
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
27
|
Boiani M, Schöler HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 2005; 6:872-84. [PMID: 16227977 DOI: 10.1038/nrm1744] [Citation(s) in RCA: 494] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian development requires the specification of over 200 cell types from a single totipotent cell. Investigation of the regulatory networks that are responsible for pluripotency in embryo-derived stem cells is fundamental to understanding mammalian development and realizing therapeutic potential. Extracellular signals and second messengers modulate cell-autonomous regulators such as OCT4, SOX2 and Nanog in a combinatorial complexity. Knowledge of this circuitry might reveal how to achieve phenotypic changes without the genetic manipulation of Oct4, Nanog and other toti/pluripotency-associated genes.
Collapse
Affiliation(s)
- Michele Boiani
- Max-Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Mendelstrasse 7/Von-Esmarch Strasse 56, 48149 Münster, Germany
| | | |
Collapse
|
28
|
Boer B, Luster TA, Bernadt C, Rizzino A. Distal enhancer of the mouseFGF-4 gene and its human counterpart exhibit differential activity: Critical role of a GT box. Mol Reprod Dev 2005; 71:263-74. [PMID: 15803454 DOI: 10.1002/mrd.20264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous studies have shown that there is a strict requirement for fibroblast growth factor-4 (FGF-4) during mammalian embryogenesis, and that FGF-4 expression in embryonic stem (ES) cells and embryonal carcinoma (EC) cells are controlled by a powerful downstream distal enhancer. More recently, mouse ES cells were shown to express significantly more FGF-4 mRNA than human ES cells. In the work reported here, we demonstrate that mouse EC cells also express far more FGF-4 mRNA than human EC cells. Using a panel of FGF-4 promoter/reporter gene constructs, we demonstrate that the enhancer of the mouse FGF-4 gene is approximately tenfold more active than its human counterpart. Moreover, we demonstrate that the critical difference between the mouse and the human FGF-4 enhancer is a 4 bp difference in the sequence of an essential GT box. Importantly, we demonstrate that changing 4 bp in the human enhancer to match the sequence of the mouse GT box elevates the activity of the human FGF-4 enhancer to the same level as that of the mouse enhancer. We extended these studies by examining the roles of Sp1 and Sp3 in FGF-4 expression. Although we demonstrate that Sp3, but not Sp1, can activate the FGF-4 promoter when artificially tethered to the FGF-4 enhancer, we show that Sp3 is not essential for expression of FGF-4 mRNA in mouse ES cells. Finally, our studies with human EC cells suggest that the factor responsible for mediating the effect of the mouse GT box is unlikely to be Sp1 or Sp3, and this factor is either not expressed in human EC cells or it is not sufficiently active in these cells.
Collapse
Affiliation(s)
- Brian Boer
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | |
Collapse
|
29
|
Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L. SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 2005; 26:148-65. [PMID: 15711057 DOI: 10.1159/000082134] [Citation(s) in RCA: 542] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 02/22/2004] [Indexed: 11/19/2022] Open
Abstract
Multipotent neural stem cells are present throughout the development of the central nervous system (CNS), persist into adulthood in defined locations and can be derived from more primitive embryonic stem cells. We show that SOX2, an HMG box transcription factor, is expressed in multipotent neural stem cells at all stages of mouse ontogeny. We have generated transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the endogenous locus-regulatory regions of the Sox2 gene to prospectively identify neural stem/progenitor cells in vivo and in vitro. Fluorescent cells coexpress SOX2 protein, and EGFP fluorescence is detected in proliferating neural progenitor cells of the entire anterior-posterior axis of the CNS from neural plate stages to adulthood. SOX2-EGFP cells can form neurospheres that can be passaged repeatedly and can differentiate into neurons, astrocytes and oligodendrocytes. Moreover, prospective clonal analysis of SOX2-EGFP-positive cells shows that all neurospheres, whether isolated from the embryonic CNS or the adult CNS, express SOX2-EGFP. In contrast, the pattern of SOX2-EGFP expression using randomly integrated Sox2 promoter/reporter construct differs, and neurospheres are heterogeneous for EGFP expression. These studies demonstrate that SOX2 may meet the requirements of a universal neural stem cell marker and provides a means to identify cells which fulfill the basic criteria of a stem cell: self-renewal and multipotent differentiation.
