1
|
Li L, Salido E, Zhou Y, Bhattacharyya S, Yannone SM, Dunn E, Meneses J, Feeney AJ, Cowan MJ. Targeted disruption of the Artemis murine counterpart results in SCID and defective V(D)J recombination that is partially corrected with bone marrow transplantation. THE JOURNAL OF IMMUNOLOGY 2005; 174:2420-8. [PMID: 15699179 DOI: 10.4049/jimmunol.174.4.2420] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Artemis is a mammalian protein, the absence of which results in SCID in Athabascan-speaking Native Americans (SCIDA). This novel protein has been implicated in DNA double-strand break repair and V(D)J recombination. We have cloned the Artemis murine counterpart, mArt, and generated a mouse with a targeted disruption of mArt. Artemis-deficient mice show a similar T-B- NK+ immunodeficiency phenotype, and carry a profound impairment in coding joint rearrangement, while retaining intact signal ends and close to normal signal joint formation. mArt-/- embryonic fibroblasts show increased sensitivity to ionizing radiation. Hemopoietic stem cell (HSC) transplantation using 500-5000 enriched congenic, but not allogeneic mismatched HSC corrected the T cell and partially corrected the B cell defect. Large numbers (40,000) of allogeneic mismatched HSC or pretreatment with 300 cGy of radiation overcame graft resistance, resulting in limited B cell engraftment. Our results suggest that the V(D)J and DNA repair defects seen in this mArt-/- mouse model are comparable to those in humans with Artemis deficiency, and that the recovery of immunity following HSC transplantation favors T rather than B cell reconstitution, consistent with what is seen in children with this form of SCID.
Collapse
MESH Headings
- Animals
- Antibody Diversity/genetics
- Antibody Diversity/radiation effects
- Bone Marrow Transplantation/immunology
- Bone Marrow Transplantation/pathology
- Cell Death/genetics
- Cell Death/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Line, Transformed
- DNA-Binding Proteins
- Endonucleases
- Female
- Gene Rearrangement, B-Lymphocyte/genetics
- Gene Rearrangement, B-Lymphocyte/radiation effects
- Gene Rearrangement, T-Lymphocyte/genetics
- Gene Rearrangement, T-Lymphocyte/radiation effects
- Gene Targeting/methods
- Humans
- Immunoglobulin Constant Regions/genetics
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Joining Region/radiation effects
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/radiation effects
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Radiation Tolerance/genetics
- Radiation Tolerance/immunology
- Receptors, Antigen, T-Cell/genetics
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/immunology
- Severe Combined Immunodeficiency/pathology
- Severe Combined Immunodeficiency/therapy
- Transduction, Genetic
Collapse
Affiliation(s)
- Lanying Li
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Nick McElhinny SA, Ramsden DA. Sibling rivalry: competition between Pol X family members in V(D)J recombination and general double strand break repair. Immunol Rev 2005; 200:156-64. [PMID: 15242403 DOI: 10.1111/j.0105-2896.2004.00160.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nonhomologous end-joining pathway is a major means for repairing double-strand breaks (DSBs) in all mitotic cell types. This repair pathway is also the only efficient means for resolving DSB intermediates in V(D)J recombination, a lymphocyte-specific genome rearrangement required for assembly of antigen receptors. A role for polymerases in end-joining has been well established. They are a major factor in determining the character of repair junctions but, in contrast to 'core' end-joining factors, typically appear to have a subtle impact on the efficiency of end-joining. Recent work implicates several members of the Pol X family in end-joining and suggests surprising complexity in the control of how these different polymerases are employed in this pathway.
Collapse
Affiliation(s)
- Stephanie A Nick McElhinny
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
3
|
Abstract
Since the discovery that the recombination-activating gene (RAG) proteins were capable of transposition in vitro, investigators have been trying to uncover instances of transposition in vivo and understand how this transposase has been harnessed to do useful work while being inhibited from causing deleterious chromosome rearrangements. How to preserve the capacity of the recombinase to promote a certain class of rearrangements while curtailing its ability to catalyze others is an interesting problem. In this review, we examine the progress that has been made toward understanding the regulatory mechanisms that prohibit transposition in order to formulate a model that takes into account the diverse observations that have been made over the last 15 years. First, we touch on the striking mechanistic similarities between transposition and V(D)J recombination and review evidence suggesting that the RAG proteins may be members of the retroviral integrase superfamily. We then dispense with an old theory that certain standard products of V(D)J recombination called signal joints protect against deleterious transposition events. Finally, we discuss the evidence that target capture could serve a regulatory role and close with an analysis of hairpins as preferred targets for RAG-mediated transposition. These novel strategies for harnessing the RAG transposase not only shed light on V(D)J recombination but also may provide insight into the regulation of other transposases.
