1
|
Kociemba J, Jørgensen ACS, Tadić N, Harris A, Sideri T, Chan WY, Ibrahim F, Ünal E, Skehel M, Shahrezaei V, Argüello-Miranda O, van Werven FJ. Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast. EMBO J 2024; 43:3256-3286. [PMID: 38886580 PMCID: PMC11294583 DOI: 10.1038/s44318-024-00149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3β kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.
Collapse
Affiliation(s)
- Johanna Kociemba
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andreas Christ Sølvsten Jørgensen
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK
- I-X Centre for AI In Science, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Nika Tadić
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Theodora Sideri
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Wei Yee Chan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Fairouz Ibrahim
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK.
| | - Orlando Argüello-Miranda
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | | |
Collapse
|
2
|
Su AJ, Yendluri SC, Ünal E. Control of meiotic entry by dual inhibition of a key mitotic transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533246. [PMID: 36993411 PMCID: PMC10055192 DOI: 10.1101/2023.03.17.533246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The mitosis to meiosis transition requires dynamic changes in gene expression, but whether and how the mitotic transcriptional machinery is regulated during this transition is unknown. In budding yeast, SBF and MBF transcription factors initiate the mitotic gene expression program. Here, we report two mechanisms that work together to restrict SBF activity during meiotic entry: repression of the SBF-specific Swi4 subunit through LUTI-based regulation and inhibition of SBF by Whi5, a homolog of the Rb tumor suppressor. We find that untimely SBF activation causes downregulation of early meiotic genes and delays meiotic entry. These defects are largely driven by the SBF-target G1 cyclins, which block the interaction between the central meiotic regulator Ime1 and its cofactor Ume6. Our study provides insight into the role of SWI4LUTI in establishing the meiotic transcriptional program and demonstrates how the LUTI-based regulation is integrated into a larger regulatory network to ensure timely SBF activity.
Collapse
|
3
|
Jakobsson E, Argüello-Miranda O, Chiu SW, Fazal Z, Kruczek J, Nunez-Corrales S, Pandit S, Pritchet L. Towards a Unified Understanding of Lithium Action in Basic Biology and its Significance for Applied Biology. J Membr Biol 2017; 250:587-604. [PMID: 29127487 PMCID: PMC5696506 DOI: 10.1007/s00232-017-9998-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/21/2017] [Indexed: 01/14/2023]
Abstract
Lithium has literally been everywhere forever, since it is one of the three elements created in the Big Bang. Lithium concentration in rocks, soil, and fresh water is highly variable from place to place, and has varied widely in specific regions over evolutionary and geologic time. The biological effects of lithium are many and varied. Based on experiments in which animals are deprived of lithium, lithium is an essential nutrient. At the other extreme, at lithium ingestion sufficient to raise blood concentration significantly over 1 mM/, lithium is acutely toxic. There is no consensus regarding optimum levels of lithium intake for populations or individuals-with the single exception that lithium is a generally accepted first-line therapy for bipolar disorder, and specific dosage guidelines for sufferers of that condition are generally agreed on. Epidemiological evidence correlating various markers of social dysfunction and disease vs. lithium level in drinking water suggest benefits of moderately elevated lithium compared to average levels of lithium intake. In contrast to other biologically significant ions, lithium is unusual in not having its concentration in fluids of multicellular animals closely regulated. For hydrogen ions, sodium ions, potassium ions, calcium ions, chloride ions, and magnesium ions, blood and extracellular fluid concentrations are closely and necessarily regulated by systems of highly selective channels, and primary and secondary active transporters. Lithium, while having strong biological activity, is tolerated over body fluid concentrations ranging over many orders of magnitude. The lack of biological regulation of lithium appears due to lack of lithium-specific binding sites and selectivity filters. Rather lithium exerts its myriad physiological and biochemical effects by competing for macromolecular sites that are relatively specific for other cations, most especially for sodium and magnesium. This review will consider what is known about the nature of this competition and suggest using and extending this knowledge towards the goal of a unified understanding of lithium in biology and the application of that understanding in medicine and nutrition.
Collapse
Affiliation(s)
- Eric Jakobsson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | - See-Wing Chiu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zeeshan Fazal
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James Kruczek
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Santiago Nunez-Corrales
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sagar Pandit
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Laura Pritchet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Zhou S, Sternglanz R, Neiman AM. Developmentally regulated internal transcription initiation during meiosis in budding yeast. PLoS One 2017; 12:e0188001. [PMID: 29136644 PMCID: PMC5685637 DOI: 10.1371/journal.pone.0188001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Sporulation of budding yeast is a developmental process in which cells undergo meiosis to generate stress-resistant progeny. The dynamic nature of the budding yeast meiotic transcriptome has been well established by a number of genome-wide studies. Here we develop an analysis pipeline to systematically identify novel transcription start sites that reside internal to a gene. Application of this pipeline to data from a synchronized meiotic time course reveals over 40 genes that display specific internal initiations in mid-sporulation. Consistent with the time of induction, motif analysis on upstream sequences of these internal transcription start sites reveals a significant enrichment for the binding site of Ndt80, the transcriptional activator of middle sporulation genes. Further examination of one gene, MRK1, demonstrates the Ndt80 binding site is necessary for internal initiation and results in the expression of an N-terminally truncated protein isoform. When the MRK1 paralog RIM11 is downregulated, the MRK1 internal transcript promotes efficient sporulation, indicating functional significance of the internal initiation. Our findings suggest internal transcriptional initiation to be a dynamic, regulated process with potential functional impacts on development.
Collapse
Affiliation(s)
- Sai Zhou
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, United States of America
| | - Rolf Sternglanz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
5
|
|
6
|
Chia M, van Werven FJ. Temporal Expression of a Master Regulator Drives Synchronous Sporulation in Budding Yeast. G3 (BETHESDA, MD.) 2016; 6:3553-3560. [PMID: 27605516 PMCID: PMC5100854 DOI: 10.1534/g3.116.034983] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
Abstract
Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation, IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here, we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for 2 hr, the vast majority of cells exhibit synchrony during premeiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate-containing medium, but can be achieved in cells grown in rich medium until saturation. Our system requires solely IME1, because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be combined easily with other stage-specific synchronization methods, and thereby applied to study specific stages of sporulation, or the complete sporulation program.
