1
|
Sequences and proteins that influence mRNA processing in Trypanosoma brucei: Evolutionary conservation of SR-domain and PTB protein functions. PLoS Negl Trop Dis 2022; 16:e0010876. [PMID: 36288402 PMCID: PMC9639853 DOI: 10.1371/journal.pntd.0010876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Spliced leader trans splicing is the addition of a short, capped sequence to the 5' end of mRNAs. It is widespread in eukaryotic evolution, but factors that influence trans splicing acceptor site choice have been little investigated. In Kinetoplastids, all protein-coding mRNAs are 5' trans spliced. A polypyrimidine tract is usually found upstream of the AG splice acceptor, but there is no branch point consensus; moreover, splicing dictates polyadenylation of the preceding mRNA, which is a validated drug target. METHODOLOGY AND PRINCIPAL FINDINGS We here describe a trans splicing reporter system that can be used for studies and screens concerning the roles of sequences and proteins in processing site choice and efficiency. Splicing was poor with poly(U) tracts less than 9 nt long, and was influenced by an intergenic region secondary structure. A screen for signals resulted in selection of sequences that were on average 45% U and 35% C. Tethering of either the splicing factor SF1, or the cleavage and polyadenylation factor CPSF3 within the intron stimulated processing in the correct positions, while tethering of two possible homologues of Opisthokont PTB inhibited processing. In contrast, tethering of SR-domain proteins RBSR1, RBSR2, or TSR1 or its interaction partner TSR1IP, promoted use of alternative signals upstream of the tethering sites. RBSR1 interacts predominantly with proteins implicated in splicing, whereas the interactome of RBSR2 is more diverse. CONCLUSIONS Our selectable constructs are suitable for screens of both sequences, and proteins that affect mRNA processing in T. brucei. Our results suggest that the functions of PTB and SR-domain proteins in splice site definition may already have been present in the last eukaryotic common ancestor.
Collapse
|
2
|
Bishola Tshitenge T, Clayton C. The Trypanosoma brucei RNA-binding protein DRBD18 ensures correct mRNA trans splicing and polyadenylation patterns. RNA (NEW YORK, N.Y.) 2022; 28:1239-1262. [PMID: 35793904 PMCID: PMC9380746 DOI: 10.1261/rna.079258.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The parasite Trypanosoma brucei grows as bloodstream forms in mammals, and as procyclic forms in tsetse flies. Transcription is polycistronic, all mRNAs are trans spliced, and polyadenylation sites are defined by downstream splicing signals. Expression regulation therefore depends heavily on post-transcriptional mechanisms. The RNA-binding protein DRBD18 was previously implicated in the export of some mRNAs from the nucleus in procyclic forms. It copurifies the outer ring of the nuclear pore, mRNA export factors and exon-junction-complex proteins. We show that for more than 200 mRNAs, DRBD18 depletion caused preferential accumulation of versions with shortened 3'-untranslated regions, arising from use of polyadenylation sites that were either undetectable or rarely seen in nondepleted cells. The shortened mRNAs were often, but not always, more abundant in depleted cells than the corresponding longer versions in normal cells. Their appearance was linked to the appearance of trans-spliced, polyadenylated RNAs containing only downstream 3'-untranslated region-derived sequences. Experiments with one mRNA suggested that nuclear retention alone, through depletion of MEX67, did not affect mRNA length, suggesting a specific effect of DRBD18 on processing. DRBD18-bound mRNAs were enriched in polypyrimidine tract motifs, and DRBD18 was found in both the nucleus and the cytoplasm. We therefore suggest that in the nucleus, DRBD18 might bind to polypyrimidine tracts in 3'-UTRs of mRNA precursors. Such binding might both prevent recognition of mRNA-internal polypyrimidine tracts by splicing factors, and promote export of the processed bound mRNAs to the cytosol.
Collapse
Affiliation(s)
| | - Christine Clayton
- Heidelberg University Center for Molecular Biology (ZMBH), D69120 Heidelberg, Germany
| |
Collapse
|
3
|
Florini F, Naguleswaran A, Gharib WH, Bringaud F, Roditi I. Unexpected diversity in eukaryotic transcription revealed by the retrotransposon hotspot family of Trypanosoma brucei. Nucleic Acids Res 2019; 47:1725-1739. [PMID: 30544263 PMCID: PMC6393297 DOI: 10.1093/nar/gky1255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
The path from DNA to RNA to protein in eukaryotes is guided by a series of factors linking transcription, mRNA export and translation. Many of these are conserved from yeast to humans. Trypanosomatids, which diverged early in the eukaryotic lineage, exhibit unusual features such as polycistronic transcription and trans-splicing of all messenger RNAs. They possess basal transcription factors, but lack recognisable orthologues of many factors required for transcription elongation and mRNA export. We show that retrotransposon hotspot (RHS) proteins fulfil some of these functions and that their depletion globally impairs nascent RNA synthesis by RNA polymerase II. Three sub-families are part of a coordinated process in which RHS6 is most closely associated with chromatin, RHS4 is part of the Pol II complex and RHS2 connects transcription with the translation machinery. In summary, our results show that the components of eukaryotic transcription are far from being universal, and reveal unsuspected plasticity in the course of evolution.
Collapse
Affiliation(s)
- Francesca Florini
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School of Cellular and Biomedical Science, University of Bern, Bern, Switzerland
| | | | - Walid H Gharib
- Interfaculty Bioinformatics Unit, University of Bern, Switzerland
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234 CNRS, Université de Bordeaux, France
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
5
|
Zoltner M, Krienitz N, Field MC, Kramer S. Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Negl Trop Dis 2018; 12:e0006679. [PMID: 30040867 PMCID: PMC6075789 DOI: 10.1371/journal.pntd.0006679] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/03/2018] [Accepted: 07/10/2018] [Indexed: 01/17/2023] Open
Abstract
Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nina Krienitz
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susanne Kramer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
6
|
Stiles JK, Hicock PI, Shah PH, Meade JC. Genomic organization, transcription, splicing and gene regulation inLeishmania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Panunzi LG, Agüero F. A genome-wide analysis of genetic diversity in Trypanosoma cruzi intergenic regions. PLoS Negl Trop Dis 2014; 8:e2839. [PMID: 24784238 PMCID: PMC4006747 DOI: 10.1371/journal.pntd.0002839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/20/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi is the causal agent of Chagas Disease. Recently, the genomes of representative strains from two major evolutionary lineages were sequenced, allowing the construction of a detailed genetic diversity map for this important parasite. However this map is focused on coding regions of the genome, leaving a vast space of regulatory regions uncharacterized in terms of their evolutionary conservation and/or divergence. METHODOLOGY Using data from the hybrid CL Brener and Sylvio X10 genomes (from the TcVI and TcI Discrete Typing Units, respectively), we identified intergenic regions that share a common evolutionary ancestry, and are present in both CL Brener haplotypes (TcII-like and TcIII-like) and in the TcI genome; as well as intergenic regions that were conserved in only two of the three genomes/haplotypes analyzed. The genetic diversity in these regions was characterized in terms of the accumulation of indels and nucleotide changes. PRINCIPAL FINDINGS Based on this analysis we have identified i) a core of highly conserved intergenic regions, which remained essentially unchanged in independently evolving lineages; ii) intergenic regions that show high diversity in spite of still retaining their corresponding upstream and downstream coding sequences; iii) a number of defined sequence motifs that are shared by a number of unrelated intergenic regions. A fraction of indels explains the diversification of some intergenic regions by the expansion/contraction of microsatellite-like repeats.
Collapse
Affiliation(s)
- Leonardo G. Panunzi
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús, Universidad de San Martín – CONICET, Sede San Marítn, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús, Universidad de San Martín – CONICET, Sede San Marítn, Buenos Aires, Argentina
- * E-mail: ;
| |
Collapse
|
8
|
Knüsel S, Roditi I. Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei. Mol Biochem Parasitol 2013; 191:66-74. [PMID: 24076427 DOI: 10.1016/j.molbiopara.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
Abstract
The procyclic form of Trypanosoma brucei colonises the gut of its insect vector, the tsetse fly. GPEET and EP procyclins constitute the parasite's surface coat at this stage of the life cycle, and the presence or absence of GPEET distinguishes between early and late procyclic forms, respectively. Differentiation from early to late procyclic forms in vivo occurs in the fly midgut and can be mimicked in culture. Our analysis of this transition in vitro delivered new insights into the process of GPEET repression. First, we could show that parasites followed a concrete sequence of events upon triggering differentiation: after undergoing an initial growth arrest, cells lost GPEET protein, and finally late procyclic forms resumed proliferation. Second, we determined the stability of both GPEET and EP mRNA during differentiation. GPEET mRNA is exceptionally stable in early procyclic forms, with a half-life >6h. The GPEET mRNA detected in late procyclic form cultures is a mixture of transcripts from both bona fide late procyclic forms and GPEET-positive 'laggard' parasites present in these cultures. However, its stability was clearly reduced during differentiation and in late procyclic form cultures. Alternatively processed GPEET transcripts were enriched in samples from late procyclic forms, suggesting that altered mRNA processing might contribute to repression of GPEET in this developmental stage. In addition, we detected GPEET transcripts with non-templated oligo(U) tails that were enriched in late procyclic forms. To the best of our knowledge, this is the first study reporting a uridylyl-tailed, nuclear-encoded mRNA species in trypanosomatids or any other protozoa.