Collapse
Affiliation(s)
- Vicky L Brandt
- Program in Molecular Pathogenesis, The Skirball Institute, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
4
|
Nakajima PB, Bosma MJ. Variable diversity joining recombination: nonhairpin coding ends in thymocytes of SCID and wild-type mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3094-104. [PMID: 12218126 DOI: 10.4049/jimmunol.169.6.3094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Initiation of V(D)J recombination results in broken DNA molecules with blunt recombination signal ends and covalently sealed (hairpin) coding ends. In SCID mice, coding joint formation is severely impaired and hairpin coding ends accumulate as a result of a deficiency in the catalytic subunit of DNA-dependent protein kinase, an enzyme involved in the repair of DNA double-strand breaks. In this study, we report that not all SCID coding ends are hairpinned. We have detected open Jdelta1 and Ddelta2 coding ends at the TCRdelta locus in SCID thymocytes. Approximately 25% of 5'Ddelta2 coding ends were found to be open. Large deletions and abnormally long P nucleotide additions typical of SCID Ddelta2-Jdelta1 coding joints were not observed. Most Jdelta1 and Ddelta2 coding ends exhibited 3' overhangs, but at least 20% had unique 5' overhangs not previously detected in vivo. We suggest that the SCID DNA-dependent protein kinase deficiency not only reduces the efficiency of hairpin opening, but also may affect the specificity of hairpin nicking, as well as the efficiency of joining open coding ends.
Collapse
Affiliation(s)
- Pamela B Nakajima
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
5
|
Binnie A, Olson S, Wu GE, Lewis SM. Gamma-Irradiation Directly Affects the Formation of Coding Joints in SCID Cell Lines. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
SCID mice have a defect in the catalytic subunit of the DNA-dependent protein kinase, causing increased sensitivity to ionizing radiation in all tissues and severely limiting the development of B and T cell lineages. SCID T and B cell precursors are unable to undergo normal V(D)J recombination: coding joint and signal joint products are less frequently formed and often will exhibit abnormal structural features. Paradoxically, irradiation of newborn SCID mice effects a limited rescue of T cell development. It is not known whether irradiation has a direct impact on the process of V(D)J joining, or whether irradiation of the thymus allows the outgrowth of rare recombinants. To investigate this issue, we sought to demonstrate an irradiation effect ex vivo. Here we have been able to reproducibly detect low-frequency coding joint products with V(D)J recombination reporter plasmids introduced into SCID cell lines. Exposure of B and T lineage cells to 100 cGy of gamma irradiation made no significant difference with respect to the number of coding joint and signal joint recombination products. However, in the absence of irradiation, the coding joints produced in SCID cells had high levels of P nucleotide insertion. With irradiation, markedly fewer P insertions were seen. The effect on coding joint structure is evident in a transient assay, in cultured cells, establishing that irradiation has an immediate impact on the process of V(D)J recombination. A specific proposal for how the DNA-dependent protein kinase catalytic subunit influences the opening of hairpin DNA intermediates during coding joint formation in V(D)J recombination is presented.
Collapse
Affiliation(s)
- Alexandra Binnie
- *Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stacy Olson
- †The Ontario Cancer Institute, Toronto, Ontario, Canada; and
| | - Gillian E. Wu
- *Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- †The Ontario Cancer Institute, Toronto, Ontario, Canada; and
| | - Susanna M. Lewis
- *Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- ‡The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Mickelsen S, Snyder C, Trujillo K, Bogue M, Roth DB, Meek K. Modulation of Terminal Deoxynucleotidyltransferase Activity by the DNA-Dependent Protein Kinase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Rare Ig and TCR coding joints can be isolated from mice that have a targeted deletion in the gene encoding the 86-kDa subunit of the Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). However in the coding joints isolated from Ku86−/− animals, there is an extreme paucity of N regions (the random nucleotides added during V(D)J recombination by the enzyme TdT). This finding is consistent with a decreased frequency of coding joints containing N regions isolated from C.B-17 SCID mice that express a truncated form of the catalytic subunit of the DNA-PK (DNA-PKCS). This finding suggests an unexpected role for DNA-PK in addition of N nucleotides to coding ends during V(D)J recombination. In this report, we establish that TdT forms a stable complex with DNA-PK. Furthermore, we show that DNA-PK modulates TdT activity in vitro by limiting both the length and composition of nucleotide additions.
