1
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross SS, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.556646. [PMID: 37905030 PMCID: PMC10614741 DOI: 10.1101/2023.09.09.556646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptors agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Biological Sciences division, University of Chicago, Chicago, IL, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Das D, Arur S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol Reprod Dev 2022; 89:353-374. [PMID: 35908193 PMCID: PMC9492652 DOI: 10.1002/mrd.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
During oogenesis, oocytes arrest at meiotic prophase I to acquire competencies for resuming meiosis, fertilization, and early embryonic development. Following this arrested period, oocytes resume meiosis in response to species-specific hormones, a process known as oocyte maturation, that precedes ovulation and fertilization. Involvement of endocrine and autocrine/paracrine factors and signaling events during maintenance of prophase I arrest, and resumption of meiosis is an area of active research. Studies in vertebrate and invertebrate model organisms have delineated the molecular determinants and signaling pathways that regulate oocyte maturation. Cell cycle regulators, such as cyclin-dependent kinase (CDK1), polo-like kinase (PLK1), Wee1/Myt1 kinase, and the phosphatase CDC25 play conserved roles during meiotic resumption. Extracellular signal-regulated kinase (ERK), on the other hand, while activated during oocyte maturation in all species, regulates both species-specific, as well as conserved events among different organisms. In this review, we synthesize the general signaling mechanisms and focus on conserved and distinct functions of ERK signaling pathway during oocyte maturation in mammals, non-mammalian vertebrates, and invertebrates such as Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
O'Shea LC, Fair T, Hensey C. X-linked α-thalassemia with mental retardation is downstream of protein kinase A in the meiotic cell cycle signaling cascade in Xenopus oocytes and is dynamically regulated in response to DNA damage†. Biol Reprod 2020; 100:1238-1249. [PMID: 30649195 DOI: 10.1093/biolre/ioz001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/19/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
X-linked α-thalassemia with mental retardation (ATRX) is a chromatin remodeling protein that belongs to the SWItch/sucrose non-fermentable (SWI2/SNF2) family of helicase/ATPases. During meiosis, ATRX is necessary for heterochromatin formation and maintenance of chromosome stability in order to ensure proper assembly of the metaphase II spindle. Previously, we established ATRX as a novel progesterone regulated protein during bovine meiotic maturation, in addition to being dynamically regulated in response to DNA damage in oocytes. In the present study, we utilize the Xenopus laevis model system to further elucidate the signaling pathways regulating ATRX expression within the oocyte. Here, we present an analysis of endogenous ATRX protein expression during oogenesis, oocyte meiotic maturation, and early embryonic development. ATRX expression is dynamically regulated as evidenced by loss of the protein in metaphase II of meiosis. The downstream activation of meiosis via protein kinase A inhibition resulted in a similar decrease in ATRX protein expression. We demonstrate that the ATRX protein is detected in ubiquitin immuno-precipitates from germinal vesicle oocyte extracts and experimentally demonstrate that proteosomal degradation is responsible for the decreased expression of ATRX during meiosis. ATRX expression is significantly increased in response to gamma-irradiation induced DNA damage in oocytes and embryos. This increased expression is independent of p53 protein expression in apoptotic embryos, as determined by the expression of active caspase-3. Thus, regulation of ATRX protein expression impacts on G2-M progression and ultimately has consequences for cell survival.
Collapse
Affiliation(s)
| | - Trudee Fair
- UCD School of Agriculture and Food Science, Dublin, Ireland
| | - Carmel Hensey
- UCD School of Bimolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Lin FH, Zhang WL, Li H, Tian XD, Zhang J, Li X, Li CY, Tan JH. Role of autophagy in modulating post-maturation aging of mouse oocytes. Cell Death Dis 2018; 9:308. [PMID: 29472597 PMCID: PMC5833823 DOI: 10.1038/s41419-018-0368-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/30/2022]
Abstract
Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis.
Collapse
Affiliation(s)
- Fei-Hu Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Wei-Ling Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Hong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Xiao-Dan Tian
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Xiao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Chuan-Yong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P. R. China.
| |
Collapse
|
5
|
Nath P, Das D, Pal S, Maitra S. Nitric oxide (NO) inhibition of meiotic G2-M1 transition in Anabas testudineus oocytes: Participation of cAMP-dependent protein kinase (PKA) in regulation of intra-oocyte signaling events. Mol Cell Endocrinol 2018; 460:162-169. [PMID: 28743518 DOI: 10.1016/j.mce.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Nitric oxide (NO) regulation of ovarian function in mammals has been studied extensively. However, relatively less information is available on NO action on meiotic G2-M1 transition in teleost oocytes. In the present study using follicle-enclosed oocytes of Anabas testudineus, NO regulation of intra-oocyte signaling events during meiotic G2-M1 transition were examined. Priming with NO donor, sodium nitroprusside (SNP) prevented 17α,20β-dihydroxy-4-pregenen-3-one (17,20β-P)-induced germinal vesicle break down (GVBD) in dose- and duration-dependent manner. Impaired GVBD response in SNP-treated groups corroborated well with reduced p34Cdc2 (Thr161) phosphorylation. Immunoblot analysis revealed that congruent with elevated cAMP-dependent protein kinase (PKA) phosphorylation (activation), NO inhibition of meiotic maturation involves down regulation of Cdc25 activation, Mos synthesis and MAPK3/1 (ERK1/2) phosphorylation. However, priming with PKA inhibitor (H89) could reverse SNP attenuation of oocyte GVBD significantly. Collectively our results indicate that negative influence of NO on meiotic G2-M1 transition in perch oocytes might involve PKA activation.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
6
|
Schaefer-Ramadan S, Hubrack S, Machaca K. Transition metal dependent regulation of the signal transduction cascade driving oocyte meiosis. J Cell Physiol 2017; 233:3164-3175. [DOI: 10.1002/jcp.26157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | - Satanay Hubrack
- Department of Physiology and Biophysics; Weill Cornell Medicine-Qatar; Doha Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics; Weill Cornell Medicine-Qatar; Doha Qatar
| |
Collapse
|
7
|
Dupré AI, Haccard O, Jessus C. The greatwall kinase is dominant over PKA in controlling the antagonistic function of ARPP19 in Xenopus oocytes. Cell Cycle 2017; 16:1440-1452. [PMID: 28722544 DOI: 10.1080/15384101.2017.1338985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The small protein ARPP19 plays a dual role during oocyte meiosis resumption. In Xenopus, ARPP19 phosphorylation at S109 by PKA is necessary for maintaining oocytes arrested in prophase of the first meiotic division. Progesterone downregulates PKA, leading to the dephosphorylation of ARPP19 at S109. This initiates a transduction pathway ending with the activation of the universal inducer of M-phase, the kinase Cdk1. This last step depends on ARPP19 phosphorylation at S67 by the kinase Greatwall. Hence, phosphorylated by PKA at S109, ARPP19 restrains Cdk1 activation while when phosphorylated by Greatwall at S67, ARPP19 becomes an inducer of Cdk1 activation. Here, we investigate the functional interplay between S109 and S67-phosphorylations of ARPP19. We show that both PKA and Gwl phosphorylate ARPP19 independently of each other and that Cdk1 is not directly involved in regulating the biological activity of ARPP19. We also show that the phosphorylation of ARPP19 at S67 that activates Cdk1, is dominant over the inhibitory S109 phosphorylation. Therefore our results highlight the importance of timely synchronizing ARPP19 phosphorylations at S109 and S67 to fully activate Cdk1.