Collapse
Affiliation(s)
- Minghao Chia
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Folkert J van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| |
Collapse
|
7
|
Weidberg H, Moretto F, Spedale G, Amon A, van Werven FJ. Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability. PLoS Genet 2016; 12:e1006075. [PMID: 27272508 PMCID: PMC4894626 DOI: 10.1371/journal.pgen.1006075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
Abstract
Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter.
Collapse
Affiliation(s)
- Hilla Weidberg
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Fabien Moretto
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gianpiero Spedale
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Folkert J. van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
8
|
Fernandez-Sanchez ME, Brunet T, Röper JC, Farge E. Mechanotransduction's Impact on Animal Development, Evolution, and Tumorigenesis. Annu Rev Cell Dev Biol 2015; 31:373-97. [DOI: 10.1146/annurev-cellbio-102314-112441] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| | - Thibaut Brunet
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
- Evolution of the Nervous System in Bilateria Group, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Jens-Christian Röper
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| |
Collapse
|
9
|
da Silveira Dos Santos AX, Riezman I, Aguilera-Romero MA, David F, Piccolis M, Loewith R, Schaad O, Riezman H. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol Biol Cell 2014; 25:3234-46. [PMID: 25143408 PMCID: PMC4196872 DOI: 10.1091/mbc.e14-03-0851] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The regulatory pathways required to maintain eukaryotic lipid homeostasis are largely unknown. We developed a systematic approach to uncover new players in the regulation of lipid homeostasis. Through an unbiased mass spectrometry-based lipidomic screening, we quantified hundreds of lipid species, including glycerophospholipids, sphingolipids, and sterols, from a collection of 129 mutants in protein kinase and phosphatase genes of Saccharomyces cerevisiae. Our approach successfully identified known kinases involved in lipid homeostasis and uncovered new ones. By clustering analysis, we found connections between nutrient-sensing pathways and regulation of glycerophospholipids. Deletion of members of glucose- and nitrogen-sensing pathways showed reciprocal changes in glycerophospholipid acyl chain lengths. We also found several new candidates for the regulation of sphingolipid homeostasis, including a connection between inositol pyrophosphate metabolism and complex sphingolipid homeostasis through transcriptional regulation of AUR1 and SUR1. This robust, systematic lipidomic approach constitutes a rich, new source of biological information and can be used to identify novel gene associations and function.
Collapse
Affiliation(s)
- Aline Xavier da Silveira Dos Santos
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Maria-Auxiliadora Aguilera-Romero
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Fabrice David
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Manuele Piccolis
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Robbie Loewith
- National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
10
|
Yabuki Y, Kodama Y, Katayama M, Sakamoto A, Kanemaru H, Wan K, Mizuta K. Glycogen synthase kinase-3 is involved in regulation of ribosome biogenesis in yeast. Biosci Biotechnol Biochem 2014; 78:800-5. [PMID: 25035982 DOI: 10.1080/09168451.2014.905183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Secretory defects cause transcriptional repression of both ribosomal proteins and ribosomal RNA genes in Saccharomyces cerevisiae. Rrs1, a trans-acting factor that participates in ribosome biogenesis, is involved in the signaling pathway induced by secretory defects. Here, we found that Rrs1 interacts with two homologs of the glycogen synthase kinase-3 (GSK-3), Rim11, and Mrk1. Rrs1 possesses a repetitive consensus amino acid sequence for phosphorylation by GSK-3, and mutation of this sequence abolished the interaction of Rrs1 with Rim11 and Mrk1. Although this mutation did not affect vegetative cell growth or secretory response, disruption of all four genes encoding GSK-3 homologs, especially Mck1, diminished the transcriptional repression of ribosomal protein genes in response to secretory defects. Among the four GSK-3 kinases, Mck1 appears to be the primary mediator of this response, while the other GSK-3 kinases contribute redundantly.
Collapse
Affiliation(s)
- Yukari Yabuki
- a Department of Biofunctional Science and Technology , Graduate School of Biosphere Science, Hiroshima University , Higashi-Hiroshima , Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Ray D, Su Y, Ye P. Dynamic modeling of yeast meiotic initiation. BMC SYSTEMS BIOLOGY 2013; 7:37. [PMID: 23631506 PMCID: PMC3772702 DOI: 10.1186/1752-0509-7-37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022]
Abstract
Background Meiosis is the sexual reproduction process common to eukaryotes. The diploid yeast Saccharomyces cerevisiae undergoes meiosis in sporulation medium to form four haploid spores. Initiation of the process is tightly controlled by intricate networks of positive and negative feedback loops. Intriguingly, expression of early meiotic proteins occurs within a narrow time window. Further, sporulation efficiency is strikingly different for yeast strains with distinct mutations or genetic backgrounds. To investigate signal transduction pathways that regulate transient protein expression and sporulation efficiency, we develop a mathematical model using ordinary differential equations. The model describes early meiotic events, particularly feedback mechanisms at the system level and phosphorylation of signaling molecules for regulating protein activities. Results The mathematical model is capable of simulating the orderly and transient dynamics of meiotic proteins including Ime1, the master regulator of meiotic initiation, and Ime2, a kinase encoded by an early gene. The model is validated by quantitative sporulation phenotypes of single-gene knockouts. Thus, we can use the model to make novel predictions on the cooperation between proteins in the signaling pathway. Virtual perturbations on feedback loops suggest that both positive and negative feedback loops are required to terminate expression of early meiotic proteins. Bifurcation analyses on feedback loops indicate that multiple feedback loops are coordinated to modulate sporulation efficiency. In particular, positive auto-regulation of Ime2 produces a bistable system with a normal meiotic state and a more efficient meiotic state. Conclusions By systematically scanning through feedback loops in the mathematical model, we demonstrate that, in yeast, the decisions to terminate protein expression and to sporulate at different efficiencies stem from feedback signals toward the master regulator Ime1 and the early meiotic protein Ime2. We argue that the architecture of meiotic initiation pathway generates a robust mechanism that assures a rapid and complete transition into meiosis. This type of systems-level regulation is a commonly used mechanism controlling developmental programs in yeast and other organisms. Our mathematical model uncovers key regulations that can be manipulated to enhance sporulation efficiency, an important first step in the development of new strategies for producing gametes with high quality and quantity.