Collapse
Affiliation(s)
- Scott Mickelsen
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Carolyn Snyder
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Kelly Trujillo
- †Department of Molecular Medicine, Institute for Biotechnology, University of Texas Health Science Center, San Antonio, TX 78245; and
| | - Molly Bogue
- ‡Department of Microbiology and Immunology and
| | - David B. Roth
- ‡Department of Microbiology and Immunology and
- §Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | - Katheryn Meek
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
7
|
Besmer E, Mansilla-Soto J, Cassard S, Sawchuk DJ, Brown G, Sadofsky M, Lewis SM, Nussenzweig MC, Cortes P. Hairpin coding end opening is mediated by RAG1 and RAG2 proteins. Mol Cell 1998; 2:817-28. [PMID: 9885569 DOI: 10.1016/s1097-2765(00)80296-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the importance of hairpin opening in antigen receptor gene assembly, the molecular machinery that mediates this reaction has not been defined. Here, we show that RAG1 plus RAG2 can open DNA hairpins. Hairpin opening by RAGs is not sequence specific, but in Mg2+, hairpin opening occurs only in the context of a regulated cleavage complex. The chemical mechanism of hairpin opening by RAGs resembles RSS cleavage and 3' end processing by HIV integrase and Mu transposase in that these reactions can proceed through alcoholysis. Mutations in either RAG1 or RAG2 that interfere with RSS cleavage also interfere with hairpin opening, suggesting that RAGs have a single active site that catalyzes several distinct DNA cleavage reactions.
Collapse
Affiliation(s)
- E Besmer
- Laboratory of Molecular Immunology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bogue MA, Wang C, Zhu C, Roth DB. V(D)J recombination in Ku86-deficient mice: distinct effects on coding, signal, and hybrid joint formation. Immunity 1997; 7:37-47. [PMID: 9252118 DOI: 10.1016/s1074-7613(00)80508-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ku, a heterodimer of 70 and 86 kDa subunits, plays a critical but poorly understood role in V(D)J recombination. Although Ku86-deficient mice are defective in coding and signal joint formation, rare recombination products have been detected by PCR. Here, we report nucleotide sequences of 99 junctions from Ku86-deficient mice. Over 90% of the coding joints, but not signal or hybrid joints, exhibit short sequence homologies, indicating that homology is required to join coding ends in the absence of Ku86. Our results suggest that Ku86 may normally have distinct functions in the formation of these different types of junctions. Furthermore, Ku86(-/-) joints are unexpectedly devoid of N-region diversity, suggesting a novel role for Ku in the addition of N nucleotides by terminal deoxynucleotidyl transferase.
Collapse
MESH Headings
- Animals
- Antigens, Nuclear
- Base Sequence
- Bone Marrow Cells
- DNA Helicases
- DNA Nucleotidylexotransferase/metabolism
- DNA Repair
- DNA-Binding Proteins/physiology
- Gene Rearrangement
- Gene Rearrangement, T-Lymphocyte
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Joining Region/metabolism
- Ku Autoantigen
- Mice
- Mice, SCID
- Molecular Sequence Data
- Nuclear Proteins/physiology
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Recombination, Genetic
- Stem Cells/metabolism
- Transcription Factors/deficiency
- Transcription Factors/physiology
Collapse
Affiliation(s)
- M A Bogue
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
9
|
Zhu C, Roth DB. Characterization of coding ends in thymocytes of scid mice: implications for the mechanism of V(D)J recombination. Immunity 1995; 2:101-12. [PMID: 7600297 DOI: 10.1016/1074-7613(95)90082-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously identified possible intermediates in V(D)J recombination at the TCR delta locus and characterized molecules with signal ends and with covalently sealed (hairpin) coding ends in thymocytes of scid mice by Southern blotting. Here, we use a sensitive ligation-mediated PCR assay to demonstrate that all coding ends detected in scid thymocytes are covalently sealed. Neither coding nor signal ends exhibit loss or addition of nucleotides. These data imply that hairpin formation is coupled to the initial cleavage at the signal/coding border, and that the cleavage step in V(D)J recombination is conservative. In scid/+ or wild-type thymocytes, hairpin coding ends are at least 1000-fold less abundant than signal ends. These results provide insight into the mechanism of V(D)J recombination.
Collapse
Affiliation(s)
- C Zhu
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|