Collapse
Affiliation(s)
- Aude-Isabelle Dupré
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| | - Olivier Haccard
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| | - Catherine Jessus
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| |
Collapse
|
8
|
Das D, Khan PP, Maitra S. Endocrine and paracrine regulation of meiotic cell cycle progression in teleost oocytes: cAMP at the centre of complex intra-oocyte signalling events. Gen Comp Endocrinol 2017; 241:33-40. [PMID: 26773339 DOI: 10.1016/j.ygcen.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/03/2016] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
Participation of major endocrine and/or local autocrine/paracrine factors and potential interplay between apparently disparate intra-oocyte signalling events during maintenance and withdrawal of meiotic prophase arrest has been an area of active research in recent years. Studies on oocyte maturation have contributed substantially in the discovery of some of the most important biochemical and cellular events like functional significance of novel membrane-associated steroid receptors, elucidation of maturation promoting factor (MPF), cytostatic factor (CSF) and other signalling cascades that entrain the cell cycle clock to hormonal stimuli. While follicular estrogen has largely been implicated in maintenance of prophase arrest, involvement of maturational steroid and membrane progestin receptor in resumption of meiotic G2-M1 transition in piscine oocytes has been shown earlier. Moreover, detection of ovarian IGF system, maturational gonadotropin stimulation of IGF ligands and potential synergism between maturational steroid and IGF1 in zebrafish oocytes are most recent advancements. Though endocrine/paracrine regulation of cyclic nucleotide-mediated signalling events in meiotic cell cycle progression is well established, involvement of PI3K/Akt signalling cascade has also been reported in fish, amphibian and mammalian oocytes. The major objective of this overview is to describe how fish oocytes maintain high cAMP/PKA activity and how steroid- and/or growth factor-mediated signalling cascade regulate this pathway for the withdrawal of meiotic arrest. Moreover, special emphasis is placed on some recent findings on interaction of PKA with some of the MPF-regulating components (e.g., synthesis of cyclin B or MEK/MAPK signalling cascade) for the maintenance of prophase arrest.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | | | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
9
|
Nader N, Courjaret R, Dib M, Kulkarni RP, Machaca K. Release from Xenopus oocyte prophase I meiotic arrest is independent of a decrease in cAMP levels or PKA activity. Development 2016; 143:1926-36. [PMID: 27122173 DOI: 10.1242/dev.136168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
Vertebrate oocytes arrest at prophase of meiosis I as a result of high levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) activity. In Xenopus, progesterone is believed to release meiotic arrest by inhibiting adenylate cyclase, lowering cAMP levels and repressing PKA. However, the exact timing and extent of the cAMP decrease is unclear, with conflicting reports in the literature. Using various in vivo reporters for cAMP and PKA at the single-cell level in real time, we fail to detect any significant changes in cAMP or PKA in response to progesterone. More interestingly, there was no correlation between the levels of PKA inhibition and the release of meiotic arrest. Furthermore, we devised conditions whereby meiotic arrest could be released in the presence of sustained high levels of cAMP. Consistently, lowering endogenous cAMP levels by >65% for prolonged time periods failed to induce spontaneous maturation. These results argue that the release of oocyte meiotic arrest in Xenopus is independent of a reduction in either cAMP levels or PKA activity, but rather proceeds through a parallel cAMP/PKA-independent pathway.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Rashmi P Kulkarni
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| |
Collapse
|
10
|
Dupré A, Daldello EM, Nairn AC, Jessus C, Haccard O. Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes. Nat Commun 2015; 5:3318. [PMID: 24525567 PMCID: PMC4014304 DOI: 10.1038/ncomms4318] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/24/2014] [Indexed: 11/13/2022] Open
Abstract
During oogenesis, oocytes are arrested in prophase and resume meiosis by activating the kinase Cdk1 upon hormonal stimulation. In all vertebrates, release from prophase arrest relies on protein kinase A (PKA) downregulation and on the dephosphorylation of a long-sought but still unidentified substrate. Here we show that ARPP19 is the PKA substrate whose phosphorylation at serine 109 is necessary and sufficient for maintaining Xenopus oocytes arrested in prophase. By downregulating PKA, progesterone, the meiotic inducer in Xenopus, promotes partial dephosphorylation of ARPP19 that is required for the formation of a threshold level of active Cdk1. Active Cdk1 then initiates MPF autoamplification loop that occurs independently of both PKA and ARPP19 phosphorylation at serine 109 but requires the Greatwall-dependent phosphorylation of ARPP19 at serine 67. Therefore, ARPP19 stands at a crossroads in the meiotic M-phase control network by integrating differential effects of PKA and Greatwall, two essential kinases for meiosis resumption.
Collapse
Affiliation(s)
- Aude Dupré
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France [3]
| | - Enrico M Daldello
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France [3] Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, cedex 05, Paris 75252, France [4]
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | - Catherine Jessus
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France
| | - Olivier Haccard
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France
| |
Collapse
|
11
|
Maitra S, Das D, Ghosh P, Hajra S, Roy SS, Bhattacharya S. High cAMP attenuation of insulin-stimulated meiotic G2-M1 transition in zebrafish oocytes: interaction between the cAMP-dependent protein kinase (PKA) and the MAPK3/1 pathways. Mol Cell Endocrinol 2014; 393:109-19. [PMID: 24956082 DOI: 10.1016/j.mce.2014.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 02/07/2023]
Abstract
High intra-cellular cyclic nucleotide (cAMP) ensures prophase-I arrest and prevent steroid-induced meiotic G2-M1 transition in full-grown oocytes; however, relatively less information is available for cAMP regulation of growth factor-stimulated signalling events in the oocyte model. Here using zebrafish oocytes, we show that priming with dibutyryl cAMP (dbcAMP) or cAMP modulators, e.g. adenylate cyclase activator, forskolin or phosphodiesterase inhibitors (IBMX/cilostamide) block insulin action on germinal vesicle breakdown (GVBD) and histone H1 kinase activation. Though high cAMP priming attenuates insulin-induced MAPK3/1 (ERK1/2) phosphorylation (activation), following 2h of insulin stimulation it fails to block MAPK activation and GVBD. Further, insulin stimulation promotes down regulation of phospho-PKAc (inactivation) and PKA inhibition by H89/PKI-(6-22)-amide overcomes negative regulation by cAMP and induces GVBD and MAPK activation. Moreover, MEK1/2 inhibitor U0126 has no influence on H89-induced GVBD; however, it delays GVBD response in insulin-stimulated oocytes. MAPK activation by okadaic acid (OA) promotes GVBD; however, high dbcAMP abrogates OA action suggesting cross-talk between cAMP/PKA and MAPK-mediated signalling pathways may contribute significantly in maturing zebrafish oocyte.
Collapse
Affiliation(s)
- Sudipta Maitra
- Department of Zoology, Visva-Bharati, Santiniketan 731235, India.
| | - Debabrata Das
- Department of Zoology, Visva-Bharati, Santiniketan 731235, India
| | - Pritha Ghosh
- Department of Zoology, Visva-Bharati, Santiniketan 731235, India
| | - Sudip Hajra
- Department of Zoology, Visva-Bharati, Santiniketan 731235, India
| | - Sib Sankar Roy
- CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
12
|
O'Shea L, Fair T, Hensey C. Aven is dynamically regulated during Xenopus oocyte maturation and is required for oocyte survival. Cell Death Dis 2013; 4:e908. [PMID: 24201807 PMCID: PMC3847313 DOI: 10.1038/cddis.2013.435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/17/2013] [Accepted: 09/11/2013] [Indexed: 11/09/2022]
Abstract
We have analyzed the expression and function of the cell death and cell cycle regulator Aven in Xenopus. Analysis of Xenopus Aven expression in oocytes and embryos revealed a band close to the predicted molecular weight of the protein (36 kDa) in addition to two bands of higher molecular weight (46 and 49 kDa), one of which was determined to be due to phosphorylation of the protein. The protein is primarily detected in the cytoplasm of oocytes and is tightly regulated during meiotic and mitotic cell cycles. Progesterone stimulation of oocytes resulted in a rapid loss of Aven expression with the protein levels recovering before germinal vesicle breakdown (GVBD). This loss of Aven is required for the G2–M1 cell cycle transition. Aven morpholino knockdown experiments revealed that early depletion of the protein increases progesterone sensitivity and facilitates GVBD, but prolonged depletion of Aven results in caspase-3 activation and oocyte death by apoptosis. Phosphorylated Aven (46 kDa) was found to bind Bcl-xL in oocytes, but this interaction was lost in apoptotic oocytes. Thus, Aven alters progesterone sensitivity in oocytes and is critical for oocyte survival.
Collapse
Affiliation(s)
- L O'Shea
- UCD School of Bimolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
13
|
Dupré A, Buffin E, Roustan C, Nairn AC, Jessus C, Haccard O. The phosphorylation of ARPP19 by Greatwall renders the auto-amplification of MPF independently of PKA in Xenopus oocytes. J Cell Sci 2013; 126:3916-26. [PMID: 23781026 DOI: 10.1242/jcs.126599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into mitosis or meiosis relies on the coordinated action of kinases and phosphatases that ultimately leads to the activation of Cyclin-B-Cdk1, also known as MPF for M-phase promoting factor. Vertebrate oocytes are blocked in prophase of the first meiotic division, an arrest that is tightly controlled by high PKA activity. Re-entry into meiosis depends on activation of Cdk1, which obeys a two-step mechanism: a catalytic amount of Cdk1 is generated in a PKA and protein-synthesis-dependent manner; then a regulatory network known as the MPF auto-amplification loop is initiated. This second step is independent of PKA and protein synthesis. However, none of the molecular components of the auto-amplification loop identified so far act independently of PKA. Therefore, the protein rendering this process independent of PKA in oocytes remains unknown. Using a physiologically intact cell system, the Xenopus oocyte, we show that the phosphorylation of ARPP19 at S67 by the Greatwall kinase promotes its binding to the PP2A-B55δ phosphatase, thus inhibiting its activity. This process is controlled by Cdk1 and has an essential role within the Cdk1 auto-amplification loop for entry into the first meiotic division. Moreover, once phosphorylated by Greatwall, ARPP19 escapes the negative regulation exerted by PKA. It also promotes activation of MPF independently of protein synthesis, provided that a small amount of Mos is present. Taken together, these findings reveal that PP2A-B55δ, Greatwall and ARPP19 are not only required for entry into meiotic divisions, but are also pivotal effectors within the Cdk1 auto-regulatory loop responsible for its independence with respect to the PKA-negative control.