Collapse
Affiliation(s)
- Pam Ellis
- Neuroscience Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bernadt CT, Nowling T, Rizzino A. Transcription factor Sox-2 inhibits co-activator stimulated transcription. Mol Reprod Dev 2005; 69:260-7. [PMID: 15349837 DOI: 10.1002/mrd.20168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies have shown that transcription of the fibroblast growth factor-4 (FGF-4) gene by early embryonic cells is dependent upon a powerful distal enhancer located 3 kb downstream of the transcription start site within the untranslated region of the last exon. The transcription factors Sox-2 and Oct-3 cooperatively bind to critical cis-regulatory elements within the enhancer to synergistically activate transcription. Moreover, the co-activator p300 can mediate the synergistic activity of Sox-2 and Oct-3, and p300 associates with the FGF-4 enhancer in vivo. Embryonal carcinoma (EC) cells have been used extensively as a model system to study the regulation of the FGF-4 gene during early development. Recently, it has been suggested that suboptimal levels of Sox-2 expression in F9 EC cells limit the transcription of the FGF-4 gene. The studies presented in this report argue that Sox-2 levels are not limiting in F9 EC cells. Moreover, overexpression of Sox-2 in F9 EC cells decreases FGF-4 promoter activity. In addition, overexpression of Sox-2 in these cells inhibits activation by the co-activators p300, CBP, and OCA-B in a manner that requires the transactivation domain of Sox-2. These findings suggest that Sox-2 levels in F9 EC cells are regulated carefully to avoid interference with the transcription of critical genes.
Collapse
Affiliation(s)
- Cory T Bernadt
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|
31
|
Shin MR, Cui XS, Jun JH, Jeong YJ, Kim NH. Identification of mouse blastocyst genes that are downregulated by double-stranded RNA-mediated knockdown of Oct-4 expression. Mol Reprod Dev 2005; 70:390-6. [PMID: 15685634 DOI: 10.1002/mrd.20219] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oct-4 is an essential transcription factor involved in the differentiation of the inner cell mass (ICM) in mouse blastocysts, and is thought to be the pluripotent gene of embryonic stem cells. However, downstream genes of Oct-4 and the mechanism by which it regulates the transcription machinery remain unclear. Here, we specifically knocked down Oct-4 gene expression in mouse blastocysts by double-stranded RNA (dsRNA) interference. A recently developed method, the annealing control primer (ACP) technique, was then used to identify the downstream genes of Oct-4. By using 120 arbitrary ACP, 10 clones were found to be differentially expressed in the knocked down embryos and the cloned genes were analyzed by DNA sequencing and BLAST searching. Quantitative real time reverse transcription (RT)-polymerase chain reaction (PCR) confirmed that the expression of these genes is altered by Oct-4 knockdown. Of the 10 genes, 8 (Atp6ap2, GK003, Ddb1, hRscp, Dppa1, Dpp3, Sap18, and Rent1) were downregulated and 2 (Rps14 and ETIF2B) were upregulated in Oct-4 dsRNA-injected blastocysts. One of the downregulated genes is developmental pluripotency associated-1 (Dppa1), which has already been identified as being an Oct-4 downstream gene. Two other genes, Rent1 and Sap18, were found to be Oct-4 downstream genes for the first time. The genes identified here will provide insights into the roles played by Oct-4 during embryonic development.
Collapse
Affiliation(s)
- Mi-Ra Shin
- Department of Animal Science, Chungbuk National University, Gaesin-dong, Cheongju, Chungbuk, Seoul, South Korea
| | | | | | | | | |
Collapse
|
32
|
Okumura-Nakanishi S, Saito M, Niwa H, Ishikawa F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem 2004; 280:5307-17. [PMID: 15557334 DOI: 10.1074/jbc.m410015200] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oct-3/4 is a key transcriptional factor whose expression level governs the fate of primitive inner cell mass and embryonic stem (ES) cells. Previously, an upstream 3.3-kb distal enhancer (DE) fragment was identified to be responsible for the specific expression of mouse Oct-3/4 in the inner cell mass and ES cells. However, little is known about the cis-elements and trans-factors required for DE activity. In this study, we identified a novel cis-element, called Site 2B here, located approximately 30 bp downstream from Site 2A, which was previously revealed in DE by an in vivo chemical modification experiment. Using the luciferase reporter assay, we demonstrated that both Site 2A and Site 2B are necessary and sufficient for activating DE in the contexts of both the native Oct-3/4 promoter and the heterologous thymidine kinase minimal promoter. In an electrophoretic mobility shift assay we showed that Site 2B specifically binds to Oct-3/4 and Sox2 when ES-derived cell extracts were used, whereas Site 2A binds to a factor(s) present in both ES and NIH 3T3 cells. Furthermore, we showed that the physiological level of Oct-3/4 in ES cells is required for Site 2B-mediated DE activity using the inducible knock-out system of Oct-3/4 in ES cells. These results indicate that Oct-3/4 is a member of the gene family regulated by Oct-3/4 and Sox2, as reported before for the FGF-4, UTF1, Sox2, and Fbx15 genes. Thus, Oct-3/4 and Sox2 comprise a regulatory complex that controls the expression of genes important for the maintenance of the primitive state, including themselves. This autoregulatory circuit of the Sox2.Oct-3/4 complex may contribute to maintaining robustly the precise expression level of Oct-3/4 in primitive cells.