Collapse
Affiliation(s)
- Debjit Ray
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164, USA
| | | | | |
Collapse
|
12
|
Epistasis in a quantitative trait captured by a molecular model of transcription factor interactions. Theor Popul Biol 2009; 77:1-5. [PMID: 19818800 DOI: 10.1016/j.tpb.2009.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/25/2009] [Accepted: 10/01/2009] [Indexed: 11/24/2022]
Abstract
With technological advances in genetic mapping studies more of the genes and polymorphisms that underlie Quantitative Trait Loci (QTL) are now being identified. As the identities of these genes become known there is a growing need for an analysis framework that incorporates the molecular interactions affected by natural polymorphisms. As a step towards such a framework we present a molecular model of genetic variation in sporulation efficiency between natural isolates of the yeast, Saccharomyces cerevisiae. The model is based on the structure of the regulatory pathway that controls sporulation. The model captures the phenotypic variation between strains carrying different combinations of alleles at known QTL. Compared to a standard linear model the molecular model requires fewer free parameters, and has the advantage of generating quantitative hypotheses about the affinity of specific molecular interactions in different genetic backgrounds. Our analyses provide a concrete example of how the thermodynamic properties of protein-protein and protein-DNA interactions naturally give rise to epistasis, the non-linear relationship between genotype and phenotype. As more causative genes and polymorphisms underlying QTL are identified, thermodynamic analyses of quantitative traits may provide a useful framework for unraveling the complex relationship between genotype and phenotype.
Collapse
|
13
|
Nachman I, Regev A, Ramanathan S. Dissecting Timing Variability in Yeast Meiosis. Cell 2007; 131:544-56. [DOI: 10.1016/j.cell.2007.09.044] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 07/18/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
14
|
Salameh W, Helliwell JP, Han G, McPhaul L, Khorram O. Expression of endometrial glycogen synthase kinase-3beta protein throughout the menstrual cycle and its regulation by progesterone. Mol Hum Reprod 2006; 12:543-9. [PMID: 16882987 DOI: 10.1093/molehr/gal065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glycogen synthase kinase-3beta (GSK-3beta) is a serine/threonine kinase that plays a role in glycogen synthesis by inhibiting glycogen synthase (GS) through phosphorylation. We hypothesized that GSK-3beta by virtue of its role in glycogen synthesis through the inhibition of GS will play a role in the preparation of the endometrium for blastocyst implantation. Immunohistochemical (IHC) analysis and Western blot analysis (WBA) detected GSK-3beta in the endometrium, myometrium, Fallopian tube and ovary. WBA showed more than 5-fold higher endometrial expression of the phosphorylated GSK-3beta (pGSK-3beta) isoform (inactive) in the secretory phase as compared with the proliferative phase (P < 0.001), whereas no differences in total GSK-3beta expression were detected. IHC analysis confirmed the WBA and showed marked expression of pGSK-3beta predominantly in glandular epithelial cells in early and mid secretory endometrium with scant expression during the proliferative phase. In in vitro experiments using human endometrial-derived epithelial cell line (HES), progesterone did not alter total GSK mRNA or protein expression. However, progesterone induced a dose-dependent increase in the expression of pGSK-3beta, which could be blocked by RU486. Cyclic expression of GSK-3beta's active and inactive forms in the endometrium suggests that sex hormones regulate the expression of this enzyme. In vitro experiments demonstrate that progesterone through receptor-mediated mechanisms induces phosphorylation of endometrial GSK-3beta.
Collapse
Affiliation(s)
- Wael Salameh
- Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | | |
Collapse
|
15
|
Schlecht U, Demougin P, Koch R, Hermida L, Wiederkehr C, Descombes P, Pineau C, Jégou B, Primig M. Expression profiling of mammalian male meiosis and gametogenesis identifies novel candidate genes for roles in the regulation of fertility. Mol Biol Cell 2004; 15:1031-43. [PMID: 14718556 PMCID: PMC363067 DOI: 10.1091/mbc.e03-10-0762] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We report a comprehensive large-scale expression profiling analysis of mammalian male germ cells undergoing mitotic growth, meiosis, and gametogenesis by using high-density oligonucleotide microarrays and highly enriched cell populations. Among 11,955 rat loci investigated, 1268 were identified as differentially transcribed in germ cells at subsequent developmental stages compared with total testis, somatic Sertoli cells as well as brain and skeletal muscle controls. The loci were organized into four expression clusters that correspond to somatic, mitotic, meiotic, and postmeiotic cell types. This work provides information about expression patterns of approximately 200 genes known to be important during male germ cell development. Approximately 40 of those are included in a group of 121 transcripts for which we report germ cell expression and lack of transcription in three somatic control cell types. Moreover, we demonstrate the testicular expression and transcriptional induction in mitotic, meiotic, and/or postmeiotic germ cells of 293 as yet uncharacterized transcripts, some of which are likely to encode factors involved in spermatogenesis and fertility. This group also contains potential germ cell-specific targets for innovative contraceptives. A graphical display of the data is conveniently accessible through the GermOnline database at http://www.germonline.org.