Collapse
Affiliation(s)
- Aude Dupré
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Khan PP, Maitra S. Participation of cAMP-dependent protein kinase and MAP kinase pathways during Anabas testudineus oocyte maturation. Gen Comp Endocrinol 2013; 181:88-97. [PMID: 23174698 DOI: 10.1016/j.ygcen.2012.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/17/2022]
Abstract
Possible involvement of cyclic nucleotide dependent protein kinase (PKA) and MAP kinase (MAPK) pathways during oocyte maturation in Anabas testudineus was investigated. Pre-incubation with phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX), inhibited 17α, 20β-DHP-induced GVBD dose dependently. PKA inhibitor, H89 could induce resumption of meiosis independent of 17α, 20β-DHP, in dose and duration dependent manner. The maximum response was obtained with the dose of 10 μM of H89 and 95% of cells underwent GVBD within 18 h. Moreover, stimulation with 17α, 20β-DHP inhibited endogenous PKA activity significantly within first hour and this effect was attenuated by PDE inhibitor IBMX at all time points. The pattern of PKA inhibition corresponded well with kinetics of histone H1 kinase activation and p34cdc2 phosphorylation. These results suggest physiological relevance of cAMP/PKA signaling in perch oocytes undergoing G2/M transition. MAPK was demonstrated as two distinct isoforms (ERK1 and ERK2) which resolved in the range of 42-44 kDa in immunoblot. Though total protein content did not show significant variation, H89 stimulation was able to stimulate phosphorylation of ERK1/2 from 5h onwards and the strongest response was observed between 10 and 18 h. MEK inhibitor, U0126 completely blocked PKA inhibition induced MAPK activation and GVBD. In addition, inhibition of endogenous PKA by a more selective peptide inhibitor [PKI-(6-22)-amide] was sufficient to resume GVBD and MAPK activation in intact perch oocytes. Also, significant ERK1/2 phosphorylation could be stimulated in cell-free extracts of perch oocytes supplemented with PKI-(6-22)-amide. The results suggest an interaction between cAMP/PKA and MAPK pathways in mediating meiosis resumption in perch oocyte.
Collapse
Affiliation(s)
- P P Khan
- Department of Zoology, Visva-Bharati University, Santiniketan, India
| | | |
Collapse
|
15
|
Bjarnadottir U, Nielsen JE. Predicting the open conformations of protein kinases using molecular dynamics simulations. Biopolymers 2011; 97:65-72. [PMID: 21858778 DOI: 10.1002/bip.21704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/15/2011] [Indexed: 11/11/2022]
Abstract
Protein kinases (PK) control phosphorylation in eukaryotic cells, and thereby regulate metabolic pathways, cell cycle progression, apoptosis, and transcription. Consequently, there is significant interest in manipulating PK activity and treat diseases by using small-molecule drugs. All PK catalytic domains undergo large conformational changes as a result of substrate binding and phosphorylation. The "closed" state of a PK catalytic domain is the only state able to phosphorylate the target substrate, which makes the two other observed states (the "open" and the "intermediate" states) interesting drug targets. We investigate whether molecular dynamics (MD) simulations starting from the closed state of the catalytic domain of protein kinase A (C-PKA) can be used to produce realistic structures representing the intermediate and/or open conformation of C-PKA, because this would allow for drug docking calculations and drug design using MD snapshots. We perform 36 ten-nanosecond MD simulations starting from the closed conformation [PDB ID: ATP] of C-PKA in various liganded and phosphorylated states. The results show that MD simulations are capable of reproducing the open conformation of C-PKA with good accuracy within 1 ns of simulation as measured by Cα root mean square deviations (RMSDs) and RMSDs of atoms defining the ATP-binding pocket. Importantly, we are able to show that even without knowledge of the structure of the open form of C-PKA, we can identify the MD snapshots resembling the open conformation most using the open structure of a different PK displaying only 23% sequence identity to C-PKA.
Collapse
Affiliation(s)
- Una Bjarnadottir
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
16
|
Marteil G, Richard-Parpaillon L, Kubiak JZ. Role of oocyte quality in meiotic maturation and embryonic development. Reprod Biol 2010; 9:203-24. [PMID: 19997475 DOI: 10.1016/s1642-431x(12)60027-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The quality of oocytes plays a key role in a proper embryo development. In humans, oocytes of poor quality may be the cause of women infertility and an important obstacle in successful in vitro fertilization (IVF). The competence of oocytes depends on numerous processes taking place during the whole oogenesis, but its final steps such as oocyte maturation, seem to be of key importance. In this paper, we overview factors involved in the development of a fully functional female gamete with Xenopus laevis as a major experimental model. Modern approaches, e.g. proteomic analysis, enable the identification of novel proteins involved in oocyte development. EP45, called also Seryp or pNiXa, which belongs to the serpin (serine protease inhibitors) super-family is one of such recently analyzed proteins. This protein seems to be involved in the stimulation of meiotic maturation and embryo development. EP45 is potentially a key factor in correct oocyte development and determining the quality of oocytes.
Collapse
Affiliation(s)
- Gaëlle Marteil
- CNRS-UMR 6061, University of Rennes 1, IFR 140 GFAS, Rennes, France
| | | | | |
Collapse
|
17
|
Han G, Ye M, Liu H, Song C, Sun D, Wu Y, Jiang X, Chen R, Wang C, Wang L, Zou H. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 2010; 31:1080-9. [DOI: 10.1002/elps.200900493] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
HTR1B as a risk profile maker in psychiatric disorders: a review through motivation and memory. Eur J Clin Pharmacol 2009; 66:5-27. [DOI: 10.1007/s00228-009-0724-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 08/18/2009] [Indexed: 12/21/2022]
|
19
|
Zhang Y, Zhang Z, Xu XY, Li XS, Yu M, Yu AM, Zong ZH, Yu BZ. Protein kinase a modulates Cdc25B activity during meiotic resumption of mouse oocytes. Dev Dyn 2008; 237:3777-86. [DOI: 10.1002/dvdy.21799] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Cui C, Zhao H, Zhang Z, Zong Z, Feng C, Zhang Y, Deng X, Xu X, Yu B. CDC25B acts as a potential target of PRKACA in fertilized mouse eggs. Biol Reprod 2008; 79:991-8. [PMID: 18633139 DOI: 10.1095/biolreprod.108.068205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Protein kinase A (PRKACA) has been documented as a pivotal regulator in meiosis and mitosis arrest. Although our previous work has established that PRKACA regulates cell cycle progression of mouse fertilized eggs by inhibiting M-phase promoting factor (MPF), little is known about the intermediate factor between PRKACA and MPF in the mitotic cell cycle. In this study, we investigated the role of the PRKACA/CDC25B pathway on the early development of mouse fertilized eggs. Overexpression of unphosphorylatable CDC25B mutant (Cdc25b-S321A or Cdc25b-S229A/S321A) rapidly caused G2-phase eggs to enter mitosis. Microinjection of either Cdc25b-WT or Cdc25b-S229A mRNA also promoted G2/M transition, but much less efficiently than Cdc25b-S321A and Cdc25b-S229A/S321A. Moreover, mouse fertilized eggs overrode the G2 arrest by microinjection of either Cdc25b-S321A or Cdc25b-S229A/S321A mRNA, which efficiently resulted in MPF activation by directly dephosphorylating CDC2A-Tyr15, despite culture under conditions that maintained exogenous dibutyryl cAMP. Using a highly specific antibody against phospho-Ser321 of CDC25B in Western blotting, we showed that CDC25B-Ser321 was phosphorylated at the G1 and S phases, whereas Ser321 was dephosphorylated at the G2 and M phases in vivo. Our findings identify CDC25B as a potential target of PRKACA and show that PRKACA regulates G2/M transition by phosphorylating CDC25B-Ser321 but not CDC25B-Ser229 on the first mitotic division of mouse fertilized eggs.
Collapse
Affiliation(s)
- Cheng Cui
- Department of Physiology, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yu A, Zhang Z, Bi Q, Sun B, Su W, Guan Y, Mu R, Miao C, Zhang J, Yu B. Regulation of cAMP on the first mitotic cell cycle of mouse embryos. Mol Reprod Dev 2008; 75:489-95. [PMID: 18022836 DOI: 10.1002/mrd.20782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo.