Collapse
Affiliation(s)
- Sayaka Okumura-Nakanishi
- Laboratory of Molecular and Cellular Assembly, Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatuda, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
33
|
Murakami A, Shen H, Ishida S, Dickson C. SOX7 and GATA-4 are competitive activators of Fgf-3 transcription. J Biol Chem 2004; 279:28564-73. [PMID: 15082719 DOI: 10.1074/jbc.m313814200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fgf-3 is expressed in a dynamic and complex spatiotemporal pattern during mouse development. Previous studies identified GATA-4 as a transcription factor that binds the key regulatory element PS4A of the Fgf-3 promoter and stimulates transcription. Here we show that members of the SOX family of transcription factors also bind PS4A and differentially modulate transcription. At least five SOX genes, Sox2, Sox6, Sox7, Sox13, and Sox17, were expressed in F9 cells, and of these, Sox7 and Sox17 were dramatically induced in parallel with Fgf-3 following differentiation into parietal endoderm-like cells with retinoic acid and dibutyryl cAMP. Complexes could be detected on PS4A with SOX2, SOX7, and SOX17 by using nuclear extracts from differentiated F9 cells. However, only Sox7 expression markedly activated the Fgf-3 promoter in these cells. By contrast, SOX2 was a poor activator of Fgf-3 transcription, and when Sox2 was coexpressed with Gata4, it negatively modulated the strong activation mediated by GATA-4. More detailed analyses showed that SOX7 competes with GATA-4 for PS4A occupancy and to activate the Fgf-3 promoter. In situ hybridization analysis showed that Sox7 is co-expressed with Fgf-3 and Gata4 in the parietal endoderm of E7.5 mouse embryos. In culture, GATA-4-deficient embryonal stem cells were shown to express Fgf-3 upon differentiation into embryoid bodies, although at lower levels than were found in wild type embryonal stem cells. This Fgf-3 expression was virtually abolished when Sox7 expression was suppressed by RNA interference. These results show that SOX7 is a potent activator of Fgf-3 transcription.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | |
Collapse
|
34
|
Luster TA, Rizzino A. Regulation of the FGF-4 gene by a complex distal enhancer that functions in part as an enhanceosome. Gene 2004; 323:163-72. [PMID: 14659890 DOI: 10.1016/j.gene.2003.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The exact mechanisms by which enhancers regulate transcription are currently under investigation. For some genes, activation is accomplished by an intricate array of enhancer cis-regulatory elements that direct the assembly of a gene-specific activation complex known as an "enhanceosome". Transcription of the fibroblast growth factor-4 (FGF-4) gene during early development is controlled by a powerful distal enhancer located 3 kb downstream of the transcription start site within the 3' untranslated region of the gene. Previous studies have shown that FGF-4 enhancer function is mediated by at least three critical positive cis-regulatory elements: an HMG, a POU, and a GT-box motif, which bind the transcription factors Sox-2, Oct-3, and Sp1/Sp3, respectively. In this study, we identify a second essential HMG motif within the FGF-4 enhancer that binds the transcription factor Sox-2. Moreover, we demonstrate that spatial alignment of the new HMG motif, relative the other enhancer cis-regulatory elements, is important. Based on findings presented in this report, and work published earlier, we propose that the previously identified core HMG and POU cis-regulatory elements of the FGF-4 enhancer are dependent on one another and function in an enhanceosome-like manner. In contrast, the HMG motif identified in this study is only partially dependent on the other enhancer cis-regulatory elements for its function.
Collapse
Affiliation(s)
- Troy A Luster
- Eppley Institute for the Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
35
|
Abstract
Cell allocation and subsequent lineage commitment in the human embryo may be established as early as in the unfertilized oocyte. This phenomenon might be the result of subtle differences of gene expression and protein distribution. To assess whether gene expression profiling by reverse transcription-polymerase chain reaction could be a suitable tool for the detection of cell allocation and lineage commitment, the expression pattern of the putative inner cell mass marker gene Oct-4 and the trophectodermal marker genes beta-HCG and beta-LH were correlated in individual blastomeres of preimplantation human embryos. In 2- to 5-cell stage embryos, expression of beta-HCG and Oct-4 mRNA was negatively correlated in all blastomeres with statistical significance, suggesting that cell allocation can be assessed by those markers at early stages. In 7- to 10-cell stage embryos, expression of beta-LH and Oct-4 mRNA was negatively correlated in some blastomeres without statistical significance, suggesting that more experiments are necessary to decide if lineage commitment can be assessed in some cells by those markers at later stages.