Collapse
Affiliation(s)
- Ulrich Schlecht
- Biozentrum and Swiss Institute of Bioinformatics, 4056 Basel; Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kassir Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G. Transcriptional regulation of meiosis in budding yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:111-71. [PMID: 12722950 DOI: 10.1016/s0074-7696(05)24004-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activation of Ime 1, the master regulator of meiosis. IME1 encodes a transcriptional activator recruited to promoters of early meiosis-specific genes by association with the DNA-binding protein, Ume6. Under vegetative growth conditions these genes are silent due to recruitment of the Sin3/Rpd3 histone deacetylase and Isw2 chromatin remodeling complexes by Ume6. Transcription of these meiotic genes occurs following histone acetylation by Gcn5. Expression of the early genes promote entry into the meiotic cycle, as they include genes required for premeiotic DNA synthesis, synapsis of homologous chromosomes, and meiotic recombination. Two of the early meiosis specific genes, a transcriptional activator, Ndt80, and a CDK2 homologue, Ime2, are required for the transcription of middle meiosis-specific genes that are involved with nuclear division and spore formation. Spore maturation depends on late genes whose expression is indirectly dependent on Ime1, Ime2, and Ndt80. Finally, phosphorylation of Imel by Ime2 leads to its degradation, and consequently to shutting down of the meiotic transcriptional cascade. This review is focusing on the regulation of gene expression governing initiation and progression through meiosis.
Collapse
Affiliation(s)
- Yona Kassir
- Department of Biology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Guo TB, Chan KC, Hakovirta H, Xiao Y, Toppari J, Mitchell AP, Salameh WA. Evidence for a role of glycogen synthase kinase-3 beta in rodent spermatogenesis. JOURNAL OF ANDROLOGY 2003; 24:332-42. [PMID: 12721208 DOI: 10.1002/j.1939-4640.2003.tb02680.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glycogen synthase kinase-3 beta (GSK-3 beta) regulates cell metabolism, cell cycle, and cell fate through the phosphorylation of a diverse array of substrates. Herein, we provide evidence that supports a role for GSK-3 in mammalian meiosis and spermatogenesis. Immunostaining of testis sections showed that while GSK-3 alpha was ubiquitous in the seminiferous tubules, GSK-3 beta was expressed in premeiotic type B spermatogonia, in both meiotic preleptotene and leptotene spermatocytes, as well as in Sertoli cells in both the mouse and rat. Thus, GSK-3 beta is expressed in germ cells entering meiosis. In addition, intense immunoreactivity was detected in rat step 6 though 11 spermatids. In situ hybridization (ISH) in rat testis confirmed the immunostaining pattern in leptotene and spermatids and showed a GSK-3 beta messenger RNA (mRNA) signal in some pachytene spermatocytes. The restricted pattern of expression suggests cell-specific regulation of Gsk-3 beta mRNA. To determine whether GSK-3 is required for meiosis entry, rat stage VIIa seminiferous tubule segments were cultured with selective small-molecule GSK-3 inhibitors. These compounds markedly and dose-dependently suppressed meiotic synthesis (S)-phase DNA. Since a yeast GSK-3 homolog, Rim11p (regulator of inducer of meiosis), is pivotal to meiosis entry, we tested whether GSK-3 beta complements Rim11p function in meiosis. Rim11p phosphorylates transcription factors Ume6p (unscheduled meiotic gene expression) and Ime1p (inducer of meiosis) to induce meiosis entry. Overexpression of murine GSK-3 beta in a rim11 mutant yeast failed to rescue the sporulation defect. Our finding that GSK-3 beta interacted only with Ume6p but not with IME1 in a yeast 2-hybrid assay suggests that noncomplementation reflects partial divergence in substrate specificity. This work provides the basis for future studies of GSK-3 beta signaling in mammalian meiosis and spermatogenesis.
Collapse
Affiliation(s)
- Taylor B Guo
- Department of Medicine, Division of Endocrinology, Harbor-UCLA Medical Center and Research and Education Institute, Torrance, California 90509, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Hirata Y, Andoh T, Asahara T, Kikuchi A. Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes. Mol Biol Cell 2003; 14:302-12. [PMID: 12529445 PMCID: PMC140246 DOI: 10.1091/mbc.e02-05-0247] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Revised: 09/25/2002] [Accepted: 10/03/2002] [Indexed: 11/11/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has four genes, MCK1, MDS1 (RIM11), MRK1, and YOL128c, that encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). A gsk-3 null mutant in which these four genes are disrupted showed growth defects on galactose medium. We isolated several multicopy suppressors of this growth defect. Two of them encoded Msn2p and phosphoglucomutase (PGM). Msn2p is a transcription factor that binds to the stress-response element (STRE). PGM is an enzyme that interconverts glucose-1 phosphate and glucose-6 phosphate and is regulated by Msn2p at the transcriptional level. Expression of the mRNAs of PGM2 and DDR2, whose promoter regions possess STRE sequences, on induction by heat shock or salt stress was reduced not only in an msn2 msn4 (msn2 homologue) double mutant but also in the gsk-3 null mutant. STRE-dependent transcription was greatly inhibited in the gsk-3 null mutant or mck1 mds1 double mutant, and this phenotype was suppressed by the expression of Mck1p but not of a kinase-inactive form of Mck1p. Although Msn2p accumulated in the nucleus of the gsk-3 null mutant as well as in the wild-type strain under various stress conditions, its STRE-binding activity was reduced in extracts prepared from the gsk-3 null mutant or mck1 mds1 double mutant. These results suggest that yeast GSK-3 promotes formation of a complex between Msn2p and DNA, which is required for the proper response to different forms of stress. Because neither Msn2p-GSK-3 complex formation nor GSK-3-dependent phosphorylation of Msn2p could be detected, the regulation of Msn2p by GSK-3 may be indirect.
Collapse
Affiliation(s)
- Yuzoh Hirata
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
19
|
Hui CM, Campistrous A, Stuart DT. Purification and some properties of Saccharomyces cerevisiae meiosis-specific protein kinase Ime2. Protein Expr Purif 2002; 26:416-24. [PMID: 12460765 DOI: 10.1016/s1046-5928(02)00548-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ime2 is the founding member of a family of protein kinases that are required for effective progression through meiotic development. Ime2 is essential for the induction of meiosis-specific genes and for the activation of meiotic DNA replication in the budding yeast Saccharomyces cerevisiae. Aside from the fact that Ime2 is a protein kinase and shares several amino acid motifs with cyclin dependent kinases, virtually nothing is known about its enzymatic properties or substrates. Biochemical characterization of Ime2 has been hindered by its low abundance and short half-life. We have created baculovirus expression vectors to produce recombinant Ime2 in insect cells. In this report, we describe the overproduction of Ime2 and its purification using affinity chromatography. Using this procedure, we have been able to purify up to 2mg Ime2 from 1L of infected insect cells. The Ime2 isolated by this method displays properties similar to those of the native enzyme that has been immunoprecipitated from yeast. The high level expression of Ime2 in this system and its ease of purification will be beneficial for more extensive biochemical analysis of Ime2 and related meiosis-specific kinases.