Collapse
Affiliation(s)
- Aiming Yu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol Endocrinol 2007; 21:2037-55. [PMID: 17536005 DOI: 10.1210/me.2006-0408] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractOocyte meiotic maturation is one of the important physiological requirements for species survival. However, little is known about the detailed events occurring during this process. A number of studies have demonstrated that MAPK plays a pivotal role in the regulation of meiotic cell cycle progression in oocytes, but controversial findings have been reported in both lower vertebrates and mammals. In this review, we summarized the roles of MAPK cascade and related signal pathways in oocyte meiotic reinitiation in both lower vertebrates and mammals. We also tried to reconcile the paradoxical results and highlight the new findings concerning the function of MAPK in both oocytes and the surrounding follicular somatic cells. The unresolved questions and future research directions regarding the role of MAPK in meiotic resumption are addressed.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang Beijing 100101, China
| | | | | | | | | |
Collapse
|
23
|
Morikawa M, Seki M, Kume S, Endo T, Nishimura Y, Kano K, Naito K. Meiotic resumption of porcine immature oocytes is prevented by ooplasmic Gsalpha functions. J Reprod Dev 2007; 53:1151-7. [PMID: 17693700 DOI: 10.1262/jrd.19055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high cyclic adenosine monophosphate (cAMP) level in fully-grown immature oocytes prevents meiotic resumption. In Xenopus, inhibitory cAMP is synthesized within oocytes depending on a stimulatory alpha-subunit of G-protein (Gsalpha). In the present study, we examined whether ooplasmic Gsalpha is involved in meiotic arrest of porcine oocytes. First, we studied the presence of Gsalpha molecules in porcine oocytes by immunoblotting, and this suggested the presence of reported isoforms (45 and 48 kDa) not only in cumulus cells but also in porcine oocytes. Then we injected an anti-Gsalpha antibody into porcine immature oocytes and found that inhibition of ooplasmic Gsalpha functions significantly promoted germinal vesicle breakdown of the oocytes, whose spontaneous meiotic resumption was prevented by 3-isobutyl-l-methylxanthine (IBMX) treatment. Although cyclin B synthesis and M-phase promoting factor (MPF) activation were largely prevented until 30 h of culture in IBMX-treated oocytes, injection of anti-Gsalpha antibody into these oocytes partially recovered cyclin B synthesis and activated MPF activity at 30 h. These results suggest that meiotic resumption of porcine oocytes is prevented by ooplasmic Gsalpha, which may stimulate cAMP synthesis within porcine oocytes, and that synthesized cAMP prevents meiotic resumption of oocytes through the signaling pathways involved in MPF activation.
Collapse
Affiliation(s)
- Marie Morikawa
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Moon JH, MacLean P, McDaniel W, Hancock LF. Conjugated polymer nanoparticles for biochemical protein kinase assay. Chem Commun (Camb) 2007:4910-2. [DOI: 10.1039/b710807a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Stricker SA, Smythe TL. Differing mechanisms of cAMP- versus seawater-induced oocyte maturation in marine nemertean worms II. The roles of tyrosine kinases and phosphatases. Mol Reprod Dev 2006; 73:1564-77. [PMID: 16902949 DOI: 10.1002/mrd.20596] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Instead of blocking oocyte maturation as it does in most animals, cAMP causes oocytes of marine nemertean worms to initiate maturation (=germinal vesicle breakdown, "GVBD"). To characterize cAMP-induced GVBD in nemerteans, inhibitors of tyrosine kinase signaling were tested on Cerebratulus sp. oocytes that had been incubated in cAMP-elevating drugs versus seawater (SW) alone. Such tests yielded similar results for Src-like tyrosine kinase blockers, as the inhibitors prevented mitogen-activated protein kinase (MAPK) activation without stopping either GVBD or maturation-promoting factor (MPF) activation in both SW and cAMP-elevating treatments. Alternatively, genistein, a general tyrosine kinase antagonist, and piceatannol, an inhibitor of the tyrosine kinase Syk, reduced GVBD and MAPK/MPF activities in SW-, but not cAMP-induced maturation. Similarly, inhibitors of the human epidermal growth factor receptor-2 (HER-2) tyrosine kinase prevented GVBD and MAPK/MPF activations in oocytes treated with SW, but not with cAMP-elevating drugs. Antagonists of either protein tyrosine phosphatases (PTPs) or the dual-specificity phosphatase Cdc25 also reduced GVBD and MAPK/MPF activities in SW-treated oocytes without generally affecting cAMP-induced maturation. Collectively, these data suggest cAMP triggers GVBD via pathways that do not require MAPK activation or several components of tyrosine kinase signaling. In addition, such differences in tyrosine kinase cascades, coupled with the dissimilar patterns of Ser/Thr kinase signaling described in the accompanying study, indicate that nemertean oocytes are capable of utilizing multiple mechanisms to activate MPF during GVBD.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, University of New Mexcio, Albuquerque, 87131, USA.
| | | |
Collapse
|
26
|
Sasseville M, Côté N, Guillemette C, Richard FJ. New insight into the role of phosphodiesterase 3A in porcine oocyte maturation. BMC DEVELOPMENTAL BIOLOGY 2006; 6:47. [PMID: 17038172 PMCID: PMC1617088 DOI: 10.1186/1471-213x-6-47] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 10/12/2006] [Indexed: 11/10/2022]
Abstract
Background The ovulatory surge of gonadotropins triggers oocyte maturation and rupture of the ovarian follicle. The resumption of nuclear maturation in the oocyte from the prophase stage is characterized by germinal vesicle breakdown (GVBD). It has previously been shown that specific inhibition of cAMP degradation by PDE3 prevents the resumption of oocyte meiosis. However, no report has characterized the activity of PDE3 in the porcine oocyte, or the implication of the cAMP-PDE3 pathway in the entire nuclear maturation process. In this study, PDE3 activity in the oocyte was assessed during in vitro maturation (IVM) and the possible roles of the cAMP-PDE3 pathway in the resumption and progression of meiosis were investigated in terms of different models of oocyte maturation. Results Cyclic AMP-degrading PDE activity was detected in the cumulus-oocyte complex (COC) and was partially inhibited by a specific PDE3 inhibitor, cilostamide. When measured only in the denuded oocyte, PDE activity was almost completely inhibited by cilostamide, suggesting that cAMP-PDE3 activity is the major cAMP-PDE in porcine oocytes. PDE3A mRNA was detected by RT-PCR. PDE3 activity did not vary significantly during the early hours of IVM, but a maximum was observed at 13 hours. In cumulus-oocyte complexes, meiosis resumed after 20.81 hours of culture. PDE3 inhibition no longer maintained meiotic arrest if sustained beyond 17.65 hours of IVM, 3 hours prior to resumption of meiosis. Thereafter, PDE3 inhibition progressively lost its efficacy in GVBD. When the protein phosphatase 1 and 2A inhibitor okadaic acid was continuously or transiently (3 hours) present during IVM, meiosis resumed prematurely; PDE3 inhibition was unable to prevent GVBD. However, PDE3 inhibition in COC treated with OA for 3 hours significantly delayed meiosis at the intermediate stage. Conclusion The present investigation has demonstrated that PDE3A is the major cAMP-degrading PDE in the oocyte. It regulates the resumption of meiosis until 3 hours prior to GVBD and transiently affects meiotic progression.
Collapse
Affiliation(s)
- Maxime Sasseville
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada
| | - Nancy Côté
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada
| | - Christine Guillemette
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada
| | - François J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada
| |
Collapse
|
27
|
Mishra A, Joy KP. 2-Hydroxyestradiol-17beta-induced oocyte maturation: involvement of cAMP-protein kinase A and okadaic acid-sensitive protein phosphatases, and their interplay in oocyte maturation in the catfish Heteropneustes fossilis. ACTA ACUST UNITED AC 2006; 209:2567-75. [PMID: 16788039 DOI: 10.1242/jeb.02270] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Heteropneustes fossilis, in vitro incubation of postvitellogenic follicles with 2-hydroxyestradiol-17beta (2-OHE2, 5 micromol l(-1)) decreased significantly the total cAMP level, concomitant with germinal vesicle breakdown (GVBD). The incubation of the follicles with cAMP or cAMP-elevating drugs [phosphodiesterase (PDE) inhibitors], such as IBMX (3-isobutyl-1-methyl-xanthine), theophylline and caffeine, inhibited the 2-OHE2-induced GVBD in a concentration-dependent manner. The magnitude of the response varied: both cAMP and IBMX were effective at all concentrations (0.1-2.0 mmol l(-1)), followed by theophylline (0.5-2.0 mmol l(-1)) and caffeine (1-2.0 mmol l(-1)). The protein kinase A (PKA) inhibitor H89 stimulated oocyte maturation in a concentration-dependent manner. However, when co-incubated with 2-OHE2 for 24 h it produced a biphasic effect: low concentrations (0.1 and 1.0 micromol l(-1)) did not alter the 2-OHE2-induced GVBD, but high concentrations (5 and 10 micromol l(-1)) inhibited it. The incubation of the follicles with H89 lowered the inhibitory effect of IBMX on the 2-OHE2-induced GVBD. The incubation of the follicles with okadaic acid (OA), a protein phosphatase 1 and 2A inhibitor did not affect GVBD but when co-incubated with 2-OHE2, it enhanced the GVBD response. OA reversed the inhibitory effect of IBMX. The results suggest that OA may overcome the inhibition of 2-OHE2-induced GVBD by IBMX at a step distal to the cAMP-PKA pathway.