Collapse
Affiliation(s)
- Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | | |
Collapse
|
9
|
Michaeli S. Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol 2011; 6:459-74. [PMID: 21526946 DOI: 10.2217/fmb.11.20] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In trypanosomes, all RNAs are processed by the concerted action of trans-splicing and polyadenylation. In trans-splicing, a common spliced leader (SL) is donated to all mRNAs from a small RNA molecule, the SL RNA. This article summarizes recent findings in the field focusing on SL RNA transcription, cap modifications and pseudouridylation. The role(s) of these modifications for splicing and gene expression are discussed. The recruitment of SL RNA to the spliceosome depends on splicing factors and recent progress in identifying such factors is described. A recent major advance in understanding the role of trans-splicing in the trypanosome transcriptome was obtained by whole-genome mapping of the SL and polyadenylation sites, revealing surprising heterogeneity and suggesting that gene regulation, especially during cycling between the two hosts of the parasite, involves alternative trans-splicing. Finally, the SL silencing mechanism, which is harnessed by the parasite to control gene expression under stress, is discussed.
Collapse
Affiliation(s)
- Shulamit Michaeli
- The Mina & Everard Goodman Faculty of Life Sciences & Advanced Materials & Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
10
|
Mani J, Güttinger A, Schimanski B, Heller M, Acosta-Serrano A, Pescher P, Späth G, Roditi I. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery. PLoS One 2011; 6:e22463. [PMID: 21811616 PMCID: PMC3141063 DOI: 10.1371/journal.pone.0022463] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/25/2011] [Indexed: 01/26/2023] Open
Abstract
Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3′ UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3′ UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3′ UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.
Collapse
Affiliation(s)
- Jan Mani
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | - Bernd Schimanski
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Pascale Pescher
- Department of Parasitology and Mycology, G5 Virulence Parasitaire, Institut Pasteur, Paris, France
| | - Gerald Späth
- Department of Parasitology and Mycology, G5 Virulence Parasitaire, Institut Pasteur, Paris, France
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Shaked H, Wachtel C, Tulinski P, Yahia NH, Barda O, Darzynkiewicz E, Nilsen TW, Michaeli S. Establishment of an in vitro trans-splicing system in Trypanosoma brucei that requires endogenous spliced leader RNA. Nucleic Acids Res 2010; 38:e114. [PMID: 20159996 PMCID: PMC2879531 DOI: 10.1093/nar/gkq065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In trypanosomes a 39 nucleotide exon, the spliced leader (SL) is donated to all mRNAs from a small RNA, the SL RNA, by trans-splicing. Since the discovery of trans-splicing in trypanosomes two decades ago, numerous attempts failed to reconstitute the reaction in vitro. In this study, a crude whole-cell extract utilizing the endogenous SL RNA and synthetic tubulin pre-mRNA were used to reconstitute the trans-splicing reaction. An RNase protection assay was used to detect the trans-spliced product. The reaction was optimized and shown to depend on ATP and intact U2 and U6 snRNPs. Mutations introduced at the polypyrimidine tract and the AG splice site reduced the reaction efficiency. To simplify the assay, RT–PCR and quantitative real-time PCR assays were established. The system was used to examine the structural requirements for SL RNA as a substrate in the reaction. Interestingly, synthetic SL RNA assembled poorly to its cognate particle and was not utilized in the reaction. However, SL RNA synthesized in cells lacking Sm proteins, which is defective in cap-4 modification, was active in the reaction. This study is the first step towards further elucidating the mechanism of trans-splicing, an essential reaction which determines the trypanosome transcriptome.
Collapse
Affiliation(s)
- Hadassa Shaked
- The Mina & Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Schwede A, Manful T, Jha BA, Helbig C, Bercovich N, Stewart M, Clayton C. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res 2009; 37:5511-28. [PMID: 19596809 PMCID: PMC2760810 DOI: 10.1093/nar/gkp571] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Removal of the poly(A) tail is the first step in the degradation of many eukaryotic mRNAs. In metazoans and yeast, the Ccr4/Caf1/Not complex has the predominant deadenylase activity, while the Pan2/Pan3 complex may trim poly(A) tails to the correct size, or initiate deadenylation. In trypanosomes, turnover of several constitutively-expressed or long-lived mRNAs is not affected by depletion of the 5′–3′ exoribonuclease XRNA, but is almost completely inhibited by depletion of the deadenylase CAF1. In contrast, two highly unstable mRNAs, encoding EP procyclin and a phosphoglycerate kinase, PGKB, accumulate when XRNA levels are reduced. We here show that degradation of EP mRNA was partially inhibited after CAF1 depletion. RNAi-targeting trypanosome PAN2 had a mild effect on global deadenylation, and on degradation of a few mRNAs including EP. By amplifying and sequencing degradation intermediates, we demonstrated that a reduction in XRNA had no effect on degradation of a stable mRNA encoding a ribosomal protein, but caused accumulation of EP mRNA fragments that had lost substantial portions of the 5′ and 3′ ends. The results support a model in which trypanosome mRNAs can be degraded by at least two different, partially independent, cytoplasmic degradation pathways attacking both ends of the mRNA.
Collapse
Affiliation(s)
- Angela Schwede
- Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Helm JR, Hertz-Fowler C, Aslett M, Berriman M, Sanders M, Quail MA, Soares MB, Bonaldo MF, Sakurai T, Inoue N, Donelson JE. Analysis of expressed sequence tags from the four main developmental stages of Trypanosoma congolense. Mol Biochem Parasitol 2009; 168:34-42. [PMID: 19559733 DOI: 10.1016/j.molbiopara.2009.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
Trypanosoma congolense is one of the most economically important pathogens of livestock in Africa. Culture-derived parasites of each of the three main insect stages of the T. congolense life cycle, i.e., the procyclic, epimastigote and metacyclic stages, and bloodstream stage parasites isolated from infected mice, were used to construct stage-specific cDNA libraries and expressed sequence tags (ESTs or cDNA clones) in each library were sequenced. Thirteen EST clusters encoding different variant surface glycoproteins (VSGs) were detected in the metacyclic library and 26 VSG EST clusters were found in the bloodstream library, 6 of which are shared by the metacyclic library. Rare VSG ESTs are present in the epimastigote library, and none were detected in the procyclic library. ESTs encoding enzymes that catalyze oxidative phosphorylation and amino acid metabolism are about twice as abundant in the procyclic and epimastigote stages as in the metacyclic and bloodstream stages. In contrast, ESTs encoding enzymes involved in glycolysis, the citric acid cycle and nucleotide metabolism are about the same in all four developmental stages. Cysteine proteases, kinases and phosphatases are the most abundant enzyme groups represented by the ESTs. All four libraries contain T. congolense-specific expressed sequences not present in the Trypanosoma brucei and Trypanosoma cruzi genomes. Normalized cDNA libraries were constructed from the metacyclic and bloodstream stages, and found to be further enriched for T. congolense-specific ESTs. Given that cultured T. congolense offers an experimental advantage over other African trypanosome species, these ESTs provide a basis for further investigation of the molecular properties of these four developmental stages, especially the epimastigote and metacyclic stages for which it is difficult to obtain large quantities of organisms. The T. congolense EST databases are available at: http://www.sanger.ac.uk/Projects/T_congolense/EST_index.shtml. The sequence data have been submitted to EMBL under the following accession numbers: FN263376-FN292969.
Collapse
Affiliation(s)
- Jared R Helm
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Haenni S, Studer E, Burkard GS, Roditi I. Bidirectional silencing of RNA polymerase I transcription by a strand switch region in Trypanosoma brucei. Nucleic Acids Res 2009; 37:5007-18. [PMID: 19531741 PMCID: PMC2731899 DOI: 10.1093/nar/gkp513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The procyclin genes in Trypanosoma brucei are transcribed by RNA polymerase I as part of 5–10 kb long polycistronic transcription units on chromosomes VI and X. Each procyclin locus begins with two procyclin genes followed by at least one procyclin-associated gene (PAG). In procyclic (insect midgut) form trypanosomes, PAG mRNA levels are about 100-fold lower than those of procyclins. We show that deletion of PAG1, PAG2 or PAG3 results in increased mRNA levels from downstream genes in the same transcription unit. Nascent RNA analysis revealed that most of the effects are due to increased transcription elongation in the knockouts. Furthermore, transient and stable transfections showed that sequence elements on both strands of PAG1 can inhibit Pol I transcription. Finally, by database mining we identified 30 additional PAG-related sequences that are located almost exclusively at strand switch regions and/or at sites where a change of RNA polymerase type is likely to occur.