Collapse
Affiliation(s)
- Christoph Hansis
- Program for In Vitro Fertilization, Reproductive Surgery and Infertility, New York University School of Medicine, 660 First Avenue, 5th Floor, New York, NY 10016, USA.
| | | | | |
Collapse
|
36
|
Nowling T, Bernadt C, Johnson L, Desler M, Rizzino A. The co-activator p300 associates physically with and can mediate the action of the distal enhancer of the FGF-4 gene. J Biol Chem 2003; 278:13696-705. [PMID: 12488456 DOI: 10.1074/jbc.m207567200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distal enhancers commonly regulate gene expression. However, the mechanisms of transcriptional mediation by distal enhancers remain largely unknown. To better understand distal enhancer-mediated transcription, we examined the regulation of the FGF-4 gene. The FGF-4 gene is regulated during early development by a powerful distal enhancer located downstream of the promoter in exon 3. Sox-2 and Oct-3 bind to the enhancer and are required for the activation of the FGF-4 gene. Previously, we implicated the co-activator p300 as a mediator of Sox-2/Oct-3 synergistic activation of a heterologous promoter, suggesting that p300 may play a role in mediating enhancer activation of the FGF-4 gene. In this study, we provide both functional and physical evidence that p300 plays an important role in the action of the FGF-4 enhancer. Specifically, we show that E1a, but not a mutant form of E1a that is unable to bind p300, inhibits enhancer activation of the FGF-4 promoter. We also demonstrate that Gal4/p300 fusion proteins can stimulate the FGF-4 promoter when bound to the FGF-4 enhancer. Additionally, we present evidence that p300 mediation of the FGF-4 enhancer requires acetyltransferase activity. Importantly, we also show that Sox-2 and p300 are physically associated with the endogenous FGF-4 enhancer but weakly associated with the endogenous FGF-4 promoter. These results are consistent with a model of transitory interaction between the distal enhancer and the FGF-4 promoter. Our results also suggest that intragenic distal enhancers may use mechanisms that differ from extragenic distal enhancers.
Collapse
Affiliation(s)
- Tamara Nowling
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Embryonic stem (ES) cells are pluripotent stem cells that differentiate both in vitro and in vivo into cell types derived from each of the three embryonic germ layers. ES cells and their close relatives, embryonal carcinoma (EC) cells and embryonic germ (EG) cells, have been used extensively as model systems for studying early mammalian development. This work has led to important insights into the mechanisms that control embryogenesis at the molecular and cellular levels. This chapter focuses on the use of ES cells as an in vitro model system for studying cellular differentiation and reviews several areas where important progress has been made. Impressive progress has been made in the isolation and characterization of ES cells from many species, including humans. Significant progress has also been made in the development of culture conditions that help direct the differentiation of ES cells to specific cell types that form during myogenesis, angiogenesis, hematopoiesis, neurogenesis, and cardiogenesis. The ability to inactivate virtually any gene in ES cells by gene targeting has vastly improved our understanding of the roles played by specific genes at the cellular and organismic levels. Moreover, ES cells and EC cells have been used widely to investigate how specific genes are turned on and turned off in the course of differentiation. In this connection, DNA array technology has been used to identify genes regulated when ES cells differentiate. The final section of this chapter discusses how work with ES cells is shaping our understanding of stem cells, mammalian development, and cell replacement therapy.
Collapse
Affiliation(s)
- Angie Rizzino
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| |
Collapse
|
38
|
Johnson LR, Johnson TK, Desler M, Luster TA, Nowling T, Lewis RE, Rizzino A. Effects of B-Myb on gene transcription: phosphorylation-dependent activity ans acetylation by p300. J Biol Chem 2002; 277:4088-97. [PMID: 11733503 DOI: 10.1074/jbc.m105112200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor B-Myb is a cell-cycle regulated phosphoprotein involved in cell cycle progression through the transcriptional regulation of many genes. In this study, we show that the promoter of the fibroblast growth factor-4 (FGF-4) gene is strongly activated by B-Myb in HeLa cells and it can serve as a novel diagnostic tool for assessing B-Myb activity. Specifically, B-Myb deletion mutants were examined and domains of B-Myb required for activation of the FGF-4 promoter were identified. Using phosphorylation-deficient mutant forms of B-Myb, we also show that phosphorylation is essential for B-Myb activity. Moreover, a mutant form of B-Myb, which lacks all identified phosphorylation sites and which has little activity, can function as a dominant-negative and suppress wild-type B-Myb activity. Acetylation is another post-translational modification known to affect the activity of other Myb family members. We show that B-Myb is acetylated by the co-activator p300. We also show that the bromo and histone acetyltransferase domains of p300 are sufficient to interact with and acetylate B-Myb. These data indicate that phosphorylation of B-Myb is an essential modification for activity and that acetylation of B-Myb may play a role in B-Myb activity.
Collapse
Affiliation(s)
- Lance R Johnson
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The Oct-4 POU transcription factor is expressed in mouse totipotent embryonic stem and germ cells. Differentiation of totipotent cells to somatic lineages occurs at the blastocyst stage and during gastrulation, simultaneously with Oct-4 downregulation. Stem cell lines derived from the inner cell mass and the epiblast of the mouse embryo express Oct-4 only if undifferentiated. When embryonic stem cells are triggered to differentiate, Oct-4 is downregulated thus providing a model for the early events linked to somatic differentiation in the developing embryo. In vivo mutagenesis has shown that loss of Oct-4 at the blastocyst stage causes the cells of the inner cell mass to differentiate into trophectoderm cells. Recent experiments indicate that an Oct-4 expression level of roughly 50%-150% of the endogenous amount in embryonic stem cells is permissive for self-renewal and maintenance of totipotency. However, upregulation above these levels causes stem cells to express genes involved in the lineage differentiation of primitive endoderm. These novel advances along with latest findings on Oct-4-associated factors, target genes, and dimerization ability, provide new insights into the understanding of the early steps regulating mammalian embryogenesis.