Collapse
Affiliation(s)
- Catherine M Hui
- Department of Biochemistry, University of Alberta, 561 Medical Sciences Building, Edmonton, Alta., Canada T6G 2H7
| | | | | |
Collapse
|
20
|
Andoh T, Hirata Y, Kikuchi A. PY motifs of Rod1 are required for binding to Rsp5 and for drug resistance. FEBS Lett 2002; 525:131-4. [PMID: 12163175 DOI: 10.1016/s0014-5793(02)03104-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Saccharomyces cerevisiae, the overexpression of ROD1 confers resistance to o-dinitrobenzene (o-DNB), a representative of target drugs of glutathione S-transferase. The roles of Rod1 in drug resistance have remained to be determined. We isolated the rog3 mutation as a suppressor mutation of the temperature sensitivity of the strain, in that two of the total four glycogen synthase kinase 3 homologs were deleted. Rog3 is homologous to Rod1, and its overexpression also conferred resistance to o-DNB. Furthermore, these two proteins have PY-motifs, and bound to Rsp5, a hect-type ubiquitin ligase. The rsp5-101 mutant showed sensitivity to o-DNB as did the rod1 mutant, a mutant Rod1 containing altered PY motifs was defective in ability to bind to Rsp5 and in conferring o-DNB resistance. These results suggest that interaction of Rod1 and Rsp5 is important for drug resistance.
Collapse
Affiliation(s)
- Tomoko Andoh
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan.
| | | | | |
Collapse
|
21
|
Rayner TF, Gray JV, Thorner JW. Direct and novel regulation of cAMP-dependent protein kinase by Mck1p, a yeast glycogen synthase kinase-3. J Biol Chem 2002; 277:16814-22. [PMID: 11877433 DOI: 10.1074/jbc.m112349200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MCK1 gene of Saccharomyces cerevisiae encodes a protein kinase homologous to metazoan glycogen synthase kinase-3. Previous studies implicated Mck1p in negative regulation of pyruvate kinase. In this study we find that purified Mck1p does not phosphorylate pyruvate kinase, suggesting that the link is indirect. We find that purified Tpk1p, a cAMP-dependent protein kinase catalytic subunit, phosphorylates purified pyruvate kinase in vitro, and that loss of the cAMP-dependent protein kinase regulatory subunit, Bcy1p, increases pyruvate kinase activity in vivo. We find that purified Mck1p inhibits purified Tpk1p in vitro, in the presence or absence of Bcy1p. Mck1p must be catalytically active to inhibit Tpk1p, but Mck1p does not phosphorylate this target. We find that abolition of Mck1p autophosphorylation on tyrosine prevents the kinase from efficiently phosphorylating exogenous substrates, but does not block its ability to inhibit Tpk1p in vitro. We find that this mutant form of Mck1p appears to retain the ability to negatively regulate cAMP-dependent protein kinase in vivo. We propose that Mck1p, in addition to phosphorylating some target proteins, also acts by a separate, novel mechanism: autophosphorylated Mck1p binds to and directly inhibits, but does not phosphorylate, the catalytic subunits of cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- Timothy F Rayner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| | | | | |
Collapse
|
22
|
Guttmann-Raviv N, Boger-Nadjar E, Edri I, Kassir Y. Cdc28 and Ime2 possess redundant functions in promoting entry into premeiotic DNA replication in Saccharomyces cerevisiae. Genetics 2001; 159:1547-58. [PMID: 11779796 PMCID: PMC1461892 DOI: 10.1093/genetics/159.4.1547] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae initiation and progression through the mitotic cell cycle are determined by the sequential activity of the cyclin-dependent kinase Cdc28. The role of this kinase in entry and progression through the meiotic cycle is unclear, since all cdc28 temperature-sensitive alleles are leaky for meiosis. We used a "heat-inducible Degron system" to construct a diploid strain homozygous for a temperature-degradable cdc28-deg allele. We show that this allele is nonleaky, giving no asci at the nonpermissive temperature. We also show, using this allele, that Cdc28 is not required for premeiotic DNA replication and commitment to meiotic recombination. IME2 encodes a meiosis-specific hCDK2 homolog that is required for the correct timing of premeiotic DNA replication, nuclear divisions, and asci formation. Moreover, in ime2Delta diploids additional rounds of DNA replication and nuclear divisions are observed. We show that the delayed premeiotic DNA replication observed in ime2Delta diploids depends on a functional Cdc28. Ime2Delta cdc28-4 diploids arrest prior to initiation of premeiotic DNA replication and meiotic recombination. Ectopic overexpression of Clb1 at early meiotic times advances premeiotic DNA replication, meiotic recombination, and nuclear division, but the coupling between these events is lost. The role of Ime2 and Cdc28 in initiating the meiotic pathway is discussed.