Collapse
Affiliation(s)
- Simon Haenni
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
15
|
Walrad P, Paterou A, Acosta-Serrano A, Matthews KR. Differential trypanosome surface coat regulation by a CCCH protein that co-associates with procyclin mRNA cis-elements. PLoS Pathog 2009; 5:e1000317. [PMID: 19247446 PMCID: PMC2642730 DOI: 10.1371/journal.ppat.1000317] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/16/2009] [Indexed: 11/25/2022] Open
Abstract
The genome of Trypanosoma brucei is unusual in being regulated almost entirely at the post-transcriptional level. In terms of regulation, the best-studied genes are procyclins, which encode a family of major surface GPI-anchored glycoproteins (EP1, EP2, EP3, GPEET) that show differential expression in the parasite's tsetse-fly vector. Although procyclin mRNA cis-regulatory sequences have provided the paradigm for post-transcriptional control in kinetoplastid parasites, trans-acting regulators of procyclin mRNAs are unidentified, despite intensive effort over 15 years. Here we identify the developmental regulator, TbZFP3, a CCCH-class predicted RNA binding protein, as an isoform-specific regulator of Procyclin surface coat expression in trypanosomes. We demonstrate (i) that endogenous TbZFP3 shows sequence-specific co-precipitation of EP1 and GPEET, but not EP2 and EP3, procyclin mRNA isoforms, (ii) that ectopic overexpression of TbZFP3 does not perturb the mRNA abundance of procyclin transcripts, but rather that (iii) their protein expression is regulated in an isoform-specific manner, as evidenced by mass spectrometric analysis of the Procyclin expression signature in the transgenic cell lines. The TbZFP3 mRNA–protein complex (TbZFP3mRNP) is identified as a trans-regulator of differential surface protein expression in trypanosomes. Moreover, its sequence-specific interactions with procyclin mRNAs are compatible with long-established predictions for Procyclin regulation. Combined with the known association of TbZFP3 with the translational apparatus, this study provides a long-sought missing link between surface protein cis-regulatory signals and the gene expression machinery in trypanosomes. Trypanosomes, the tropical parasites that cause African sleeping sickness, show a number of biological peculiarities that distinguish them from other eukaryotes. One is the unusual way in which they regulate gene expression. Unlike most eukaryotes, trypanosomes do not regulate gene expression by controlling the rate of messenger RNA synthesis, but, instead, control the stability of messenger mRNAs (and, hence, their abundance) and also their rate of translation into protein. The best-studied model for this “post-transcriptional” gene expression control in trypanosomes is the procyclin mRNAs, which encode the major surface proteins of the parasite in the tsetse fly. In this study we demonstrate that a small kinetoplastid-specific protein (TbZFP3) co-associates with the mRNAs for some procyclin isoforms (EP1, GPEET procyclin) but not others (EP2, EP3 procyclin). Furthermore, we show that this is dependent upon sequences in the EP1 procyclin 3′untranslated region known to govern its mRNA turnover and protein synthesis. Finally, we demonstrate that limited over-expression of TbZFP3 causes a change in the surface protein expression profile on cultured parasites from GPEET to EP1 Procyclin. Our data identify TbZFP3 as an important post-transcriptional regulator of Procyclin expression, the first such protein factor identified.
Collapse
Affiliation(s)
- Pegine Walrad
- Centre for Immunology, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Athina Paterou
- Centre for Immunology, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Alvaro Acosta-Serrano
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (AAS); (KRM)
| | - Keith R. Matthews
- Centre for Immunology, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (AAS); (KRM)
| |
Collapse
|
16
|
Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel JD, Clayton C, Carrington M. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J Cell Sci 2008; 121:3002-14. [PMID: 18713834 DOI: 10.1242/jcs.031823] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In trypanosomes there is an almost total reliance on post-transcriptional mechanisms to alter gene expression; here, heat shock was used to investigate the response to an environmental signal. Heat shock rapidly and reversibly induced a decrease in polysome abundance, and the consequent changes in mRNA metabolism were studied. Both heat shock and polysome dissociation were necessary for (1) a reduction in mRNA levels that was more rapid than normal turnover, (2) an increased number of P-body-like granules that contained DHH1, SCD6 and XRNA, (3) the formation of stress granules that remained largely separate from the P-body-like granules and localise to the periphery of the cell and, (4) an increase in the size of a novel focus located at the posterior pole of the cell that contain XRNA, but neither DHH1 nor SCD6. The response differed from mammalian cells in that neither the decrease in polysomes nor stress-granule formation required phosphorylation of eIF2alpha at the position homologous to that of serine 51 in mammalian eIF2alpha and in the occurrence of a novel XRNA-focus.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Campos PC, Bartholomeu DC, DaRocha WD, Cerqueira GC, Teixeira SMR. Sequences involved in mRNA processing in Trypanosoma cruzi. Int J Parasitol 2008; 38:1383-9. [PMID: 18700146 DOI: 10.1016/j.ijpara.2008.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/27/2008] [Accepted: 07/08/2008] [Indexed: 11/25/2022]
Abstract
Gene expression in Trypanosomatids requires processing of polycistronic transcripts to generate monocistronic mRNAs by cleavage events that are coupled to the addition of a Spliced Leader sequence (SL) at the 5'-end and a poly(A) tail at the 3'-end of each mRNA. Here we investigate the sequence requirements involved in Trypanosoma cruzi mRNA processing by mapping all available expressed sequence tags and cDNAs containing poly(A) tail and/or SL to genomic intergenic regions. Amongst other parameters, we determined that the median lengths of 5' untranslated region (UTR) and 3'UTR sequences are 35 and 264 nucleotides, respectively; and that the median distance between SL addition sites and a polypyrimidine motif is 18 nucleotides, whereas the median distance between poly(A) addition sites and the closest polypyrimidine-rich sequence is 40 nucleotides.
Collapse
Affiliation(s)
- Priscila C Campos
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
18
|
Smith M, Blanchette M, Papadopoulou B. Improving the prediction of mRNA extremities in the parasitic protozoan Leishmania. BMC Bioinformatics 2008; 9:158. [PMID: 18366710 PMCID: PMC2335281 DOI: 10.1186/1471-2105-9-158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/20/2008] [Indexed: 11/23/2022] Open
Abstract
Background Leishmania and other members of the Trypanosomatidae family diverged early on in eukaryotic evolution and consequently display unique cellular properties. Their apparent lack of transcriptional regulation is compensated by complex post-transcriptional control mechanisms, including the processing of polycistronic transcripts by means of coupled trans-splicing and polyadenylation. Trans-splicing signals are often U-rich polypyrimidine (poly(Y)) tracts, which precede AG splice acceptor sites. However, as opposed to higher eukaryotes there is no consensus polyadenylation signal in trypanosomatid mRNAs. Results We refined a previously reported method to target 5' splice junctions by incorporating the pyrimidine content of query sequences into a scoring function. We also investigated a novel approach for predicting polyadenylation (poly(A)) sites in-silico, by comparing query sequences to polyadenylated expressed sequence tags (ESTs) using position-specific scanning matrices (PSSMs). An additional analysis of the distribution of putative splice junction to poly(A) distances helped to increase prediction rates by limiting the scanning range. These methods were able to simplify splice junction prediction without loss of precision and to increase polyadenylation site prediction from 22% to 47% within 100 nucleotides. Conclusion We propose a simplified trans-splicing prediction tool and a novel poly(A) prediction tool based on comparative sequence analysis. We discuss the impact of certain regions surrounding the poly(A) sites on prediction rates and contemplate correlating biological mechanisms. This work aims to sharpen the identification of potentially functional untranslated regions (UTRs) in a large-scale, comparative genomics framework.
Collapse
Affiliation(s)
- Martin Smith
- Research Centre in Infectious Diseases, CHUL Research Centre, 2705 Laurier Blvd,, Quebec, QC G1V 4G2, Canada.
| | | | | |
Collapse
|
19
|
Helm JR, Wilson ME, Donelson JE. Different trans RNA splicing events in bloodstream and procyclic Trypanosoma brucei. Mol Biochem Parasitol 2008; 159:134-7. [PMID: 18384893 DOI: 10.1016/j.molbiopara.2008.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 01/23/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Most trypanosomatid genes are transcribed into polycistronic precursor RNAs that are processed into monocistronic mRNAs possessing a 39-nucleotide spliced leader (SL) at their 5'-ends and polyadenylation at their 3'-ends. We show here that precursor RNA derived from a luciferase gene integrated in reverse orientation at the rDNA locus of Trypanosoma brucei is processed into three major SL-containing RNAs in bloodstream cells and a single SL-containing RNA in procyclic RNAs. This difference in trans RNA splicing between bloodstream and procyclic cells is independent of the 5'- and 3'-UTRs flanking the luciferase coding region. Thus, bloodstream cells can recognize some sequences in precursor RNA as a SL addition site that procyclic cells do not. These alternative SL addition sites may be aberrant or they might be utilized to expand the number of gene products from individual genes. Future experiments on endogenous genes will be necessary to examine the latter possibility.