Collapse
Affiliation(s)
- A Mishra
- Department of Zoology, Banaras Hindu University, Varanasi-221005, India
| | | |
Collapse
|
28
|
Mishra A, Joy KP. Involvement of mitogen-activated protein kinase in 2-hydroxyestradiol-17beta-induced oocyte maturation in the catfish Heteropneustes fossilis and a note on possible interaction with protein phosphatases. Gen Comp Endocrinol 2006; 147:329-35. [PMID: 16554054 DOI: 10.1016/j.ygcen.2006.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/02/2006] [Accepted: 02/04/2006] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinase (MAPK) was demonstrated in the postvitellogenic follicles (theca-granulosa and oocyte) of catfish by Western blotting using a polyclonal anti-rabbit serum, which recognized both ERK1 and ERK2. Two distinct protein bands resolved in the 46-48 kDa range of 12% SDS-PAGE were immunoblotted. Incubation of the follicles with 5 microM 2-OHE2 elicited GVBD significantly in a duration-dependent manner with a concomitant increase in the expression of MAPK (ERK1 and ERK2). Densitometric analysis of the immunoblots showed significant variations in the intensity of staining. The ERK1 expression increased significantly from 6 h onwards but the changes were less pronounced. On the other hand, ERK2 registered a sharp significant increase after 3h, which paralleled the GVBD response. The MEK inhibitor PD098059 alone did not induce GVBD. Co-incubation of the follicles with 2-OHE2 and PD098059 significantly inhibited the steroid-induced GVBD at all concentrations. Immunoblot analysis showed that PD098059 inhibited MAPK activity significantly compared to the 2-OHE2 group. The addition of okadaic acid (OA) in the incubation medium containing both 2-OHE2 and PD098059 reversed the inhibitory effect of the latter and GVBD was elevated significantly over that of the 2-OHE2 group but significantly lower than that of the 2-OHE2 + OA group. The results suggest an involvement of MAPK in meiotic maturation but the site(s) of action: oocyte, follicular envelope or both needs further investigation.
Collapse
Affiliation(s)
- A Mishra
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
29
|
Kim J, Yang HY, Jang YS. A G protein-associated ERK pathway is involved in LPS-induced proliferation and a PTK-associated p38 MAPK pathway is involved in LPS-induced differentiation in resting B cells. Mol Immunol 2006; 43:1232-42. [PMID: 16098594 DOI: 10.1016/j.molimm.2005.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Indexed: 01/03/2023]
Abstract
We, previously, showed that PKC-dependent ERK/p38 MAPK activation was inhibited by treating the resting B cell line 38B9 with an anti-MHC class II antibody. Further studies in this work demonstrated that PKA was involved in lipopolysaccharide (LPS)-induced proliferation of the cells, such that the PKC inhibitor activated PKA with concomitant LPS-induced proliferation but not IgG secretion. Consequently, the PKA inhibitor down-regulated ERK and p38 MAPK, and decreased cell proliferation. In addition, the treatment of LPS-stimulated 38B9 cells with PTK inhibitor reduced PKC- and PKA-dependent p38 MAPK activation and reduced the level of IgG secretion rather than the level of proliferation. However, the treatment of LPS-stimulated 38B9 cells with pertussis toxin (PTX), an inhibitor for the G protein-coupled receptor, inhibited the activation of both PKC- and PKA-dependent ERK and significantly reduced LPS-induced proliferation but not IgG secretion. Furthermore, ERK and p38 MAPK inhibitors reduced LPS-induced proliferation and differentiation, respectively, in 38B9 cells in a dose-dependent manner. These results suggest that LPS-induced proliferation of resting B cells is mainly mediated through a G protein-associated PKA/PKC-dependent ERK pathway and that a PTK-associated PKC/PKA-dependent p38 MAPK pathway is mostly involved in LPS-induced differentiation of the resting B cells.
Collapse
Affiliation(s)
- Ju Kim
- Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Chonbuk National University, Chonju 561-756, Republic of Korea
| | | | | |
Collapse
|
30
|
Lewis TE, Milam TD, Klingler DW, Rao PS, Jaggi M, Smith DJ, Hemstreet GP, Balaji KC. Tissue transglutaminase interacts with protein kinase A anchor protein 13 in prostate cancer. Urol Oncol 2006; 23:407-12. [PMID: 16301118 DOI: 10.1016/j.urolonc.2005.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/08/2005] [Accepted: 04/11/2005] [Indexed: 12/19/2022]
Abstract
We have previously described that tissue transglutaminase (tTG) is a high level phenotypic biomarker in prostate cancer, which is down regulated in prostate cancer and surrounding premalignant field compared to benign prostate glands. To understand the function of tTG in prostate cancer, we sought to identify proteins that interact with the transglutaminase moiety of tTG using a human prostate cancer complementary deoxyribonucleic acid library in a Yeast 2-Hybrid system. The Yeast 2-Hybrid experiments identified a strong and novel interaction between the transglutaminase moiety and protein kinase A anchor protein 13 (AKAP13), which was quantified by beta-galactosidase assay, confirmed in vitro by immunoprecipitation experiments using PC3 prostate cancer cell lysates, and in vivo colocalization was confirmed by immunofluorescence studies in PC3 cells. Because AKAP plays a major role in protein kinase A and Rho protein mediated signaling, functional studies are underway to elucidate the significance of tTG-AKAP13 interaction in prostate cancer.
Collapse
Affiliation(s)
- Tamra E Lewis
- Division of Urological Surgery, University of Nebraska Medical Center, Omaha, NE 68198-2360, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu B, Wang Y, Liu Y, Liu Y, Li X, Wu D, Zong Z, Zhang J, Yu D. Protein kinase A regulates cell cycle progression of mouse fertilized eggs by means of MPF. Dev Dyn 2005; 232:98-105. [PMID: 15580572 DOI: 10.1002/dvdy.20205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cell cycle of one-cell stage mouse fertilized eggs was accompanied by fluctuation in the concentration of adenosine 3'5'-monophosphate (cAMP) and in the activity of free catalytic subunit of cAMP-dependent protein kinase (PKA). The concentration of cAMP and the activity of free catalytic subunit of PKA decreased at the onset of mitosis and increased at the transition between mitosis and G1 phase. Stimulation of PKA by microinjection of cAMP into one-cell stage mouse embryos at G2 phase induced interphase arrest and prevented the activation of M-phase promoting factor (MPF). Upon blockage of the activation of PKA by microinjecting a thermostable PKA inhibitor (PKI) into one-cell stage mouse embryos at G2 phase, the increase in the MPF activity occurred 30 min earlier than in control group. When a high dose of PKI was microinjected, a transition into interphase was prevented, and the activity of MPF remained high. Western blot analysis showed that Cdc2 remained phosphorylated in cAMP microinjected embryos by the time when control embryos were at metaphase and showed dephosphorylated Cdc2; conversely, Cdc2 dephosphorylation was accelerated in PKI-microinjected embryos. At the same time, Cdc2 was phosphorylated at Tyr15 at G2 phase and even at M phase when cAMP was microinjected but was dephosphorylated when PKI was microinjected. PKI microinjection also prevented cyclin B degradation and sustained MPF activity, thus delaying the transition from metaphase to anaphase. Our results show that PKA, by inhibiting MPF, regulates cell cycle progression of fertilized eggs.
Collapse
Affiliation(s)
- Bingzhi Yu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang J, Liu XJ. Progesterone inhibits protein kinase A (PKA) in Xenopus oocytes: demonstration of endogenous PKA activities using an expressed substrate. J Cell Sci 2005; 117:5107-16. [PMID: 15456849 DOI: 10.1242/jcs.01383] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3'-5' cyclic adenosine monophosphate (cAMP)-dependent protein kinase, PKA, is thought to be a key enzyme that controls prophase arrest in vertebrate oocytes. It has long been established that overexpression of the catalytic subunit of PKA inhibits hormone-induced frog oocyte maturation whereas overexpression of the regulatory subunits induces hormone-independent oocyte maturation. However, the activities of endogenous oocyte PKA, or its regulation by the maturation-inducing hormone progesterone, have never been directly demonstrated in frog oocytes. We have developed a novel expressed substrate for PKA in live oocytes by constructing a fusion protein containing an N-terminal myristylation sequence (derived from the Src tyrosine kinase) followed by an antigenic epitope tag and a substrate motif (the C-terminal cytoplasmic domain of beta2 adrenergic receptor). Following mRNA injection, the phosphorylation status of the substrate was determined by two-dimensional electrophoresis followed by epitope immunoblotting, or alternatively by SDS-PAGE followed by immunoblotting using antibodies specifically recognizing the PKA-phosphorylated form of the substrate. In prophase oocytes, the expressed protein, myr-HA-beta2AR-C, was fully phosphorylated on a single PKA site (Ser346 of human beta2 adrenergic receptor). Within one hour of the addition of progesterone, the PKA site became mostly dephosphorylated. No re-phosphorylation of the PKA site, and therefore no reactivation of PKA, was observed throughout the entire maturation process. To demonstrate the generality of this PKA substrate, we analyzed its phosphorylation status in COS-7 cells following transfection. We show that dibutyryl cAMP rapidly stimulates phosphorylation of the PKA site. These results represent the first biochemical demonstration of regulation of endogenous Xenopus oocyte PKA by progesterone. Furthermore, myr-HA-beta2AR-C should be widely adaptable as an in vivo PKA activity indicator.