Collapse
Affiliation(s)
- N Guttmann-Raviv
- Department of Biology, Technion, Technion City, Haifa 32000, Israel
| | | | | | | |
Collapse
|
23
|
De Silva-Udawatta MN, Cannon JF. Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Mol Microbiol 2001; 40:1345-56. [PMID: 11442833 DOI: 10.1046/j.1365-2958.2001.02477.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trehalose is a major storage carbohydrate in budding yeast, Saccharomyces cerevisiae. Alterations in trehalose synthesis affect carbon source-dependent growth, accumulation of glycogen and sporulation. Trehalose is synthesized by trehalose phosphate synthase (TPS), which is a complex of at least four proteins. In this work, we show that the Tps1p subunit protein catalyses trehalose phosphate synthesis in the absence of other TPS components. The tps1-H223Y allele (glc6-1) that causes a semidominant decrease in glycogen accumulation exhibits greater enzyme activity than wild-type TPS1 because, unlike the wild-type enzyme, TPS activity in tps1-H223Y cells is not inhibited by phosphate. Poor sporulation in tps1 null diploids is caused by reduced expression of meiotic inducers encoded by IME1, IME2 and MCK1. Furthermore, high-copy MCK1 or heterozygous hxk2 mutations can suppress the tps1 sporulation trait. These results suggest that the trehalose-6-phosphate inhibition of hexokinase activity is required for full induction of MCK1 in sporulating yeast cells.
Collapse
Affiliation(s)
- M N De Silva-Udawatta
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, MO 65212, USA
| | | |
Collapse
|
24
|
Lamb TM, Mitchell AP. Coupling of Saccharomyces cerevisiae early meiotic gene expression to DNA replication depends upon RPD3 and SIN3. Genetics 2001; 157:545-56. [PMID: 11156977 PMCID: PMC1461525 DOI: 10.1093/genetics/157.2.545] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been established that meiotic recombination and chromosome segregation are inhibited when meiotic DNA replication is blocked. Here we demonstrate that early meiotic gene (EMG) expression is also inhibited by a block in replication. Since early meiotic genes are required to promote meiotic recombination and DNA division, the low expression of these genes may contribute to the block in meiotic progression. We have identified three Hur- (HU reduced recombination) mutants that fail to couple meiotic recombination and gene expression with replication. One of these mutations is in RPD3, a gene required to maintain meiotic gene repression in mitotic cells. Complete deletions of RPD3 and the repression adapter SIN3 permitted recombination and early meiotic gene expression when replication was inhibited with hydroxyurea (HU). Biochemical analysis showed that the Rpd3p-Sin3p-Ume6p repression complex does exist in meiotic cells. These observations suggest that repression of early meiotic genes by SIN3 and RPD3 is critical for the normal response to inhibited replication. A second response to inhibited replication has also been discovered. HU-inhibited replication reduced the accumulation of phospho-Ume6p in meiotic cells. Phosphorylation of Ume6p normally promotes interaction with the meiotic activator Ime1p, thereby activating EMG expression. Thus, inhibited replication may also reduce the Ume6p-dependent activation of EMGs. Taken together, our data suggest that both active repression and reduced activation combine to inhibit EMG expression when replication is inhibited.
Collapse
Affiliation(s)
- T M Lamb
- Department of Microbiology and Institute of Cancer Research, Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | | |
Collapse
|
25
|
Abstract
The genes required for meiosis and sporulation in yeast are expressed at specific points in a highly regulated temporal pathway. Recent experiments using DNA microarrays to examine gene expression during meiosis and the identification of many regulatory factors have provided important advances in our understanding of how genes are regulated at the different stages of meiosis.
Collapse
Affiliation(s)
- A K Vershon
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854-8020, USA. vershon@waksman. rutgers.edu
| | | |
Collapse
|
26
|
Zhan XL, Hong Y, Zhu T, Mitchell AP, Deschenes RJ, Guan KL. Essential functions of protein tyrosine phosphatases PTP2 and PTP3 and RIM11 tyrosine phosphorylation in Saccharomyces cerevisiae meiosis and sporulation. Mol Biol Cell 2000; 11:663-76. [PMID: 10679022 PMCID: PMC14801 DOI: 10.1091/mbc.11.2.663] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tyrosine phosphorylation plays a central role in eukaryotic signal transduction. In yeast, MAP kinase pathways are regulated by tyrosine phosphorylation, and it has been speculated that other biochemical processes may also be regulated by tyrosine phosphorylation. Previous genetic and biochemical studies demonstrate that protein tyrosine phosphatases (PTPases) negatively regulate yeast MAP kinases. Here we report that deletion of PTP2 and PTP3 results in a sporulation defect, suggesting that tyrosine phosphorylation is involved in regulation of meiosis and sporulation. Deletion of PTP2 and PTP3 blocks cells at an early stage of sporulation before premeiotic DNA synthesis and induction of meiotic-specific genes. We observed that tyrosine phosphorylation of several proteins, including 52-, 43-, and 42-kDa proteins, was changed in ptp2Deltaptp3Delta homozygous deletion cells under sporulation conditions. The 42-kDa tyrosine-phosphorylated protein was identified as Mck1, which is a member of the GSK3 family of protein kinases and previously known to be phosphorylated on tyrosine. Mutation of MCK1 decreases sporulation efficiency, whereas mutation of RIM11, another GSK3 member, specifically abolishes sporulation; therefore, we investigated regulation of Rim11 by Tyr phosphorylation during sporulation. We demonstrated that Rim11 is phosphorylated on Tyr-199, and the Tyr phosphorylation is essential for its in vivo function, although Rim11 appears not to be directly regulated by Ptp2 and Ptp3. Biochemical characterizations indicate that tyrosine phosphorylation of Rim11 is essential for the activity of Rim11 to phosphorylate substrates. Our data demonstrate important roles of protein tyrosine phosphorylation in meiosis and sporulation
Collapse
Affiliation(s)
- X L Zhan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
27
|
Malathi K, Xiao Y, Mitchell AP. Catalytic roles of yeast GSK3beta/shaggy homolog Rim11p in meiotic activation. Genetics 1999; 153:1145-52. [PMID: 10545448 PMCID: PMC1460824 DOI: 10.1093/genetics/153.3.1145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Saccharomyces cerevisiae, many meiotic genes are activated by a heteromeric transcription factor composed of Ime1p and Ume6p. Ime1p-Ume6p complex formation depends upon the protein kinase Rim11p, which interacts with and phosphorylates both Ime1p and Ume6p in vitro. Rim11p may promote complex formation through its phosphorylation of Ime1p and Ume6p or simply through its interaction with both proteins. Here, we characterize mutant Ime1p derivatives that interact with Rim11p but are not phosphorylated in vitro. These mutant proteins are also defective in interaction with Ume6p. These results argue that Ime1p must be phosphorylated to interact with Ume6p. Our genetic observations suggest that Ime1p tyrosine residues are among the Rim11p phosphoacceptors, and we find that Ime1p reacts with an anti-phosphotyrosine antibody. Ime1p and Rim11p have been thought to act only through Ume6p, but we find that Ime1p and Rim11p promote meiosis at a very low level in the absence of Ume6p. A nonphosphorylatable mutant Ime1p derivative promotes sporulation through this Ume6p-independent pathway, as does a mutant Rim11p derivative that fails to interact with Ime1p. Therefore, Ime1p and Rim11p have two genetically separable functions in the sporulation program. However, catalytic activity of Rim11p is required for sporulation in the presence or absence of Ume6p.
