1
|
Homology length dictates the requirement for Rad51 and Rad52 in gene targeting in the Basidiomycota yeast Naganishia liquefaciens. Curr Genet 2021; 67:919-936. [PMID: 34296348 DOI: 10.1007/s00294-021-01201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Here, we report the development of methodologies that enable genetic modification of a Basidiomycota yeast, Naganishia liquifaciens. The gene targeting method employs electroporation with PCR products flanked by an 80 bp sequence homologous to the target. The method, combined with a newly devised CRISPR-Cas9 system, routinely achieves 80% gene targeting efficiency. We further explored the genetic requirement for this homologous recombination (HR)-mediated gene targeting. The absence of Ku70, a major component of the non-homologous end joining (NHEJ) pathway of DNA double-strand break repair, almost completely eliminated inaccurate integration of the marker. Gene targeting with short homology (80 bp) was almost exclusively dependent on Rad52, an essential component of HR in the Ascomycota yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. By contrast, the RecA homolog Rad51, which performs homology search and strand exchange in HR, plays a relatively minor role in gene targeting, regardless of the homology length (80 bp or 1 kb). The absence of both Rad51 and Rad52, however, completely eliminated gene targeting. Unlike Ascomycota yeasts, the absence of Rad52 in N. liquefaciens conferred only mild sensitivity to ionizing radiation. These traits associated with the absence of Rad52 are reminiscent of findings in mice.
Collapse
|
2
|
Jenkins SS, Gore S, Guo X, Liu J, Ede C, Veaute X, Jinks-Robertson S, Kowalczykowski SC, Heyer WD. Role of the Srs2-Rad51 Interaction Domain in Crossover Control in Saccharomyces cerevisiae. Genetics 2019; 212:1133-1145. [PMID: 31142613 PMCID: PMC6707447 DOI: 10.1534/genetics.119.302337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae Srs2, in addition to its well-documented antirecombination activity, has been proposed to play a role in promoting synthesis-dependent strand annealing (SDSA). Here we report the identification and characterization of an SRS2 mutant with a single amino acid substitution (srs2-F891A) that specifically affects the Srs2 pro-SDSA function. This residue is located within the Srs2-Rad51 interaction domain and embedded within a protein sequence resembling a BRC repeat motif. The srs2-F891A mutation leads to a complete loss of interaction with Rad51 as measured through yeast two-hybrid analysis and a partial loss of interaction as determined through protein pull-down assays with purified Srs2, Srs2-F891A, and Rad51 proteins. Even though previous work has shown that internal deletions of the Srs2-Rad51 interaction domain block Srs2 antirecombination activity in vitro, the Srs2-F891A mutant protein, despite its weakened interaction with Rad51, exhibits no measurable defect in antirecombination activity in vitro or in vivo Surprisingly, srs2-F891A shows a robust shift from noncrossover to crossover repair products in a plasmid-based gap repair assay, but not in an ectopic physical recombination assay. Our findings suggest that the Srs2 C-terminal Rad51 interaction domain is more complex than previously thought, containing multiple interaction sites with unique effects on Srs2 activity.