Collapse
Affiliation(s)
- Jared R Helm
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
20
|
Bringaud F, Müller M, Cerqueira GC, Smith M, Rochette A, El-Sayed NMA, Papadopoulou B, Ghedin E. Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLoS Pathog 2007; 3:1291-307. [PMID: 17907803 PMCID: PMC2323293 DOI: 10.1371/journal.ppat.0030136] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/27/2007] [Indexed: 01/29/2023] Open
Abstract
Trypanosomatids are unicellular protists that include the human pathogens Leishmania spp. (leishmaniasis), Trypanosoma brucei (sleeping sickness), and Trypanosoma cruzi (Chagas disease). Analysis of their recently completed genomes confirmed the presence of non-long-terminal repeat retrotransposons, also called retroposons. Using the 79-bp signature sequence common to all trypanosomatid retroposons as bait, we identified in the Leishmania major genome two new large families of small elements--LmSIDER1 (785 copies) and LmSIDER2 (1,073 copies)--that fulfill all the characteristics of extinct trypanosomatid retroposons. LmSIDERs are approximately 70 times more abundant in L. major compared to T. brucei and are found almost exclusively within the 3'-untranslated regions (3'UTRs) of L. major mRNAs. We provide experimental evidence that LmSIDER2 act as mRNA instability elements and that LmSIDER2-containing mRNAs are generally expressed at lower levels compared to the non-LmSIDER2 mRNAs. The considerable expansion of LmSIDERs within 3'UTRs in an organism lacking transcriptional control and their role in regulating mRNA stability indicate that Leishmania have probably recycled these short retroposons to globally modulate the expression of a number of genes. To our knowledge, this is the first example in eukaryotes of the domestication and expansion of a family of mobile elements that have evolved to fulfill a critical cellular function.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Laboratoire de Génomique Fonctionnelle des Trypanosomatides, Université Victor Segalen Bordeaux 2, Bordeaux, France
- UMR-5234 CNRS, Bordeaux, France
| | - Michaela Müller
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Gustavo Coutinho Cerqueira
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Departamento de Bioquimica e Imunologica, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Martin Smith
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Annie Rochette
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Najib M. A El-Sayed
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, The University of Maryland, College Park, Maryland, United States of America
| | - Barbara Papadopoulou
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Elodie Ghedin
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
21
|
Urwyler S, Studer E, Renggli CK, Roditi I. A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol Microbiol 2007; 63:218-28. [PMID: 17229212 DOI: 10.1111/j.1365-2958.2006.05492.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 'two coat' model of the life cycle of Trypanosoma brucei has prevailed for more than 15 years. Metacyclic forms transmitted by infected tsetse flies and mammalian bloodstream forms are covered by variant surface glycoproteins. All other life cycle stages were believed to have a procyclin coat, until it was shown recently that epimastigote forms in tsetse salivary glands express procyclin mRNAs without translating them. As epimastigote forms cannot be cultured, a procedure was devised to compare the transcriptomes of parasites in different fly tissues. Transcripts encoding a family of glycosylphosphatidyl inositol-anchored proteins, BARPs (previously called bloodstream alanine-rich proteins), were 20-fold more abundant in salivary gland than midgut (procyclic) trypanosomes. Anti-BARP antisera reacted strongly and exclusively with salivary gland parasites and a BARP 3' flanking region directed epimastigote-specific expression of reporter genes in the fly, but inhibited expression in bloodstream and procyclic forms. In contrast to an earlier report, we could not detect BARPs in bloodstream forms. We propose that BARPs form a stage-specific coat for epimastigote forms and suggest renaming them brucei alanine-rich proteins.
Collapse
Affiliation(s)
- Simon Urwyler
- Institut für Zellbiologie, Universität Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
22
|
Benz C, Nilsson D, Andersson B, Clayton C, Guilbride DL. Messenger RNA processing sites in Trypanosoma brucei. Mol Biochem Parasitol 2006; 143:125-34. [PMID: 15993496 DOI: 10.1016/j.molbiopara.2005.05.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 05/20/2005] [Indexed: 11/30/2022]
Abstract
In Kinetoplastids, protein-coding genes are transcribed polycistronically by RNA polymerase II. Individual mature mRNAs are generated from polycistronic precursors by 5' trans splicing of a 39-nt capped leader RNA and 3' polyadenylation. It was previously known that trans splicing generally occurs at an AG dinucleotide downstream of a polypyrimidine tract, and that polyadenylation is coupled to downstream trans splicing. The few polyadenylation sites that had been examined were 100-400 nt upstream of the polypyrimidine tract which marked the adjacent trans splice site. We wished to define the sequence requirements for trypanosome mRNA processing more tightly and to generate a predictive algorithm. By scanning all available Trypanosoma brucei cDNAs for splicing and polyadenylation sites, we found that trans splicing generally occurs at the first AG following a polypyrimidine tract of 8-25 nt, giving rise to 5'-UTRs of a median length of 68 nt. We also found that in general, polyadenylation occurs at a position with one or more A residues located between 80 and 140 nt from the downstream polypyrimidine tract. These data were used to calibrate free parameters in a grammar model with distance constraints, enabling prediction of polyadenylation and trans splice sites for most protein-coding genes in the trypanosome genome. The data from the genome analysis and the program are available from: .
Collapse
Affiliation(s)
- Corinna Benz
- Zentrum für Molekulare Biologie, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
23
|
Webb H, Burns R, Kimblin N, Ellis L, Carrington M. A novel strategy to identify the location of necessary and sufficient cis-acting regulatory mRNA elements in trypanosomes. RNA (NEW YORK, N.Y.) 2005; 11:1108-16. [PMID: 15928343 PMCID: PMC1360220 DOI: 10.1261/rna.2510505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Expression of nearly all protein coding genes in trypanosomes is regulated post-transcriptionally, predominantly at the level of mRNA half-life. The identification of cis-acting elements involved in mRNA stability has been hindered by a lack of ability to screen for loss-of-regulation mutants. The method described in this article allows the region containing the necessary and sufficient elements within a mRNA to be identified and uses antibiotic resistance genes as both selectable markers and reporters. In the case of unstable mRNAs, the strategy can be extended by performing a screen for spontaneous loss-of-function mutants in regulatory parts of a mRNA. The method was validated by using the GPI-PLC mRNA, which is unstable in procyclic form trypanosomes and showed that the 3'UTR of the GPI-PLC mRNA contains all elements required for developmentally regulated instability. Loss-of-instability mutants all contained deletions within the 2300-nucleotide-long 3'UTR, and their analysis showed that a deletion including the last 800 nt of the gene stabilized the mRNA. The method is nonpresumptive, allows far more rapid screening for cis-elements than existing procedures, and has the advantage of identifying functional mutants. It is applicable to all eukaryotes using polycistronic transcription.
Collapse
Affiliation(s)
- Helena Webb
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
24
|
Hehl A, Roditi I. The regulation of procyclin expression in Trypanosoma bruceli: making or breaking the rules? ACTA ACUST UNITED AC 2005; 10:442-5. [PMID: 15275532 DOI: 10.1016/0169-4758(94)90180-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of procyclins as stage-specific coat proteins of procyclic forms of Trypanosoma brucei has not only provided a convenient molecular marker for the differentiation of bloodstream-form trypanosomes into procyclic forms, but has also allowed some important insights into gene regulation in trypanosomes. Here, Adrian Hehl and Isabel Roditi summarize what has been learnt in the past few years about the control mechanisms that may contribute to the stage-specific expression of procyclins.
Collapse
Affiliation(s)
- A Hehl
- Institut für Allgemeine Mikrobiologie, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | |
Collapse
|
25
|
Walker R, Saha L, Hill GC, Chaudhuri M. The effect of over-expression of the alternative oxidase in the procyclic forms of Trypanosoma brucei. Mol Biochem Parasitol 2005; 139:153-62. [PMID: 15664650 DOI: 10.1016/j.molbiopara.2004.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 11/02/2004] [Accepted: 11/03/2004] [Indexed: 11/26/2022]
Abstract
Trypanosome alternative oxidase (TAO) is the cyanide-resistant but SHAM-sensitive terminal oxidase of the mitochondrial electron transport chain in African trypanosomes. The bloodstream forms of Trypanosoma brucei lack cytochromes and respire exclusively via TAO. On the other hand, the insect, or procyclic form possesses a fully developed cytochrome system, and down regulates TAO several folds by reducing the stability of the TAO transcript. We expressed an ectopic copy of TAO in the procyclic form from a tetracycline regulated stable expression vector, in which the TAO 3'-UTR was replaced by T. brucei aldolase 3'-UTR. The TAO transcript produced from the ectopic copy was stably accumulated in the procyclic form. Upon induction with doxycycline, TAO protein level was gradually increased about five-fold within 72 h. TAO over-expression did not show any effect on the growth of the parasite. The rate of respiration and the SHAM-sensitive respiratory pathway capacity was increased about two- and five-fold, respectively, and the cytochrome-mediated respiratory pathway capacity was reduced two- to three-folds within 5 days after induction of TAO. Doxycycline induced TAO+ cells preferentially utilized CN-resistant, SHAM-sensitive pathway of respiration, whereas, in the control cells 70-80% of total respiration was via the CN-sensitive pathway. Moreover, we have found that increased expression of TAO caused about two-fold down regulation of cytochrome oxidase subunit IV, and cytochrome c1 protein level and also caused a four-fold up-regulation of the expression of the surface coat protein, GPEET procyclin in the procyclic form. This suggests that the expression of two terminal oxidases and the coat protein is linked in T. brucei.