Collapse
Affiliation(s)
- Jing Wang
- Ottawa Health Research Institute, Ottawa Hospital Civic Campus, 1053 Carling Avenue, K1Y 4E9, Canada
| | | |
Collapse
|
33
|
Stanford JS, Lieberman SL, Wong VL, Ruderman JV. Regulation of the G2/M transition in oocytes of xenopus tropicalis. Dev Biol 2003; 260:438-48. [PMID: 12921744 DOI: 10.1016/s0012-1606(03)00259-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular events regulating hormone-induced oocyte activation and meiotic maturation are probably best understood in Xenopus laevis. In X. laevis, progesterone activates the G2-arrested oocyte, induces entry into M phase of meiosis I (MI) and resumption of the meiotic cell cycles, and leads to the formation of a mature, fertilizable egg. Oocytes of Xenopus tropicalis offer several practical advantages over those of X. laevis, including faster and more synchronous meiotic cell cycle progression, less seasonal variability, and the availability of transgenic approaches. Previous work found several similarities in the pathways regulating oocyte maturation in the two species. Here, we report several additional ones that are conserved in X. tropicalis. (1). Injection of Mos mRNA into G2-arrested oocytes activates the MAP kinase cascade and induces the G2/MI transition. (2). Injection of the beta subunit of the kinase CK2 (a negative regulator of Mos and oocyte activation) delays the G2/MI transition. (3). Elevating PKA activity blocks progesterone-induced maturation; repressing PKA activity induces entry into MI in the absence of progesterone. (4). LF (anthrax lethal factor), which cleaves certain MAP kinase kinases, strongly reduces both the rate and extent of entry into MI. In contrast to the one previously reported major difference between oocytes of the two species, we find that injection of egg cytoplasm ("MPF activity") into G2-arrested X. tropicalis oocytes induces entry into meiosis I even when protein synthesis is blocked, just as it does in oocytes of X. laevis. These results indicate that much of what we have learned from studies of X. laevis oocytes holds for those of X. tropicalis, and suggest that X. tropicalis oocytes offer a good experimental system for investigating certain questions that require a rapid, synchronous progression through the G2/meiosis I transition.
Collapse
|
34
|
Fan HY, Li MY, Tong C, Chen DY, Xia GL, Song XF, Schatten H, Sun QY. Inhibitory effects of cAMP and protein kinase C on meiotic maturation and MAP kinase phosphorylation in porcine oocytes. Mol Reprod Dev 2002; 63:480-7. [PMID: 12412051 DOI: 10.1002/mrd.10194] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The regulation of MAP kinase phosphorylation by cAMP and protein kinase C (PKC) modulators during pig oocyte maturation was studied by Western immunoblotting. We showed that both forskolin and IBMX inhibited MAP kinase phosphorylation and meiosis resumption in a dose-dependent manner, and this inhibitory effect was overcome by the protein phosphatase inhibitor, okadaic acid. Pharmacological PKC activator phorbol myristate acetate or physiological PKC activator diC8 also delayed MAP kinase phosphorylation and meiosis resumption, and their effect was abrogated by PKC inhibitors, staurosporine, and calphostin C. The results suggest that meiotic resumption is inhibited by elevation of cAMP or delayed by activation of PKC probably via down-regulation of MAP kinase activation, which is mediated by protein phosphatase, during pig oocyte maturation.
Collapse
Affiliation(s)
- Heng-Yu Fan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dupré A, Suziedelis K, Valuckaite R, de Gunzburg J, Ozon R, Jessus C, Haccard O. Xenopus H-RasV12 promotes entry into meiotic M phase and cdc2 activation independently of Mos and p42(MAPK). Oncogene 2002; 21:6425-33. [PMID: 12226746 DOI: 10.1038/sj.onc.1205827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Revised: 06/17/2002] [Accepted: 06/28/2002] [Indexed: 11/08/2022]
Abstract
In the Xenopus oocyte, progesterone triggers M phase Promoting Factor (MPF) activation in a protein synthesis dependent manner. Although the synthesis of the p42(MAPK) activator Mos appears to be required for MPF activation, p42(MAPK) activity has been shown to be dispensable. To clarify this paradox, we attempted to activate the p42(MAPK) pathway independently of Mos synthesis by cloning and using Xenopus H-Ras in the oocyte. We demonstrate that the injection of the constitutively active Xe H-RasV12 mutant induces p42(MAPK) and MPF activation through two independent pathways. Xe H-RasV12 induces only a partial activation of p42(MAPK) when protein synthesis and MPF activation are prevented. A full level of p42(MAPK) activation is reached when MPF is activated and Mos is present. In contrast, MPF activation induced by Xe H-RasV12 is achieved independently of Mos synthesis and p42(MAPK) activation but still depends on protein synthesis. Therefore, the amphibian oocyte represents a new model system to analyse an original H-Ras pathway ending to MPF activation and distinct from the p42(MAPK) pathway. The identification of the proteins synthesized in response to Xe H-RasV12 and required for MPF activation, represents an important clue in understanding the mechanism of progesterone action.
Collapse
Affiliation(s)
- Aude Dupré
- Laboratoire de Biologie du Développement, INRA/UMR-CNRS 7622, Université Pierre et Marie Curie, boîte 24, 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cloning of the individual regulatory (R) and catalytic (C) subunits of the cAMP-dependent protein kinase (PKA) and expression of these subunits in cell culture have provided mechanistic answers about the rules for PKA holoenzyme assembly. One of the central findings of these studies is the essential role of the RI alpha regulatory subunit in maintaining the catalytic subunit under cAMP control. The role of RI alpha as the key compensatory regulatory subunit in this enzyme family was confirmed by gene knockouts of the three other regulatory subunits in mice. In each case, RI alpha has demonstrated the capacity for significant compensatory regulation of PKA activity in tissues where the other regulatory subunits are expressed, including brain, brown and white adipose tissue, skeletal muscle, and sperm. The essential requirement of the RI alpha regulatory subunit in maintaining cAMP control of PKA activity was further corroborated by the knockout of RI alpha in mice, which results in early embryonic lethality due to failed cardiac morphogenesis. Closer examination of RI alpha knockout embryos at even earlier stages of development revealed profound deficits in the morphogenesis of the mesodermal embryonic germ layer, which gives rise to essential structures including the embryonic heart tube. Failure of the mesodermal germ layer in RI alpha knockout embryos can be rescued by crossing RI alpha knockout mice to C alpha knockout mice, supporting the conclusion that inappropriately regulated PKA catalytic subunit activity is responsible for the phenotype. Isolation of primary embryonic fibroblasts from RI alpha knockout embryos reveals profound alterations in the actin-based cytoskeleton, which may account for the failure in mesoderm morphogenesis at gastrulation.
Collapse
Affiliation(s)
- Paul S Amieux
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
37
|
Huang Y, Roelink H, McKnight GS. Protein kinase A deficiency causes axially localized neural tube defects in mice. J Biol Chem 2002; 277:19889-96. [PMID: 11886853 DOI: 10.1074/jbc.m111412200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the function of protein kinase A (PKA) during embryonic development using a PKA-deficient mouse that retains only one functional catalytic subunit allele, either Calpha or Cbeta, of PKA. The reduced PKA activity results in neural tube defects that are specifically localized posterior to the forelimb buds and lead to spina bifida. The affected neural tube has closed appropriately but exhibits an enlarged lumen and abnormal neuroepithelium. Decreased PKA activity causes dorsal expansion of Sonic hedgehog signal response in the thoracic to sacral regions correlating with the regions of morphological abnormalities. Other regions of the neural tube appear normal. The regional sensitivity to changes in PKA activity indicates that downstream signaling pathways differ along the anterior-posterior axis and suggests a functional role for PKA activation in neural tube development.