Collapse
Affiliation(s)
- K Malathi
- Department of Microbiology and Institute of Cancer Research, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
28
|
Abstract
Hypothesizing that genes important in meiotic processes in mammals might have evolutionarily conserved counterparts in lower organisms, we used the yeast IME2 meiotic gene (serine threonine kinase) as a probe for screening a mouse testis cDNA library. This screening resulted in identification of a novel putative serine threonine kinase. Although it did not exhibit significant homology to IME2, it did show significant sequence homology to the Tousled kinase in Arabidopsis. Tousled is associated with various differentiative processes including differentiation of the reproductive organs. The new murine gene was designated accordingly Tlk (Tousled like kinase). Tousled like kinase sequences have been reported to occur in C. elegans and in the human. Positive hybridization signals obtained in zooblot analysis suggest evolutionary conservation of Tlk throughout the phylogenetic ladder. Four distinct Tlk transcripts were detected in mouse testis, at least one of which is testis-specific. Northern and in situ hybridization analyses revealed that in normal testis, Tlk is expressed predominantly in pachytene spermatocytes and in round spermatids. Transcripts differ from one another in their 3' untranslated region, resulting from use of different polyadenylation sites, and in the length of their 5' region. Within the coding region, three of the putative peptides share the kinase and C-terminal domains but differ in their N-terminal domain, suggesting that the latter may be involved in the regulation of Tlk's function. We conclude that although Tlk might have an essential role in all tissues, these kinases are likely to take part in the complex array of phosphorylations involved in regulating spermatogenesis.
Collapse
Affiliation(s)
- S Shalom
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
29
|
Yukawa M, Katoh S, Miyakawa T, Tsuchiya E. Nps1/Sth1p, a component of an essential chromatin-remodeling complex of Saccharomyces cerevisiae, is required for the maximal expression of early meiotic genes. Genes Cells 1999; 4:99-110. [PMID: 10320476 DOI: 10.1046/j.1365-2443.1999.00242.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The NPS1/STH1 gene of Saccharomyces cerevisiae is essential for mitotic growth, especially for the progression through the G2/M phase. It encodes a major component of the chromatin-remodelling complex, RSC, of unknown function. We attempted to address the function of NPS1 in meiosis. RESULTS The homozygote of the temperature sensitive nps1 mutant, nps1-105, showed reduced and delayed levels of sporulation, accompanied with a notable decrease and delay of the expression of several early meiotic genes (IME2, SPO11 and SPO13). Deletion analysis of the IME2 promoter revealed that the defect in the gene expression occurred through the URS1 site. The sporulation defect of nps1-105 was alleviated by the over-expression of either IME1 or IME2. However, over-expression of IME1 did not permit the full expression of IME2, SPO11 and SPO13 in nps1-105. In addition, the expression of NPS1 itself increased transiently upon initiation of meiosis, before the appearance of the IME2 message but after that of IME1. The impaired increase in NPS1 transcription led to inefficient sporulation. CONCLUSION The results suggest that Nps1p/RSC is required for the activation of gene expression at the initiation of meiosis.
Collapse
Affiliation(s)
- M Yukawa
- Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | | | | | | |
Collapse
|
30
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
31
|
Li W, Mitchell AP. Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 1997; 145:63-73. [PMID: 9017390 PMCID: PMC1207785 DOI: 10.1093/genetics/145.1.63] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, rim1, 8, 9, or 13 mutations cause four phenotypes: poor growth at low temperature, altered colony morphology, inefficient sporulation due to reduced expression of the meiotic activator IME1, and, as shown here, defective invasive growth. In this report, we have determined the relationship between RIM1 and the other genes, RIM8, 9, and 13, in this group. We have analyzed production of epitope-tagged Rim1p derivatives with HA epitopes at the N-terminus or in the middle of the protein. These Rim1p derivatives exist primarily as a small form (90 kD for Rim1-HA2p) in wild-type cells and as a large form (98 kD for Rim1-HA2p) in rim8, 9, and 13 mutants. We have also analyzed production of beta-galactosidase in strains that express a RIM1-lacZ fusion gene. beta-galactosidase exists primarily as a approximately 130 kD form in wild-type cells and as a approximately 190 kD form in rim9 mutants. These results indicate that Rim1p undergoes C-terminal proteolytic cleavage, and that rim8, 9, and 13 mutations block cleavage. Expression of a Rim1p C-terminal deletion derivative suppresses rim8, 9, and 13 mutations. Thus the phenotypes of rim8, 9, and 13 mutants arise from the defect in Rim1p C-terminal cleavage. Cleavage of Rim1p, like that of its Aspergillus nidulans homologue PacC, is stimulated under alkaline growth conditions. Therefore, Rim1p, PacC and their respective processing pathways may represent a conserved signal transduction pathway.