Collapse
Affiliation(s)
- Robert Walker
- Department of Microbiology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
26
|
DaRocha WD, Silva RA, Bartholomeu DC, Pires SF, Freitas JM, Macedo AM, Vazquez MP, Levin MJ, Teixeira SMR. Expression of exogenous genes in Trypanosoma cruzi: improving vectors and electroporation protocols. Parasitol Res 2004; 92:113-20. [PMID: 14634799 DOI: 10.1007/s00436-003-1004-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 03/30/2003] [Indexed: 10/26/2022]
Abstract
To improve transfection efficiency in Trypanosoma cruzi, we developed a new electroporation protocol and expression vectors which use luciferase and green and red fluorescent proteins as reporter genes. In transient transfections, the electroporation conditions reported here resulted in luciferase expression 100 times higher than the levels obtained with previously described protocols. To verify whether sequences containing different trans-splicing signals influence reporter gene expression, we compared DNA fragments corresponding to 5' untranslated plus intergenic (5' UTR plus Ig) regions from GAPDH, TcP2beta, alpha- and beta- tubulin and amastin genes. Vectors containing sequences derived from the first four genes presented similar efficiencies and resulted in luciferase expression in transiently transfected epimastigotes that was up to 10 times higher than that for a control vector. In contrast, the amastin 5' UTR plus Ig resulted in lower levels of reporter gene expression. We also constructed a vector containing an expression cassette designed to be targeted to the tubulin locus of the parasite.
Collapse
Affiliation(s)
- Wanderson D DaRocha
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, MG 31270-010, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Flück C, Salomone JY, Kurath U, Roditi I. Cycloheximide-mediated accumulation of transcripts from a procyclin expression site depends on the intergenic region. Mol Biochem Parasitol 2003; 127:93-7. [PMID: 12615342 DOI: 10.1016/s0166-6851(02)00310-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Christian Flück
- Institut für Zellbiologie, Universität Bern, Balterstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
28
|
Chaudhuri M, Sharan R, Hill GC. Trypanosome alternative oxidase is regulated post-transcriptionally at the level of RNA stability. J Eukaryot Microbiol 2002; 49:263-9. [PMID: 12188215 DOI: 10.1111/j.1550-7408.2002.tb00367.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the bloodstream form of African trypanosomes, trypanosome alternative oxidase (TAO), the non-cytochrome ubiquinol:oxidoreductase, is the only terminal oxidase of the mitochondrial electron transport system. TAO is developmentally regulated during mitochondrial biogenesis in this parasite. During in vitro differentiation of Trypanosoma brucei from the bloodstream to the procyclic form, the overall rate of oxygen consumption decreased about 80%. The mode of respiration changed over a 2- to 3-wk period from a cyanide-insensitive, SHAM-sensitive pathway to a predominantly cyanide-sensitive pathway. The TAO protein level gradually decreased to the level present in the procyclic forms during this 3-wk period. However, within the first week of differentiation, the TAO transcript level decreased about 90% and then in the following weeks it reached the level present in the established procyclic form, that is about 20% of that in bloodstream forms. Like other trypanosomatid genes TAO transcript synthesis remains unaltered in fully differentiated bloodstream and procyclic trypanosomes. The half-life of the TAO mRNA was about 3.2 h in the procyclic trypanosomes, whereas the TAO transcript level remained unaltered even after 4 h of incubation with actinomycin D in bloodstream forms. Inhibition of protein synthesis resulted in about a four-fold accumulation of the TAO transcript in the procyclic trypanosomes, comparable to the level present in the bloodstream forms. Thus, TAO is regulated at the level of mRNA stability and de novo protein synthesis is required for the reduction of the TAO mRNA pool in the procyclic form.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Meharry Medical College, Nashville, Tennessee 37208-3599, USA
| | | | | |
Collapse
|
29
|
Boucher N, Wu Y, Dumas C, Dube M, Sereno D, Breton M, Papadopoulou B. A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3'-untranslated region element. J Biol Chem 2002; 277:19511-20. [PMID: 11912202 DOI: 10.1074/jbc.m200500200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developmental regulation of mRNA levels in trypanosomatid protozoa is determined post-transcriptionally and often involves sequences located in the 3'-untranslated regions (3'-UTR) of the mRNAs. We have previously identified a developmentally regulated gene family in Leishmania encoding the amastin surface proteins and showed that stage-specific accumulation of the amastin mRNA is mediated by sequences within the 3'-UTR. Here we identified a 450-nt region within the amastin 3'-UTR that can confer amastigote-specific gene expression by a novel mechanism that increases mRNA translation without an increase in mRNA stability. Remarkably, this 450-nt 3'-UTR element is highly conserved among a large number of Leishmania mRNAs in several Leishmania species. Here we show that several of these mRNAs are differentially expressed in the intracellular amastigote stage of the parasite and that the 450-nt conserved element in their 3'-UTRs is responsible for stage-specific gene regulation. We propose that the 450-nt conserved element, which is unlike any other regulatory element identified thus far, is part of a common mechanism of stage-regulated gene expression in Leishmania that regulates mRNA translation in response to intracellular stresses.
Collapse
Affiliation(s)
- Nathalie Boucher
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier de Université Laval, Québec G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Clement SL, Koslowsky DJ. Unusual organization of a developmentally regulated mitochondrial RNA polymerase (TBMTRNAP) gene in Trypanosoma brucei. Gene 2001; 272:209-18. [PMID: 11470527 PMCID: PMC2743126 DOI: 10.1016/s0378-1119(01)00538-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report here the characterization of a developmentally regulated mitochondrial RNA polymerase transcript in the parasitic protozoan, Trypanosoma brucei. The 3822 bp protein-coding region of the T. brucei mitochondrial RNA polymerase (TBMTRNAP) gene is predicted to encode a 1274 amino acid polypeptide, the carboxyl-terminal domain of which exhibits 29-37% identity with the mitochondrial RNA polymerases from other organisms in the molecular databases. Interestingly, the TBMTRNAP mRNA is one of several mature mRNA species post-transcriptionally processed from a stable, polycistronic precursor. Alternative polyadenylation of the TBMTRNAP mRNA produces two mature transcripts that differ by 500 nt and that show stage-specific differences in abundance during the T. brucei life cycle. This alternative polyadenylation event appears to be accompanied by the alternative splicing of a high abundance, non-coding downstream transcript of unknown function. Our finding that the TBMTRNAP gene is transcribed into two distinct mRNAs subject to differential regulation during the T. brucei life cycle suggests that mitochondrial differentiation might be achieved in part through the regulated expression of this gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA-Directed RNA Polymerases/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Mitochondria/enzymology
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/growth & development
Collapse
Affiliation(s)
| | - Donna J. Koslowsky
- Corresponding author. Tel.: +1-517-432-3362; fax: +1-517-353-8957. E-mail address: (D.J. Koslowsky)
| |
Collapse
|
31
|
Liniger M, Bodenmüller K, Pays E, Gallati S, Roditi I. Overlapping sense and antisense transcription units in Trypanosoma brucei. Mol Microbiol 2001; 40:869-78. [PMID: 11401694 DOI: 10.1046/j.1365-2958.2001.02426.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Procyclins are the major surface glycoproteins of insect-form Trypanosoma brucei. The procyclin expression sites are polycistronic and are transcribed by an alpha-amanitin-resistant polymerase, probably RNA polymerase I (Pol I). The expression sites are flanked by transcription units that are sensitive to alpha-amanitin, which is a hallmark of Pol II-driven transcription. We have analysed a region of 9.5 kb connecting the EP/PAG2 expression site with the downstream transcription unit. The procyclin expression site is longer than was previously realized and contains an additional gene, procyclin-associated gene 4 (PAG4), and a region of unknown function, the T region, that gives rise to trans-spliced, polyadenylated RNAs containing small open reading frames (ORFs). Two new genes, GU1 and GU2, were identified in the downstream transcription unit on the opposite strand. Unexpectedly, the 3' untranslated region of GU2 and the complementary T transcripts overlap by several hundred base pairs. Replacement of GU2 by a unique tag confirmed that sense and antisense transcription occurred from a single chromosomal locus. Overlapping transcription is stage specific and may extend > or = 10 kb in insect-form trypanosomes. The nucleotide composition of the T. brucei genome is such that antisense ORFs occur frequently. If stable mRNAs can be derived from both strands, the coding potential of the genome may be substantially larger than has previously been suspected.