Collapse
Affiliation(s)
- Yongzhao Huang
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
38
|
Shimada M, Terada T. Roles of cAMP in regulation of both MAP kinase and p34(cdc2) kinase activity during meiotic progression, especially beyond the MI stage. Mol Reprod Dev 2002; 62:124-31. [PMID: 11933169 DOI: 10.1002/mrd.10075] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Time-dependent changes in the level of adenosine cyclic AMP (cAMP) in porcine oocytes during meiotic progression from the germinal vesicle stage (GV stage) to the metaphase II stage (MII stage) were examined using reversed-phase HPLC with UV detection. The concentration of cAMP in oocytes reached a peak at 8 hr of cultivation of cumulus-oocyte complexes (COCs), but it was dramatically decreased after 12-hr cultivation. After a 28-hr cultivation period, the level of cAMP in the oocytes had significantly reduced further, and the basal level of cAMP was observed in oocytes cultured at 32 hr and for up to 48 hr. When phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase C (PKC) in cumulus cells [which were required for meiotic progression to the MII stage in porcine oocytes (Shimada and Terada, 2001: Biol Reprod 64:1106-1114)] was suppressed by each specific inhibitor following initial 24-hr cultivation of COCs, cAMP level in the oocytes was significantly increased. After 24-hr cultivation in the maturation medium, COCs, which were cultured for an additional 24 hr in the presence of either forskolin or 3-isobutyl-1-methylxanthine (IBMX), exhibited a significant increase in the oocyte cAMP level to the similar level of that in oocytes cultured with PI 3-kinase inhibitor or PKC inhibitor, and the addition of each agent significantly suppressed meiotic progression from the MI to the MII stage and the activity of mitogen-activated protein kinase (MAPK) and p34(cdc2) kinase. These results demonstrated that when transported into oocytes from the cumulus cells via gap junctions, cAMP plays an important role not only in meiotic resumption, but also in the regulation of meiotic progression beyond the MI stage in porcine oocytes.
Collapse
Affiliation(s)
- Masayuki Shimada
- Faculty of Applied Biological Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | |
Collapse
|
39
|
Yi JH, Lefièvre L, Gagnon C, Anctil M, Dubé F. Increase of cAMP upon release from prophase arrest in surf clam oocytes. J Cell Sci 2002; 115:311-20. [PMID: 11839783 DOI: 10.1242/jcs.115.2.311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surf clam (Spisula solidissima) oocytes are spawned at the prophase I stage of meiosis, and they remain arrested at this stage until fertilization. Full oocyte meiosis reinitiation, first evidenced by germinal vesicle breakdown (GVBD), may be induced by artificial activators mimicking sperm, such as high K+ or serotonin. Previous reports indicated that treatments thought to increase the level of oocyte cAMP inhibited sperm- or serotonin-induced, but not KCl-induced, GVBD in clam oocytes. These observations extend the well known requirement for a drop in occyte cAMP levels in mammalian, amphibian or starfish oocytes and support the view that such a drop is universally important throughout the animal kingdom. We have re-examined the cAMP dependency of GVBD in clam oocytes and found that various treatments that raise oocyte cAMP levels did not, surprisingly, affect either KCl- or serotonin-induced GVBD. Such treatments, however, inhibited GVBD upon insemination of the oocytes, but this was due to the failure of sperm to fuse/penetrate the oocytes; thus, it was not an inhibition of oocyte activation as such. Direct measurements of oocyte cAMP levels after activation by serotonin, KCl or sperm showed that, contrary to expectations, there is a rise in cAMP levels before GVBD. Using SQ22536, an adenylyl cyclase inhibitor, the increase in oocyte cAMP level was partly prevented and GVBD proceeded, but with a significant retardation, indicating that the normal cAMP rise facilitates GVBD. Our work sheds light on the diversity of upstream pathways leading to activation of MPF and provides a unique model whereby the onset of meiosis reinitiation is associated with an increase, not a decrease, in oocyte cAMP levels.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Département d'Obstétrique-Gynécologie, Université de Montréal, Centre de Recherche du CHUM, Hôpital Saint-Luc, 264 René-Lévesque Est, Montréal, Québec, Canada H2X 1P1
| | | | | | | | | |
Collapse
|
40
|
Lu Q, Smith GD, Chen DY, Yang Z, Han ZM, Schatten H, Sun QY. Phosphorylation of mitogen-activated protein kinase is regulated by protein kinase C, cyclic 3',5'-adenosine monophosphate, and protein phosphatase modulators during meiosis resumption in rat oocytes. Biol Reprod 2001; 64:1444-50. [PMID: 11319150 DOI: 10.1095/biolreprod64.5.1444] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase, protein kinase C (PKC), cAMP, and okadaic acid (OA)-sensitive protein phosphatases (PPs) have been suggested to be involved in oocyte meiotic resumption. However, whether these protein kinases and phosphatases act by independent pathways or interact with each other in regulating meiosis resumption is unknown. In the present study, we aimed to determine the regulation of meiosis resumption and MAP kinase phosphorylation by PKC, cAMP, and OA-sensitive PPs in rat oocytes using an in vitro oocyte maturation system and Western blot analysis. We found that ERK1 and ERK2 isoforms of MAP kinases existed in a dephosphorylated (inactive) form in germinal vesicle breakdown (GVBD)-incompetent and GVBD-competent germinal vesicle intact (GVI) oocytes as well as GVBD oocytes at equivalent levels. These results indicate that MAP kinases are not responsible for the initiation of normal meiotic resumption in rat oocytes. However, when GVBD-incompetent and GVBD-competent oocytes were incubated in vitro for 5 h, MAP kinases were phosphorylated (activated) in GVBD-competent oocytes, but not in meiotic-incompetent oocytes, suggesting that oocytes acquire the ability to phosphorylate MAP kinase during acquisition of meiotic competence. We also found that both meiosis resumption and MAP kinase phosphorylation were inhibited by PKC activation or cAMP elevation. Moreover, these inhibitory effects were overcome by OA, which inhibited PP1/PP2A activities. These results suggest that both cAMP elevation and PKC activation inhibit meiosis resumption and MAP kinase phosphorylation at a step prior to OA-sensitive protein phosphatases. In addition, inhibitory effects of cAMP elevation on meiotic resumption and MAP kinase phosphorylation were not reversed by calphostin C-induced PKC inactivation, indicating that cAMP inhibits both meiotic resumption and MAP kinase activation in a PKC-independent manner.
Collapse
Affiliation(s)
- Q Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing 100080, P.R. China
| | | | | | | | | | | | | |
Collapse
|
41
|
Shimada M, Terada T. Phosphatidylinositol 3-kinase in cumulus cells and oocytes is responsible for activation of oocyte mitogen-activated protein kinase during meiotic progression beyond the meiosis I stage in pigs. Biol Reprod 2001; 64:1106-14. [PMID: 11259256 DOI: 10.1095/biolreprod64.4.1106] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The roles of phosphatidylinositol 3-kinase (PI 3-kinase) during meiotic progression beyond the meiosis I (MI) stage in porcine oocytes were investigated. PI 3-kinase exists in cumulus cells and oocytes, and the PI 3-kinase inhibitor, LY294002, suppressed the activation of mitogen-activated protein (MAP) kinase in denuded oocytes during the beginning of the treatment. However, in denuded oocytes cultured with LY294002, the MAP kinase activity steadily increased, and at 48 h of cultivation MAP kinase activity, p34(cdc2) kinase activity, and proportion of oocytes that had reached the meiosis II (MII) stage were at a similar level to those of oocytes cultured without LY294002. In contrast, LY294002 almost completely inhibited the activation of MAP kinase, p34(cdc2) kinase activity, and meiotic progression to the MII stage in oocytes surrounded with cumulus cells throughout the treatment. Treating cumulus oocyte complexes (COCs) with LY294002 produced a significant decrease in the phosphorylation of connexin-43, a gap junctional protein, in cumulus cells compared with that in COCs cultured without LY294002. These results indicate that PI 3-kinase activity in cumulus cells contributes to the activation of MAP kinase and p34(cdc2) kinase, and to meiotic progression beyond the MI stage. Moreover, gap junctional communications between cumulus cells and oocytes may be closed by phosphorylation of connexin-43 through PI 3-kinase activation in cumulus cells, leading to the activation of MAP kinase in porcine oocytes.
Collapse
Affiliation(s)
- M Shimada
- Faculty of Applied Biological Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | |
Collapse
|
42
|
Palmer A, Nebreda AR. The activation of MAP kinase and p34cdc2/cyclin B during the meiotic maturation of Xenopus oocytes. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:131-43. [PMID: 10740821 DOI: 10.1007/978-1-4615-4253-7_12] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
G2-arrested Xenopus oocytes are induced to enter M-phase of meiosis by progesterone stimulation. This process, known as meiotic maturation, requires the activation of p34cdc2/cyclin B complexes (pre-MPF) which is brought about by the prior translation of specific maternal mRNAs stored in the oocyte. One of these mRNAs encodes for the protein kinase Mos which has an essential role in oocyte maturation, most likely due to its ability to activate MAP kinase (MAPK). Here we review our current knowledge on the Mos/MAPK signalling pathway and a recently found connection between MAPK-activated p90rsk and the p34cdc2 inhibitory kinase Myt1. We also discuss a pathway that involves the protein kinase Plx1 and leads to the activation of the phosphatase Cdc25, as well as other regulators of p34cdc2/cyclin B activity which may have a role in oocyte maturation.