Collapse
Affiliation(s)
- M Pesce
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell' Immacolata, Rome, Italy
| | | |
Collapse
|
40
|
Di Rocco G, Gavalas A, Popperl H, Krumlauf R, Mavilio F, Zappavigna V. The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function. J Biol Chem 2001; 276:20506-15. [PMID: 11278854 DOI: 10.1074/jbc.m011175200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regionally restricted expression patterns of Hox genes in developing embryos rely on auto-, cross-, and para-regulatory transcriptional elements. One example is the Hoxb1 auto-regulatory element (b1-ARE), which drives expression of Hoxb1 in the fourth rhombomere of the hindbrain. We previously showed that HOXB1 and PBX1 activate transcription from the b1-ARE by binding to sequences required for the expression of a reporter gene in rhombomere 4 in vivo. We now report that in embryonal carcinoma cells, which retain characteristics of primitive neuroectodermal cells, the b1-ARE displays higher basal and HOX/PBX-induced activities than in other cell backgrounds. We have identified a bipartite-binding site for SOX/OCT heterodimers within the b1-ARE that accounts for its cell context-specific activity and is required for maximal transcriptional activity of HOX/PBX complexes in embryonal carcinoma cells. Furthermore, we found that in an embryonal carcinoma cell background, HOXB1 has a significantly higher transcriptional activity than its paralog HOXA1. We map the determinants for this differential activity within the HOXB1 N-terminal transcriptional activation domain. By using analysis in transgenic and HOXA1 mutant mice, we extended these findings on the differential activities of HOXA1 and HOXB1 in vivo, and we demonstrated that they are important for regulating aspects of HOXB1 expression in the hindbrain. We found that mutation of the SOX/OCT site and targeted inactivation of Hoxa1 both impair the response of the b1-ARE to retinoic acid in transgenic mice. Our results show that Hoxa1 is the primary mediator of the response of b1-ARE to retinoic acid in vivo and that this function is dependent on the binding of SOX/OCT heterodimers to the b1-ARE. These results uncover novel functional differences between Hox paralogs and their modulators.
Collapse
Affiliation(s)
- G Di Rocco
- DIBIT-Istituto Scientifico H. San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Dailey L, Basilico C. Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes. J Cell Physiol 2001; 186:315-28. [PMID: 11169970 DOI: 10.1002/1097-4652(2001)9999:9999<000::aid-jcp1046>3.0.co;2-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The highly conserved homeodomains and HMG domains are components of a large number of proteins that play a role in the transcriptional regulation of gene expression during embryogenesis. Both the HMG domain and the homeodomain serve as interfaces for factor interactions with DNA, as well as with other proteins, and it is likely that the high degree of structural and sequence conservation within these domains reflects the conservation of basic aspects of these interactions. Classical HMG domain proteins have an ancient origin, being found in all eukaryotes, and are thought to have given rise to the metazoan-specific class of HMG domain proteins called the Sox proteins. Similarly, the metazoan-specific POU domain proteins are thought to have arisen from genes encoding ancestral homeodomain proteins. In this review, we summarize several examples of different HMG-homeodomain interactions that illustrate not only the ancient origin of each of these protein families, but also their relationship to each other, and discuss how coevolution of HMG and homeodomains may have lead to creation of the specialized Sox/POU protein complexes. Using the FGF-4 gene as an example, we also speculate on how coevolution of regulatory Sox/POU target DNA sequences may have occurred, and how the summation of these changes may have lead to the emergence of new developmental pathways.