Collapse
Affiliation(s)
- M Liniger
- Institut für Zellbiologie, Universität Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Thomas MC, García-Pérez JL, Alonso C, López MC. Molecular characterization of KMP11 from Trypanosoma cruzi: a cytoskeleton-associated protein regulated at the translational level. DNA Cell Biol 2000; 19:47-57. [PMID: 10668791 DOI: 10.1089/104454900314708] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Kinetoplasmid membrane protein-11 (KMP11) is present in a wide range of trypanosomatids. In the present paper, we show that the T. cruzi KMP11 gene is organized in a cluster formed by four gene units arranged in a head-to-tail tandem manner located on a chromosome of about 1900 kb. Northern blot analyses indicated that the steady-state level of mature KMP11 transcripts of 0.52 kb is high and similar in the three forms of the parasite. The KMP11 mRNAs have a half-life of about 16 h whose steady-state level is strongly downregulated when the parasites reach the stationary growth phase. The T. cruzi KMP11 sequence presents a significant homology with the amino-terminal third of the cytoskeleton-associated protein CIP1 from Arabidopsis thaliana. Western blot and immunoelectron microscopy studies showed that KMP11 is present in the cytoskeleton structure. Because the strong downregulation observed in the de novo synthesis of KMP11 protein in parasites treated with vinblastine is not accompanied by a significant fall in the steady-state level of KMP11 mRNAs, regulatory control of the protein at the translational level is suggested.
Collapse
Affiliation(s)
- M C Thomas
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|
33
|
Sbicego S, Vassella E, Kurath U, Blum B, Roditi I. The use of transgenic Trypanosoma brucei to identify compounds inducing the differentiation of bloodstream forms to procyclic forms. Mol Biochem Parasitol 1999; 104:311-22. [PMID: 10593184 DOI: 10.1016/s0166-6851(99)00157-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The expression of procyclins is the earliest known marker of differentiation of bloodstream forms of Trypanosoma brucei to procyclic forms. We have generated transgenic bloodstream and procyclic forms in which the coding region of one procyclin gene was replaced by E. coli beta-glucuronidase (GUS). GUS activity can be monitored in a simple one-step colour reaction in microtitre plates; this assay is potentially suitable for large-scale screening for compounds that influence differentiation. GUS was stage-specifically expressed in procyclic forms and its synthesis occurred in parallel with that of procyclin when bloodstream forms were triggered to differentiate by the addition of cis-aconitate. GUS could also be induced by brief treatment with the proteases trypsin, pronase or thermolysin, but not with pepsin or thrombin. Interestingly, a combination of one of the active proteases with cis-aconitate resulted in increased GUS activity relative to either trigger alone. In contrast to cis-aconitate, protease treatment resulted in considerable cell death. Experiments with the pleomorphic strain AnTat 1.1 showed that long slender bloodstream forms were rapidly killed by proteases, whereas stumpy forms were largely resistant. Stumpy forms treated with trypsin differentiated synchronously and expressed procyclin with faster kinetics than when they were triggered by cis-aconitate. As predicted by the GUS assay, differentiation was even more rapid when both inducers were used simultaneously, with all cells expressing maximal levels of procyclin within 3 h.
Collapse
Affiliation(s)
- S Sbicego
- Departement für Chemie und Biochemie, Universität Bern, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Vazquez MP, Levin MJ. Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 1999; 239:217-25. [PMID: 10548722 DOI: 10.1016/s0378-1119(99)00386-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
TcP2beta ribosomal protein genes in Trypanosoma cruzi are encoded by four different loci, H6.4, H1.8, H1.5 and H1.3. All loci have a similar organization, except for H1.8 that harbors two TcP2beta genes arranged in tandem and separated by a short repetitive sequence, named SIRE (short interspersed repetitive element), which is also found upstream of the first gene of the tandem and downstream of the second. In this locus the trans-splicing signal of TcP2beta is located within the SIRE element, while in the other loci it is positioned within the first 50bases upstream of the AUG with an AG acceptor site at position -12 respective to the initiation codon. Transient transfection experiments were used to evaluate the efficiency of these two different trans-splicing regions to drive CAT activity. The region named HX1 located upstream the TcP2beta H1. 8 gene was clearly more efficient than the SIRE sequence contained in the region named HX2. Therefore, we decided to use the HX1 region to ameliorate the performance of the cryptic trans-splicing signal present in the T. cruzi expression vector pRIBOTEX (Martinez-Calvillo, S., López, I., Hernandez, H., 1997. pRIBOTEX expression vector: a pTEX derivative for a rapid selection of Trypanosoma cruzi transfectants. Gene 199, 71-76). By insertion of the region HX1 downstream of the ribosomal promoter of pRIBOTEX, we constructed pRHX1CAT40 that, in stable transfected cells, was able to drive CAT activity 2760 times more efficiently than the control plasmids. Based on this, a novel plasmid vector was conceived, named pTREX-n, which retains the neo gene of pRIBOTEX as a positive selectable marker and replaces the CAT-SV40 cassette in pRHX1CAT40 by a multiple cloning site.
Collapse
Affiliation(s)
- M P Vazquez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular - CONICET, University of Buenos Aires, Vuelta de obligado 2490 2P, 1428, Buenos Aires, Argentina
| | | |
Collapse
|
35
|
Teixeira SM, Kirchhoff LV, Donelson JE. Trypanosoma cruzi: suppression of tuzin gene expression by its 5'-UTR and spliced leader addition site. Exp Parasitol 1999; 93:143-51. [PMID: 10529356 DOI: 10.1006/expr.1999.4446] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Teixeira, S. M. R., Kirchhoff, L. V., and Donelson, J. E. 1999. Trypanosoma cruzi: Suppression of tuzin gene expression by its 5'-UTR and spliced leader addition site. Experimental Parasitology 93, 143-151. The genome of the protozoan parasite Trypanosoma cruzi contains a tandemly repeated array of two alternating genes, one encoding amastin and the other encoding tuzin. Amastin is an abundant amastigote surface protein, whereas tuzin is thought to be a rare protein whose location and function are unknown. The 137-nucleotide 5' untranslated region (5'-UTR) of the tuzin mRNA has a 22-codon open translation reading frame containing 3 methionine codons followed by a stop codon that overlaps the methionine start codon of the tuzin coding region. A fragment containing the tuzin 5'-UTR and upstream intergenic region was placed in front of a luciferase reporter gene in a plasmid for transient transfection assays of luciferase activity. By mutating the three upstream ATGs in the tuzin 5'-UTR and replacing the tuzin spliced leader (SL) acceptor site with that of the amastin gene, we found that the 22-codon reading frame and the tuzin SL acceptor site combine to substantially reduce expression of the luciferase gene. These results indicate that expression of the multicopy tuzin gene is posttranscriptionally suppressed by both inefficient RNA processing and poor translation initiation, resulting in a low level of tuzin.