Collapse
Affiliation(s)
- W Li
- Department of Microbiology and Institute of Cancer Research, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
32
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
33
|
Park HD, Beeser AE, Clancy MJ, Cooper TG. The S. cerevisiae nitrogen starvation-induced Yvh1p and Ptp2p phosphatases play a role in control of sporulation. Yeast 1996; 12:1135-51. [PMID: 8896280 DOI: 10.1002/(sici)1097-0061(19960915)12:11<1135::aid-yea11>3.0.co;2-l] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Starvation for nitrogen in the absence of a fermentable carbon source causes diploid Saccharomyces cerevisiae cells to leave vegetative growth, enter meiosis, and sporulare; the former nutritional condition also induces expression of the YVH1 gene that encodes a protein phosphatase. This correlation prompted us to determine whether the Yvh1p phosphatase was a participant in the network that controls the onset of meiosis and sporulation. We found that expression of the IME2 gene, encoding a protein kinase homologue required for meiosis- and sporulation-specific gene expression, is decreased in a yvh1 disrupted strain. We also observed a decrease, albeit a smaller one, in the expression of IME1 which encodes an activator protein required for IME2 expression. Under identical experimental conditions, expression of the MCKI and IME4 genes (which promote sporulation but do not require Ime1p for expression) was not affected. These results demonstrate the specificity of the yvh1 disruption phenotype. They suggest that decreased steady-state levels of IME1 and IME2 mRNA were not merely the result of non-specific adverse affects on nucleic acid metabolism caused by the yvh1 disruption. Sporulation of a homozygous yvh1 disruption mutant was delayed and less efficient overall compared to an isogenic wild-type strain, a result which correlates with decreased IME1 and IME2 gene expression. We also observed that expression of the PTP2 tyrosine phosphatase gene (a negative regulator of the osmosensing MAP kinase cascade), but not the PTP1 gene (also encoding a tyrosine phosphatase) was induced by nitrogen-starvation. Although disruption of PTP2 alone did not demonstrably affect sporulation or IME2 gene expression, sporulation was decreased more in a yvh1, ptp2 double mutant than in a yvh1 single mutant; it was nearly abolished in the double mutant. These data suggest that the YVH1 and PTP2 encoded phosphatases likely participate in the control network regulating meiosis and sporulation. Expression of YVH1 and PTP2 was not affected by nitrogen source quality (asparagine compared to proline) suggesting that nitrogen starvation-induced YVH1 and PTP2 expression and sensitivity to nitrogen catabolite repression are on two different branches of the nitrogen regulatory network.
Collapse
Affiliation(s)
- H D Park
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
34
|
Casamayor A, Khalid H, Balcells L, Aldea M, Casas C, Herrero E, Ariño J. Sequence analysis of a 13·4 kbp fragment from the left arm of chromosome XV reveals a malate dehydrogenase gene, a putative Ser/Thr protein kinase, the ribosomal L25 gene and four new open reading frames. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(199609)12:10b<1013::aid-yea980>3.0.co;2-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
35
|
Casamayor A, Khalid H, Balcells L, Aldea M, Casas C, Herrero E, Ariño J. Sequence analysis of a 13.4 kbp fragment from the left arm of chromosome XV reveals a malate dehydrogenase gene, a putative Ser/Thr protein kinase, the ribosomal L25 gene and four new open reading frames. Yeast 1996; 12:1013-20. [PMID: 8896265 DOI: 10.1002/(sici)1097-0061(199609)12:10b%3c1013::aid-yea980%3e3.0.co;2-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A 13421 bp fragment located near the left telomere of chromosome XV (cosmid pEOA461) has been sequenced. Seven non-overlapping open reading frames (ORFs) encoding polypeptides longer than 100 residues have been found (AOB859, AOC184, AOE375, AOX142i, AOE423, AOA476 and AOE433). An additional ORF (AOE131) is found within AOA476. Three of them (AOC184, AOA476 and AOE433) show no remarkable identity with proteins deposited in the data banks. ORF AOB859 is quite similar to a hypothetical yeast protein of similar size located in chromosome VI, particularly within the C-terminal half. AOE375 encodes a new member of the glycogen synthase kinase-3 subfamily of Ser/Thr protein kinases. AOX142i is the gene encoding the previously described ribosomal protein L25. AOE423 codes for a protein virtually identical to the MDH2 malate dehydrogenase isozyme. However, our DNA sequence shows a single one-base insertion upstream of the reported initiating codon. This would produce a larger ORF by extending 46 residues the N-terminus of the protein. The existence of this insertion has been confirmed in three different yeast strains, including FY1679.
Collapse
Affiliation(s)
- A Casamayor
- Dept. Bioquímica i Biologia Molecular, Fac. Veterinària, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Kentrup H, Becker W, Heukelbach J, Wilmes A, Schürmann A, Huppertz C, Kainulainen H, Joost HG. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem 1996; 271:3488-95. [PMID: 8631952 DOI: 10.1074/jbc.271.7.3488] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cDNA of a novel, ubiquitously expressed protein kinase (Dyrk) was cloned from a rat brain cDNA library. The deduced amino acid sequence (763 amino acids) contains a catalytic domain that is only distantly related to that of other mammalian protein kinases. Its closest relative is the protein kinase Mnb of Drosophila, which is presumably involved in postembryonic neurogenesis (85% identical amino acids within the catalytic domain). Outside the catalytic domain, the sequence comprises several striking structural features: a bipartite nuclear translocation signal, a tyrosine-rich hydrophilic motif flanking the nuclear localization signal, a PEST region, a repeat of 13 histidines, a repeat of 17 serine/threonine residues, and an alternatively spliced insertion of nine codons. A recombinant glutathione S-transferase-Dyrk fusion protein catalyzed autophosphorylation and histone phosphorylation on tyrosine and serine/threonine residues with an apparent Km of approximately 3.4 microM. Exchange of two tyrosine residues in the "activation loop" between subdomains VII and VIII for phenylalanine almost completely suppressed the activity and tyrosine autophosphorylation of Dyrk. Tyrosine autophosphorylation was also reduced by exchange of the tyrosine (Tyr-219) in a tyrosine phosphorylation consensus motif. The data suggest that Dyrk is a dual specificity protein kinase that is regulated by tyrosine phosphorylation in the activation loop and might be a component of a signaling pathway regulating nuclear functions.
Collapse
Affiliation(s)
- H Kentrup
- Institut für Pharmakologie und Toxikologie, Rheinisch-Westfälische Technische Hochschule Aachen, D-52057 Aachen, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|