Collapse
Affiliation(s)
- L Dailey
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
42
|
Fraidenraich D, Iwahori A, Rudnicki M, Basilico C. Activation of fgf4 gene expression in the myotomes is regulated by myogenic bHLH factors and by sonic hedgehog. Dev Biol 2000; 225:392-406. [PMID: 10985858 DOI: 10.1006/dbio.2000.9839] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Fgf4 gene encodes an important signaling molecule which is expressed in specific developmental stages, including the inner cell mass of the blastocyst, the myotomes, and the limb bud apical ectodermal ridge (AER). Using a transgenic approach, we previously identified overlapping but distinct enhancer elements in the Fgf4 3' untranslated region necessary and sufficient for myotome and AER expression. Here we have investigated the hypothesis that Fgf4 is a target of myogenic bHLH factors. We show by mutational analysis that a conserved E box located in the Fgf4 myotome enhancer is required for Fgf4-lacZ expression in the myotomes. A DNA probe containing the E box binds MYF5, MYOD, and bHLH-like activities from nuclear extracts of differentiating C2-7 myoblast cells, and both MYF5 and MYOD can activate gene expression of reporter plasmids containing the E-box element. Analyses of Myf5 and MyoD knockout mice harboring Fgf4-lacZ transgenes show that Myf5 is required for Fgf4 expression in the myotomes, while MyoD is not, but MyoD can sustain Fgf4 expression in the ventral myotomes in the absence of Myf5. Sonic hedgehog (Shh) signaling has been shown to have an essential inductive function in the expression of Myf5 and MyoD in the epaxial myotomes, but not in the hypaxial myotomes. We show here that expression of an Fgf4-lacZ transgene in Shh-/- embryos is suppressed not only in the epaxial but also in the hypaxial myotomes, while it is maintained in the AER. This suggests that Shh mediates Fgf4 activation in the myotomes through mechanisms independent of its role in the activation of myogenic factors. Thus, a cascade of events, involving Shh and bHLH factors, is responsible for activating Fgf4 expression in the myotomes in a spatial- and temporal-specific manner.
Collapse
Affiliation(s)
- D Fraidenraich
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
43
|
Luster TA, Johnson LR, Nowling TK, Lamb KA, Philipsen S, Rizzino A. Effects of three Sp1 motifs on the transcription of the FGF-4 gene. Mol Reprod Dev 2000; 57:4-15. [PMID: 10954851 DOI: 10.1002/1098-2795(200009)57:1<4::aid-mrd3>3.0.co;2-i] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that the transcription of the fibroblast growth factor-4 (FGF-4) gene is regulated by a powerful enhancer located approximately three kilobases downstream of the transcription start site. Several conserved cis-regulatory elements in the promoter and the enhancer have been identified, including two Sp1 motifs located in the promoter and one Sp1 motif located in the enhancer. Each of these Sp1 motifs has been shown previously to bind the transcription factors Sp1 and Sp3 in vitro. The main objective of this study was to examine the potential interaction of the FGF-4 promoter and enhancer Sp1 motifs. Using site-directed mutagenesis, we demonstrate that disruption of these sites, individually or in combination, reduce the expression of FGF-4 promoter/reporter gene constructs in embryonal carcinoma cells. Importantly, we demonstrate that disruption of the enhancer Sp1 motif exerts a more pronounced effect on the expression of these constructs than disruption of the promoter Sp1 motifs. We also demonstrate that changing the spacing and the stereo-alignment of the enhancer Sp1 motif, relative to the other cis-regulatory elements of the enhancer, has little effect on the ability of the enhancer to stimulate transcription. Furthermore, embryonic stem cells that contain two disrupted Sp1 alleles were used to demonstrate that the transcription factor Sp1 is not necessary for expression of the endogenous FGF-4 gene. Finally, the significance of these findings relative to a looping model for the transcriptional activation of the FGF-4 gene is discussed.
Collapse
Affiliation(s)
- T A Luster
- Eppley Institute for the Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
44
|
Li LC, Yeh CC, Nojima D, Dahiya R. Cloning and characterization of human estrogen receptor beta promoter. Biochem Biophys Res Commun 2000; 275:682-9. [PMID: 10964723 DOI: 10.1006/bbrc.2000.3363] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen receptors beta (ERbeta) belong to the nuclear receptor superfamily of ligand-dependent transcription factors that play critical roles in regulating genes involved in a wide array of biological processes. To investigate regulation of tissue-specific expression of ERbeta, we cloned and characterized a 2.1-kilobase 5'-flanking region of the human ERbeta gene. Two major transcription start sites were identified by primer extension and rapid amplification of 5'-cDNA end. The human ERbeta proximal promoter contains both TATA box and initiator element (Inr) and is GC-rich with a GC content of 65%. An Alu repeat sequence containing an ER-dependent transcription enhancer exists between -1416 and -1703. The full-length 5'-flanking sequence of ERbeta fused to a luciferase reporter exhibited functional promoter activity in ERbeta-positive TSUPr1 cell, but not in ERbeta-negative DU145 cells. In addition, DNase I protection assays of the proximal promoter showed unique protection patterns with nuclear extracts from TSUPr1 cells and ERbeta negative HeLa cells, suggesting presence of cell-specific trans-acting factors that mediate tissue/cell-specific ERbeta expression. Serial deletion analysis revealed that a 293-bp region encompassing the TATA box and Inr element possesses basal promoter activity.