Collapse
Affiliation(s)
- S M Teixeira
- Department of Internal Medicine, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
36
|
Vanhamme L, Postiaux S, Poelvoorde P, Pays E. Differential regulation of ESAG transcripts in Trypanosoma brucei. Mol Biochem Parasitol 1999; 102:35-42. [PMID: 10477174 DOI: 10.1016/s0166-6851(99)00080-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Trypanosoma brucei, several genes termed ESAGs for expression site-associated genes are contained within the polycistronic transcription units of the VSG gene, and their transcription is coordinately regulated during the parasite life-cycle. Since the VSG mRNA is characterized by a drastic destabilization under conditions where translation is inhibited, we examined if this post-transcriptional control also applies to the ESAG mRNAs. While the ESAG 7/6 mRNA behaved like the VSG mRNA, the ESAG 8 and ESAG 3 mRNAs did not. We ascribe this differential behaviour to the residual transcription that still occurs only in the ESAG 7/6 region of the VSG unit under conditions where this unit is down-regulated.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cycloheximide/pharmacology
- Dactinomycin/pharmacology
- Gene Expression Regulation
- Genes, Protozoan
- Protein Synthesis Inhibitors/pharmacology
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Transcription, Genetic
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/growth & development
- Variant Surface Glycoproteins, Trypanosoma/genetics
- Variant Surface Glycoproteins, Trypanosoma/metabolism
Collapse
Affiliation(s)
- L Vanhamme
- Department of Molecular Biology, Free University of Brussels, St. Genèse, Belgium
| | | | | | | |
Collapse
|
37
|
Weston D, La Flamme AC, Van Voorhis WC. Expression of Trypanosoma cruzi surface antigen FL-160 is controlled by elements in the 3' untranslated, the 3' intergenic, and the coding regions. Mol Biochem Parasitol 1999; 102:53-66. [PMID: 10477176 DOI: 10.1016/s0166-6851(99)00079-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The FL-160 surface antigen gene family of T. cruzi consists of hundreds of members of 160 kDa glycoproteins expressed in trypomastigotes, but not in epimastigotes. Steady-state levels of FL-160 mRNA were 80 to 100-fold higher in trypomastigotes than in epimastigotes, yet transcription rates were equivalent between the lifecycle stages. Luciferase reporter constructs demonstrated that the 3' untranslated region (UTR) and intergenic region (IR) following the coding sequence of FL-160 was sufficient to generate 8-fold higher luciferase expression in trypomastigotes compared with epimastigotes. Transfection of 3' UTR/IR deletion constructs revealed cis-acting elements which conferred a trypomastigote-specific expression pattern similar to that of FL-160. Parasites treated with translation and transcription inhibitors, cyclohexamide and Actinomycin D, respectively, displayed a stage-specific pattern of FL-160 mRNA degradation. Epimastigotes, but not trypomastigotes, treated with the inhibitors accumulated a 1.4 Kb FL-160 cleavage product. The cleavage site mapped to a 31 base poly-purine tract in the FL-160 coding region. The first 526 aa of FL-160, containing the 31 base poly-purine tract and several smaller tracts, were fused to green fluorescent protein (GFP) and expressed from the T. cruzi tubulin locus. Stable transformants expressed 4-fold more FL-160:GFP fusion mRNA and 12-fold more fusion protein in the trypomastigote stage than in the epimastigote stage suggesting post-transcriptional and translational control elements. These data reveal at least two distinct control mechanisms for trypomastigote-specific expression of FL-160 surface glycoproteins, one involving the 3' UTR/IR and one involving the coding region of FL-160.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Base Sequence
- Blotting, Southern
- DNA, Protozoan/genetics
- Gene Expression Regulation
- Genes, Protozoan
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/growth & development
- Trypanosoma cruzi/immunology
Collapse
Affiliation(s)
- D Weston
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
38
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999. [PMID: 10357856 DOI: 10.1007/s13146-011-0050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
39
|
Lamontagne J, Papadopoulou B. Developmental regulation of spliced leader RNA gene in Leishmania donovani amastigotes is mediated by specific polyadenylation. J Biol Chem 1999; 274:6602-9. [PMID: 10037755 DOI: 10.1074/jbc.274.10.6602] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania cycles between the insect vector and its mammalian host undergoing several important changes mediated by the stage-specific expression of a number of genes. Using a genomic differential screening approach, we isolated differentially expressed cosmid clones carrying several copies of the mini-exon gene. We report that the spliced leader (SL) RNA, essential for the maturation of all pre-mRNAs by trans-splicing, is developmentally regulated in Leishmania donovani amastigotes and that this regulation is rapidly induced upon parasite growth under acidic conditions. Stage-specific regulation of the SL RNA is associated with the expression of a larger approximately 170-nucleotide transcript that bears an additional 15-nucleotide sequence at its 3'-end and is polyadenylated in contrast to the mature SL RNA. The poly(A)+ SL RNA represents 12-16% of the total SL transcript synthesized in amastigotes and is 2.5-3-fold more stable than the poly(A)- transcript. The poly(A)+ SL transcript is synthesized specifically from one class of the genomic mini-exon copies. Polyadenylation of the SL RNA may control the levels of the SL mature transcript under amastigote growth and may represent an additional step in the gene regulation process during parasite differentiation.
Collapse
Affiliation(s)
- J Lamontagne
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, CHUQ et Faculté de Médecine de l'Université Laval, Québec G1V 4G2, Canada
| | | |
Collapse
|
40
|
Wilson K, Uyetake L, Boothroyd J. Trypanosoma brucei: cis-acting sequences involved in the developmental regulation of PARP expression. Exp Parasitol 1999; 91:222-30. [PMID: 10072324 DOI: 10.1006/expr.1998.4366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The procyclic acidic repetitive protein (PARP or procyclin) of the parasitic protozoan Trypanosoma brucei is a developmentally regulated protein that shows extreme differences in its level of expression in different stages of the parasite's life cycle. Specifically, it is the major surface protein in the procyclic (insect) stage and, although the PARP gene is being actively transcribed in the mammalian bloodstream stage, there is no detectable PARP mRNA or protein in these cells. The 3'-untranslated region (UTR) of PARP, as well as other trypanosome genes, has the ability to confer the appropriate developmental regulation pattern onto chimeric reporter genes. To understand the mechanism of posttranscriptional regulation, selective replacement mutagenesis of the PARP mRNA 3'UTR was done to identify the cis-acting sequences involved in the down-regulation of this mRNA in bloodstream-form T. brucei. Transient transformation of constructs containing the PARP promoter and 5'UTR, the beta-glucuronidase coding region, and the selectively mutagenized or unaltered PARP 3'UTR were performed in procyclic and bloodstream T. brucei. The results of the reporter gene assays on the transformed cells indicate that there are at least two elements in the PARP 3'UTR which in bloodstream cells are involved in regulation of PARP expression and which appear to function as negative elements. In procyclic cells, there are two regions in which mutagenesis indicates positive cis-regulatory sequences, one of which has been previously defined (A. Hehl et al., 1994, Proc. Natl. Acad. Sci. USA 91, 370-374). These results indicate that multiple cis-acting elements within the PARP 3'UTR are involved in the developmental regulation of PARP expression and that regulation is controlled in a complex manner, presumably involving several cellular trans-acting factors.
Collapse
Affiliation(s)
- K Wilson
- Department of Microbiology and Immunology, Stanford University, Stanford, California, 94305, USA
| | | | | |
Collapse
|
41
|
Abstract
The study of mechanisms which control gene expression in trypanosomatids has developed at an increasing rate since 1989 when the first successful DNA transfection experiments were reported. Using primarily Trypanosoma brucei as a model, several groups have begun to elucidate the basic control mechanisms and to define the cellular factors involved in mRNA transcription, processing and translation in these parasites. This review focuses on the most recent studies regarding a subset of genes that are expressed differentially during the life cycle of three groups of parasites. In addition to T. brucei, I will address studies on gene regulation in a few species of Leishmania and the results obtained by a much more limited group of laboratories studying gene expression in Trypanosoma cruzi. It is becoming evident that the regulatory strategies chosen by different species of trypanosomatids are not similar, and that for these very successful parasites it is probably advantageous to employ multiple mechanisms simultaneously. In addition, with the increasing numbers of parasite genes that have now been submitted to molecular dissection, it is also becoming evident that, among the various strategies for gene expression control, there is a predominance of regulatory pathways acting at the post-transcriptional level.
Collapse
Affiliation(s)
- S M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil.
| |
Collapse
|
42
|
Hartmann C, Hotz HR, McAndrew M, Clayton C. Effect of multiple downstream splice sites on polyadenylation in Trypanosoma brucei. Mol Biochem Parasitol 1998; 93:149-52. [PMID: 9662038 DOI: 10.1016/s0166-6851(98)00026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- C Hartmann
- Zentrum für Molekulare Biologie, Heidelberg, Germany
| | | | | | | |
Collapse
|
43
|
Blundell PA, van Leeuwen F, Brun R, Borst P. Changes in expression site control and DNA modification in Trypanosoma brucei during differentiation of the bloodstream form to the procyclic form. Mol Biochem Parasitol 1998; 93:115-30. [PMID: 9662033 DOI: 10.1016/s0166-6851(98)00030-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have adapted a system for in vitro differentiation of a monomorphic trypanosome strain to monitor changes in transcription and DNA modification in expression sites during the transition of the bloodstream-form to the procyclic trypanosome. We have used trypanosomes that have a gene for drug resistance integrated in an expression site, just downstream of either an expression site promoter, or a ribosomal promoter replacing the endogenous promoter. During the transition from bloodstream-form to procyclic, the promoters in an active expression site behave as expected on the basis of previous work on these promoters in procyclics, i.e. the ribosomal replacement promoter remains fully active, whereas the expression site promoter is (incompletely) down-regulated. A silent bloodstream-form expression site promoter does not remain tightly silenced, however. There is a transient increase of transcription of the marker gene during the transition from bloodstream-form to procyclic, indicating that the control of silent expression sites differs between the bloodstream-form and the procyclic trypanosome, and that a short time is required to reset the silencing mechanisms. One of the differences between bloodstream-form and procyclic trypanosomes is the presence of the modified base beta-D-glucosyl-hydroxymethyluracil (J) in and around bloodstream-form expression sites. We have studied loss of this DNA modification and find that the change in expression site control from bloodstream-form to procyclic does not require active removal of J. Base J is lost by synthesis of new, unmodified DNA, which happens after the major changes in expression site transcription have occurred.