Collapse
Affiliation(s)
- A Palmer
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
43
|
Yamashita M, Mita K, Yoshida N, Kondo T. Molecular mechanisms of the initiation of oocyte maturation: general and species-specific aspects. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:115-29. [PMID: 10740820 DOI: 10.1007/978-1-4615-4253-7_11] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stimulated by maturation-inducing hormone secreted from follicle cells surrounding the oocytes, fully-grown oocytes mature and become fertilisable. During maturation, immature oocytes resume meiosis arrested at the first prophase and proceed to the first or second metaphase at which they are naturally inseminated. Paying special attention to general and species-specific aspects, we summarise the mechanisms regulating the initial phase of oocyte maturation, from the reception of hormonal signals on the oocyte surface to activation of the maturation-promoting factor in the cytoplasm, in amphibians, fishes, mammals and marine invertebrates.
Collapse
Affiliation(s)
- M Yamashita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
44
|
Abstract
Fully grown Xenopus oocytes can remain in their immature state essentially indefinitely, or, in response to the steroid hormone progesterone, can be induced to develop into fertilizable eggs. This process is termed oocyte maturation. Oocyte maturation is initiated by a novel plasma membrane steroid hormone receptor. Progesterone brings about inhibition of adenylate cyclase and activation of the Mos/MEK1/p42 MAP kinase cascade, which ultimately brings about the activation of the universal M phase trigger Cdc2/cyclin B. Oocyte maturation provides an interesting example of how signaling cascades entrain the cell cycle clock to environmental changes.
Collapse
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA.
| |
Collapse
|
45
|
|
46
|
Faure S, Vigneron S, Galas S, Brassac T, Delsert C, Morin N. Control of G2/M transition in Xenopus by a member of the p21-activated kinase (PAK) family: a link between protein kinase A and PAK signaling pathways? J Biol Chem 1999; 274:3573-9. [PMID: 9920904 DOI: 10.1074/jbc.274.6.3573] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-PAKs are involved in negative control of the process of oocyte maturation in Xenopus (). In the present study, we define more precisely the events targetted by the kinase in the inhibition of the G2/M transition. We show that microinjection of recombinant X-PAK1-Cter active kinase into progesterone-treated oocytes prevents c-Mos accumulation and activation of both MAPK and maturation-promoting factor (MPF). In conditions permissive for MAPK activation, MPF activation still fails. We demonstrate that a constitutive truncated version of X-PAK1 (X-PAK1-Cter) does not prevent the association of cyclin B with p34(cdc2) but rather prevents the activation of the inactive complexes present in the oocyte. Proteins participating in the MPF amplification loop, including the Cdc25-activating Polo-like kinase are all blocked. Indeed, using active MPF, the amplification loop is not turned on in the presence of X-PAK1. Our results indicate that X-PAK and protein kinase A targets in the control of oocyte maturation are similar and furthermore that this negative regulation is not restricted to meiosis, because we demonstrate that G2/M progression is also prevented in Xenopus cycling extracts in the presence of active X-PAK1.
Collapse
Affiliation(s)
- S Faure
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UPR 1086, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | | | |
Collapse
|
47
|
Mowat MR, Stewart N. Mechanisms of cell cycle blocks at the G2/M transition and their role in differentiation and development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:73-100. [PMID: 9928527 DOI: 10.1007/978-3-642-72149-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- M R Mowat
- Manitoba Institute of Cell Biology, Manitoba Cancer Treatment and Research Foundation, Winnipeg, Canada
| | | |
Collapse
|
48
|
Ashcroft NR, Srayko M, Kosinski ME, Mains PE, Golden A. RNA-Mediated interference of a cdc25 homolog in Caenorhabditis elegans results in defects in the embryonic cortical membrane, meiosis, and mitosis. Dev Biol 1999; 206:15-32. [PMID: 9918692 DOI: 10.1006/dbio.1998.9135] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CDC25 dual-specificity phosphatase family has been shown to play a key role in cell cycle regulation. The phosphatase activity of CDC25 drives the cell cycle by removing inhibitory phosphates from cyclin-dependent kinase/cyclin complexes. Although the regulation of CDC25 phosphatase activity has been elucidated both biochemically and genetically in other systems, the role of this enzyme during development is not well understood. To examine the expression pattern and function of CDC25 in Caenorhabditis elegans, we characterized a cdc25 homolog, cdc-25.1, during early embryonic development. The CDC-25.1 protein localizes to oocytes, embryonic nuclei, and embryonic cortical membranes. When the expression of CDC-25.1 was disrupted by RNA-mediated interference, the anterior cortical membrane of fertilized eggs became very fluid during meiosis and subsequent mitotic cell cycles. Mispositioning of the meiotic spindle, defects in polar body extrusion and chromosome segregation, and abnormal cleavage furrows were also observed. We conclude that CDC-25.1 is required for a very early developmental process-the proper completion of meiosis prior to embryogenesis.
Collapse
Affiliation(s)
- N R Ashcroft
- Developmental Signal Transduction Group, Gene Regulation and Chromosome Biology Laboratory, ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland, 21702, USA
| | | | | | | | | |
Collapse
|
49
|
Fisher DL, Morin N, Dorée M. A novel role for glycogen synthase kinase-3 in Xenopus development: maintenance of oocyte cell cycle arrest by a beta-catenin-independent mechanism. Development 1999; 126:567-76. [PMID: 9876185 DOI: 10.1242/dev.126.3.567] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the expression of glycogen synthase kinase-3beta in oocytes and early embryos of Xenopus and found that the protein is developmentally regulated. In resting oocytes, GSK-3beta is active and it is inactivated on maturation in response to progesterone. GSK-3beta inactivation is necessary and rate limiting for the cell cycle response to this hormone and the subsequent accumulation of beta-catenin. Overexpression of a dominant negative form of the kinase accelerates maturation, as does inactivation by expression of Xenopus Dishevelled or microinjection of an inactivating antibody. Cell cycle inhibition by GSK-3beta is not mediated by the level of beta-catenin or by a direct effect on either the MAP kinase pathway or translation of mos and cyclin B1. These data indicate a novel role for GSK-3beta in Xenopus development: in addition to controlling specification of the dorsoventral axis in embryos, it mediates cell cycle arrest in oocytes.
Collapse
Affiliation(s)
- D L Fisher
- CNRS-CRBM, 34293 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
50
|
Yang Y, Pham CD, Vuyyuru VB, Liu H, Arlinghaus RB, Singh B. Evidence of a functional interaction between serine 3 and serine 25 Mos phosphorylation sites. A dominant inhibitory role of serine 25 phosphorylation on Mos protein kinase. J Biol Chem 1998; 273:15946-53. [PMID: 9632642 DOI: 10.1074/jbc.273.26.15946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently, we identified the major in vivo phosphorylation site on v-Mos as Ser-56, which is phosphorylated by cyclic AMP dependent protein kinase (PKA). Others have shown that c-Mos phosphorylation at Ser-3 (equivalent to Ser-34 in v-Mos) is important for the interaction of c-Mos with its substrate MEK and for its stability and cytostatic factor activity in eggs. To investigate the role of Ser-56 phosphorylation, we generated site-directed mutants of v-Mos that would mimic phosphorylation in terms of charge at positions 56 and 34. After mutating serine (S) residues with alanine (A) or glutamic acid (E) in different combinations, various v-Mos mutants were expressed in a rabbit reticulocyte lysate in vitro translation system and in COS-1 or NIH/3T3 cells. The effect of mutations on Mos function was evaluated by in vitro protein kinase assays and by the ability of Mos to cause neoplastic transformation of NIH/3T3 cells. The S56E but not the S56A mutation inhibited v-Mos kinase activity suggesting that Ser-56 phosphorylation has an inhibitory role. As predicted from Xenopus c-Mos studies, S34A but not S34E mutation inhibited v-Mos activity. Studies with the double mutants showed that the S56E mutation but not S56A mutation inhibited v-Mos kinase activity of both S34A and S34E mutants. Interestingly, the S56A mutation blocked the inhibitory effect of the S34A mutation on v-Mos kinase suggesting that in c-Mos the corresponding serine (Ser-25) can influence the regulation of c-Mos by Ser-3. Results showing inhibition of v-Mos kinase activity of the S34E mutant by the S56E mutation is significant as it suggests that doubly phosphorylated Mos at these residues would be inactive. Because residues corresponding to both v-Mos Ser-34 and Ser-56 are evolutionarily conserved in c-Mos, the kinase activity of c-Mos during meiosis may also be regulated in the same manner as v-Mos kinase activity.
Collapse
Affiliation(s)
- Y Yang
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|