Collapse
Affiliation(s)
- L C Li
- Department of Urology, Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
45
|
Ambrosetti DC, Schöler HR, Dailey L, Basilico C. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer. J Biol Chem 2000; 275:23387-97. [PMID: 10801796 DOI: 10.1074/jbc.m000932200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibroblast growth factor (FGF)-4 gene expression in the inner cell mass of the blastocyst and in EC cells requires the combined activity of two transcriptional regulators, Sox2 and Oct-3, which bind to adjacent sites on the FGF-4 enhancer DNA and synergistically activate transcription. Sox2 and Oct-3 bind cooperatively to the enhancer DNA through their DNA-binding, high mobility group and POU domains, respectively. These two domains, however, are not sufficient to activate transcription. We have analyzed a number of Sox2 and Oct-3 deletion mutants to identify the domains within each protein that contribute to the activity of the Sox2 x Oct-3 complex. Within Oct-3, we have identified two activation domains, the N-terminal AD1 and the C-terminal AD2, that play a role in the activity of the Sox2 x Oct-3 complex. AD1 also displays transcriptional activation functions in the absence of Sox2 while AD2 function was only detected within the Sox2 x Oct-3 complex. In Sox2, we have identified three activation domains within its C terminus: R1, R2, and R3. R1 and R2 can potentiate weak activation by Sox2 in the absence of Oct-3 but their deletion has no effect on the Sox2 x Oct-3 complex. In contrast, R3 function is only observed when Sox2 is complexed with Oct-3. In addition, analysis of Oct-1/Oct-3 chimeras indicates that the Oct-3 homeodomain also plays a critical role in the formation of a functional Sox2 x Oct-3 complex. Our results are consistent with a model in which the synergistic action of Sox2 and Oct-3 results from two major processes. Cooperative binding of the factors to the enhancer DNA, mediated by their binding domains, stably tethers each factor to DNA and increases the activity of intrinsic activation domains within each protein. Protein-protein and protein-DNA interactions then may lead to reciprocal conformational changes that expose latent activation domains within each protein. These findings define a mechanism that may also be utilized by other Sox x POU protein complexes in gene activation.
Collapse
Affiliation(s)
- D C Ambrosetti
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
46
|
Nowling TK, Johnson LR, Wiebe MS, Rizzino A. Identification of the transactivation domain of the transcription factor Sox-2 and an associated co-activator. J Biol Chem 2000; 275:3810-8. [PMID: 10660531 DOI: 10.1074/jbc.275.6.3810] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of interactions between Sox and POU transcription factors in the regulation of gene expression is becoming increasingly apparent. Recently, many examples of the involvement of Sox-POU partnerships in transcription have been discovered, including a partnership between Sox-2 and Oct-3. Little is known about the mechanisms by which these factors modulate transcription. To better understand the molecular interactions involved, we mapped the location of the transactivation domain of Sox-2. This was done in the context of its interaction with Oct-3, as well as its ability to transactivate as a fusion protein linked to the DNA-binding domain of Gal4. Both approaches demonstrated that Sox-2 contains a transactivation domain in its C-terminal half, containing a serine-rich region and the C terminus. We also determined that the viral oncoprotein E1a inhibits the ability of the Gal4/Sox-2 fusion protein to transactivate, as well as the transcriptional activation mediated by the combined action of Sox-2 and Oct-3. In contrast, a mutant form of E1a, unable to bind p300, lacks both of these effects. Importantly, we determined that p300 overcomes the inhibitory effects of E1a in both assays. Together, these findings suggest that Sox-2 mediates its effects, at least in part, through the co-activator p300.
Collapse
Affiliation(s)
- T K Nowling
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
47
|
Liu Z, Macias MJ, Bottomley MJ, Stier G, Linge JP, Nilges M, Bork P, Sattler M. The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins. Structure 1999; 7:1557-66. [PMID: 10647186 DOI: 10.1016/s0969-2126(00)88346-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The HRDC (helicase and RNaseD C-terminal) domain is found at the C terminus of many RecQ helicases, including the human Werner and Bloom syndrome proteins. RecQ helicases have been shown to unwind DNA in an ATP-dependent manner. However, the specific functional roles of these proteins in DNA recombination and replication are not known. An HRDC domain exists in both of the human RecQ homologues that are implicated in human disease and may have an important role in their function. RESULTS We have determined the three-dimensional structure of the HRDC domain in the Saccharomyces cerevisiae RecQ helicase Sgs1p by nuclear magnetic resonance (NMR) spectroscopy. The structure resembles auxiliary domains in bacterial DNA helicases and other proteins that interact with nucleic acids. We show that a positively charged region on the surface of the Sgs1p HRDC domain can interact with DNA. Structural similarities to bacterial DNA helicases suggest that the HRDC domain functions as an auxiliary domain in RecQ helicases. Homology models of the Werner and Bloom HRDC domains show different surface properties when compared with Sgs1p. CONCLUSIONS The HRDC domain represents a structural scaffold that resembles auxiliary domains in proteins that are involved in nucleic acid metabolism. In Sgs1p, the HRDC domain could modulate the helicase function via auxiliary contacts to DNA. However, in the Werner and Bloom syndrome helicases the HRDC domain may have a role in their functional differences by mediating diverse molecular interactions.