Collapse
Affiliation(s)
- P A Blundell
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
44
|
Bridge MA, Zhou Q, Koop BF, Pearson TW. Cloning and characterization of the kinetoplastid membrane protein-11 gene locus of Trypanosoma brucei. Mol Biochem Parasitol 1998; 91:359-63. [PMID: 9566527 DOI: 10.1016/s0166-6851(97)00229-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M A Bridge
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada
| | | | | | | |
Collapse
|
45
|
Ladeira de Campos CB, Lopes UG. Leishmania braziliensis, molecular characterization of an elongation factor 1alpha gene. Gene 1997; 198:281-8. [PMID: 9370293 DOI: 10.1016/s0378-1119(97)00329-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The elongation factor EF-1alpha is one of the most studied components of the translation machinery owing to its abundance and possible role in other cellular functions. EF-1alpha mediates the correct coupling of the aminoacyl-tRNA on the A site of the ribosome in a GTP-dependent reaction. We have previously described an EF-1alpha DNA sequence in Leishmania amazonensis, pLEF11 (accession No. M92653), using PCR. In this paper we describe the DNA sequence and genomic organization of L. braziliensis EF-1alpha gene. Southern blot analysis revealed that EF-1alpha is organized as a 2 kb tandem repeat. The pLEF11 probe recognized a 1.8 kb mRNA from promastigotes in Northern blots. A clone containing the first copy and a half of the EF-1alpha tandem repeat was isolated by screening a L. braziliensis genomic library. Southern blot analysis showed that the isolated clone (lambda2.2) presented the same hybridization profile as that of a genomic blot. The partial sequencing of clone lambda2.2 spans 2959 nucleotides in length, which has two open reading frames separated by a putative non-coding region. The nucleotide and the predicted peptide sequence of the first coding region presented approximately 80% identity with other eukaryotic EF-1alpha genes. The sequence also displayed the four consensus motifs corresponding to the GTP-binding site (G1, G2, G3 and G4). Computer analysis of the sequence of both coding regions revealed three divergent nucleotides, which generated two changes at the amino acid level. One was found to be located in the G2 domain. The non-coding region of the EF-1alpha gene sequence showed potential regulatory elements such as polypyrimidine tracks, chi-homologous sequences and stem-loop forming sequences.
Collapse
Affiliation(s)
- C B Ladeira de Campos
- Instituto de Biofisica Carlos Chagas Filho, UFRJ, CCS, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
| | | |
Collapse
|
46
|
Schürch N, Furger A, Kurath U, Roditi I. Contributions of the procyclin 3' untranslated region and coding region to the regulation of expression in bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol 1997; 89:109-21. [PMID: 9297705 DOI: 10.1016/s0166-6851(97)00107-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
When bloodstream forms of Trypanosoma brucei differentiate into procyclic forms they rapidly synthesise a new surface coat composed of procyclins. Procyclin genes are transcribed in bloodstream forms at approximately one-tenth of the rate in procyclic forms, but little, if any, mRNA can be detected, indicating that further down-regulation must occur post-transcriptionally. We have examined the role of the 297 bp procyclin 3' untranslated region (UTR) in regulating expression in bloodstream forms and have identified three discrete elements: a dominant, negative element between positions 101 and 173, and two positive elements. When chloramphenicol acetyl transferase (CAT) was used as the reporter gene, deletion of the negative element caused a approximately 6-fold increase in the level of steady state mRNA and > 30-fold increase in CAT activity, suggesting that both RNA stability and translation were affected. Similar results were obtained with glutamic acid/alanine-rich protein (GARP), the T. congolense analogue of procyclin, indicating that the 3' UTR acts independently of the coding region. In contrast, when trypanosomes were stably transformed with a construct in which the procyclin coding region was linked to a truncated form of the 3' UTR which lacked the negative element, they expressed high levels of mRNA, but no protein could be detected in cell lysates or culture supernatants. These results imply that the procyclin coding region exerts yet another layer of control which prevents inappropriate expression of the protein in the mammalian host.
Collapse
Affiliation(s)
- N Schürch
- Universtität Bern, Inst. für Allgemeine Mikrobiologie, Switzerland
| | | | | | | |
Collapse
|
47
|
Kawazu S, Lu HG, Chang KP. Stage-independent splicing of transcripts two heterogeneous neighboring genes in Leishmania amazonensis. Gene X 1997; 196:49-59. [PMID: 9322740 DOI: 10.1016/s0378-1119(97)00190-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene expression in trypanosomatid protozoa is largely regulated posttranscriptionally, e.g., 5' splice leader addition and 3' polyadenylation of mRNAs. We examined these events in Leishmania by mapping the splice sites of the transcripts from two different, but closely linked single-copy genes 2.3 kb apart. The coding regions of the approx. 1 kb upstream gene (P36) and the approx. 1.4 kb downstream gene (NAGT) produce approx. 2 and 3 kb mRNAs, respectively. Both genes were overexpressed in cells that were transfected with this bicistronic unit (> or = 7.5 kb), taking advantage of the NAGT as a selectable marker for tunicamycin-resistance. The transcripts from both genes were spliced constitutively at both ends, irrespective of their episomal or chromosomal expression in both leishmanial stages. Primer extension of the 5' UTRs and S1 nuclease protection of the 3' UTRs initially identified the major splice sites, corresponding to the genomic sequence at -205 bp and + approx. 900 bp of P36, and -1012 bp and + approx. 600 bp of NAGT. These splice sites, consistent with the size of the major transcripts, are among those mapped precisely by sequencing RT-PCR amplified 5' and 3' UTRs. The additional sites mapped by the latter are minor alternatives, especially abundant for transcripts of the downstream NAGT. All these minor splice sites are closer than the major splice sites to the coding region, indicating that the most distant splice sites are preferentially used. This preference creates a 387 bp 'gap' with polypyrimidine tracts in the intergenic region consistent with the model coupling splice leader addition with polyadenylation in pre-mRNA processing. The stage-independence of these events suggests that the 7.5 kb dicistronic unit is suitable for constructing Leishmania-specific constitutive expression vectors.
Collapse
Affiliation(s)
- S Kawazu
- Department of Microbiology/Immunology, University of Health Sciences/Chicago Medical School, IL 60064, USA
| | | | | |
Collapse
|
48
|
Ruepp S, Furger A, Kurath U, Renggli CK, Hemphill A, Brun R, Roditi I. Survival of Trypanosoma brucei in the tsetse fly is enhanced by the expression of specific forms of procyclin. J Cell Biol 1997; 137:1369-79. [PMID: 9182668 PMCID: PMC2132531 DOI: 10.1083/jcb.137.6.1369] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
African trypanosomes are not passively transmitted, but they undergo several rounds of differentiation and proliferation within their intermediate host, the tsetse fly. At each stage, the survival and successful replication of the parasites improve their chances of continuing the life cycle, but little is known about specific molecules that contribute to these processes. Procyclins are the major surface glycoproteins of the insect forms of Trypanosoma brucei. Six genes encode proteins with extensive glutamic acid-proline dipeptide repeats (EP in the single-letter amino acid code), and two genes encode proteins with an internal pentapeptide repeat (GPEET). To study the function of procyclins, we have generated mutants that have no EP genes and only one copy of GPEET. This last gene could not be replaced by EP procyclins, and could only be deleted once a second GPEET copy was introduced into another locus. The EP knockouts are morphologically indistinguishable from the parental strain, but their ability to establish a heavy infection in the insect midgut is severely compromised; this phenotype can be reversed by the reintroduction of a single, highly expressed EP gene. These results suggest that the two types of procyclin have different roles, and that the EP form, while not required in culture, is important for survival in the fly.
Collapse
Affiliation(s)
- S Ruepp
- Institut für Allgemeine Mikrobiologie, Universität Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
Urakawa T, Eshita Y, Majiwa PA. The primary structure of Trypanosoma (Nannomonas) congolese variant surface glycoproteins. Exp Parasitol 1997; 85:215-24. [PMID: 9085918 DOI: 10.1006/expr.1996.4140] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The complete nucleotide sequences were determined for three transcripts each encoding a different variant surface glycoprotein (VSG) of Trypanosoma (Nannomonas) congolense. The nucleotide sequence was determined also for a transcript encoding a fourth VSG, but this was truncated. The data obtained confirm absence of the canonical polyadenylation signal, lack of conserved sequence elements in the 3' untranslated region, and heterogeneity in the spliced-leader acceptor site in the T. congolense VSG transcripts examined. A comparison of the amino acids deduced from the nucleotide sequences of the four VSGs and those of other VSGs published previously reveals a strong conservation of several structural domains, particularly cysteine residues located throughout most of the molecules. The majority of T. congolense VSGs analyzed in this study resemble most the N-terminal cysteine residue domain type B of T. brucei, characterized by a cysteine residue located toward the N-terminal end, a cluster of cysteine residues in the central region, and at least three cysteine residues between positions 250 and 300 of the molecules. One of the VSGs analyzed, ILNat3.3, did not fit into any of the classification schemes proposed for the VSGs so far studied, and thus may represent a different class of these surface molecules. Unlike VSGs of T. brucei, the T. congolense VSGs have no cysteine residues at the carboxy-terminal end. These data now make it possible to predict general primary structural features of T. congolense VSGs.
Collapse
Affiliation(s)
- T Urakawa
- International Livestock Research Institute, Nairobi, Kenya
| | | | | |
Collapse
|
50
|
Affiliation(s)
- J M Kelly
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, UK
| |
Collapse
|