Collapse
Affiliation(s)
- Z Liu
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Benazzouz A, Duprey P. The vimentin promoter as a tool to analyze the early events of retinoic acid-induced differentiation of cultured embryonal carcinoma cells. Differentiation 1999; 65:171-80. [PMID: 10631814 DOI: 10.1046/j.1432-0436.1999.6530171.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vimentin gene encodes an intermediate filament protein expressed in the parietal endoderm, mesodermal, and early neural cells in vivo but by most in vitro-cultured cells regardless of their embryonic origin. Here we show that the vimentin gene promoter is very active in F9 embryonal carcinoma cells and increases in activity during differentiation. Using a series of 5'-deletion mutants, we provide evidence that the regions of the promoter involved in F9 cell activity are different from those previously demonstrated to be active in differentiated cell lines. Furthermore, we show that in differentiating F9 cells the activities of two different regions of the promoter are significantly enhanced. A distal region (-1710/-957) appears to contain functional binding sites for the murine Hox-A5 homeoprotein as demonstrated by band shift and footprinting experiments. A proximal region (-140/-78) contains a 30-bp repetitive sequence found in other genes activated during differentiation of F9 cells. Using band shift assays and methylation interference, we present evidence that a sequence-specific single-stranded DNA-binding protein(s) specifically interacts with the minus strand of the 30-bp sequence.
Collapse
|
49
|
Sebastian S, White JA, Wilson JE. Characterization of the rat type III hexokinase gene promoter. A functional octamer 1 motif is critical for basal promoter activity. J Biol Chem 1999; 274:31700-6. [PMID: 10531380 DOI: 10.1074/jbc.274.44.31700] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 1532-base pair 5'-flanking region of the gene encoding rat type III hexokinase has been cloned and sequenced. The total sequence includes positions -1548 to -17 (A of the translational start ATG as position +1). Using luciferase reporter constructs transfected into PC12 (rat pheochromocytoma) and L2 (rat lung) cells, basal promoter activity has been associated with sequence between -182 and -89. This includes a single transcriptional start site, an adenine at position -134 identified by primer extension. Together with previously cloned cDNA sequence, this accounts for an mRNA of approximately 3.9 kilobases, found by Northern blotting of RNA from rat lung and kidney. Sequence upstream of the transcriptional start site was devoid of canonical TATA and CAAT elements. An octamer 1 (Oct-1) binding site, located between positions -166 and -159 was shown by deletion analysis and site-directed mutation to be critical for promoter activity. Nuclear extracts from PC12 cells contained a protein (or proteins) specifically binding the octamer sequence, and supershift experiments with anti-Oct-1 indicated involvement of this ubiquitously expressed transcription factor in the complex. Sequence including the Oct-1 site and immediately adjacent regions was protected from DNase I digestion in footprinting experiments with nuclear extracts from PC12 cells. Reverse transcription polymerase chain reaction indicated that levels of type III hexokinase mRNA in rat tissues increased in the order brain < liver < lung approximately kidney; immunoblotting indicated that type III hexokinase protein in these tissues increased in a similar manner.
Collapse
Affiliation(s)
- S Sebastian
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
50
|
Spinella MJ, Freemantle SJ, Sekula D, Chang JH, Christie AJ, Dmitrovsky E. Retinoic acid promotes ubiquitination and proteolysis of cyclin D1 during induced tumor cell differentiation. J Biol Chem 1999; 274:22013-8. [PMID: 10419526 DOI: 10.1074/jbc.274.31.22013] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mechanisms by which differentiation programs engage the cell cycle are poorly understood. This study demonstrates that retinoids promote ubiquitination and degradation of cyclin D1 during retinoid-induced differentiation of human embryonal carcinoma cells. In response to all-trans-retinoic acid (RA) treatment, the human embryonal carcinoma cell line NT2/D1 exhibits a progressive decline in cyclin D1 expression beginning when the cells are committed to differentiate, but before onset of terminal neuronal differentiation. The decrease in cyclin D1 protein is tightly associated with the accumulation of hypophosphorylated forms of the retinoblastoma protein and G(1) arrest. In contrast, retinoic acid receptor gamma-deficient NT2/D1-R1 cells do not growth-arrest or accumulate in G(1) and have persistent cyclin D1 overexpression despite RA treatment. Notably, stable transfection of retinoic acid receptor gamma restores RA-mediated growth suppression and differentiation to NT2/D1-R1 cells and restores the decline of cyclin D1. The proteasome inhibitor LLnL blocks this RA-mediated decline in cyclin D1. RA treatment markedly accelerates ubiquitination of wild-type cyclin D1, but not a cyclin D1 (T286A) mutant. Transient expression of cyclin D1 (T286A) in NT2/D1 cells blocks RA-mediated transcriptional decline of a differentiation-sensitive reporter plasmid and represses induction of immunophenotypic neuronal markers. Taken together, these findings strongly implicate RA-mediated degradation of cyclin D1 as a means of coupling induced differentiation and cell cycle control of human embryonal carcinoma cells.
Collapse
Affiliation(s)
- M J Spinella
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Dartmouth Hitchcock Medical Center, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | |
Collapse
|