Collapse
Affiliation(s)
- Shirin S Jenkins
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Steven Gore
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Xiaoge Guo
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Christopher Ede
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Xavier Veaute
- CEA, CIGEx, F-92265 Fontenay-aux-Roses Cedex, France
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
3
|
The Main Role of Srs2 in DNA Repair Depends on Its Helicase Activity, Rather than on Its Interactions with PCNA or Rad51. mBio 2018; 9:mBio.01192-18. [PMID: 30018112 PMCID: PMC6050964 DOI: 10.1128/mbio.01192-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Homologous recombination (HR) is a mechanism that repairs a variety of DNA lesions. Under certain circumstances, however, HR can generate intermediates that can interfere with other cellular processes such as DNA transcription or replication. Cells have therefore developed pathways that abolish undesirable HR intermediates. The Saccharomyces cerevisiae yeast Srs2 helicase has a major role in one of these pathways. Srs2 also works during DNA replication and interacts with the clamp PCNA. The relative importance of Srs2’s helicase activity, Rad51 removal function, and PCNA interaction in genome stability remains unclear. We created a new SRS2 allele [srs2(1-850)] that lacks the whole C terminus, containing the interaction site for Rad51 and PCNA and interactions with many other proteins. Thus, the new allele encodes an Srs2 protein bearing only the activity of the DNA helicase. We find that the interactions of Srs2 with Rad51 and PCNA are dispensable for the main role of Srs2 in the repair of DNA damage in vegetative cells and for proper completion of meiosis. On the other hand, it has been shown that in cells impaired for the DNA damage tolerance (DDT) pathways, Srs2 generates toxic intermediates that lead to DNA damage sensitivity; we show that this negative Srs2 activity requires the C terminus of Srs2. Dissection of the genetic interactions of the srs2(1-850) allele suggest a role for Srs2’s helicase activity in sister chromatid cohesion. Our results also indicate that Srs2’s function becomes more central in diploid cells. Homologous recombination (HR) is a key mechanism that repairs damaged DNA. However, this process has to be tightly regulated; failure to regulate it can lead to genome instability. The Srs2 helicase is considered a regulator of HR; it was shown to be able to evict the recombinase Rad51 from DNA. Cells lacking Srs2 exhibit sensitivity to DNA-damaging agents, and in some cases, they display defects in DNA replication. The relative roles of the helicase and Rad51 removal activities of Srs2 in genome stability remain unclear. To address this question, we created a new Srs2 mutant which has only the DNA helicase domain. Our study shows that only the DNA helicase domain is needed to deal with DNA damage and assist in DNA replication during vegetative growth and in meiosis. Thus, our findings shift the view on the role of Srs2 in the maintenance of genome integrity.
Collapse
|
4
|
Abstract
Topoisomerases manage the torsional stress associated with the separation of DNA strands during transcription and DNA replication. Eukaryotic Topoisomerase I (Top1) is a Type IB enzyme that nicks and rejoins only one strand of duplex DNA, and it is especially important during transcription. By resolving transcription-associated torsional stress, Top1 reduces the accumulation of genome-destabilizing R-loops and non-B DNA structures. The DNA nicking activity of Top1, however, can also initiate genome instability in the form of illegitimate recombination, homologous recombination and mutagenesis. In this review, we focus on the diverse, and often opposing, roles of Top1 in regulating eukaryotic genome stability.
Collapse
|
5
|
Galli A, Chan CY, Parfenova L, Cervelli T, Schiestl RH. Requirement of POL3 and POL4 on non-homologous and microhomology-mediated end joining in rad50/xrs2 mutants of Saccharomyces cerevisiae. Mutagenesis 2015; 30:841-9. [PMID: 26122113 DOI: 10.1093/mutage/gev046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-homologous end joining (NHEJ) directly joins two broken DNA ends without sequence homology. A distinct pathway called microhomology-mediated end joining (MMEJ) relies on a few base pairs of homology between the recombined DNA. The majority of DNA double-strand breaks caused by endogenous oxygen species or ionizing radiation contain damaged bases that hinder direct religation. End processing is required to remove mismatched nucleotides and fill in gaps during end joining of incompatible ends. POL3 in Saccharomyces cerevisiae encodes polymerase δ that is required for DNA replication and other DNA repair processes. Our previous results have shown that POL3 is involved in gap filling at 3' overhangs in POL4-independent NHEJ. Here, we studied the epistatic interaction between POL3, RAD50, XRS2 and POL4 in NHEJ using a plasmid-based endjoining assay in yeast. We demonstrated that either rad50 or xrs2 mutation is epistatic for end joining of compatible ends in the rad50 pol3-t or xrs2 pol3-t double mutants. However, the pol3-t and rad50 or pol3-t and xrs2 mutants caused an additive decrease in the end-joining efficiency of incompatible ends, suggesting that POL3 and RAD50 or POL3 and XRS2 exhibit independent functions in NHEJ. In the rad50 pol4 mutant, end joining of incompatible ends was not detected. In the rad50 or xrs2 mutants, NHEJ events did not contain any microhomology at the rejoined junctions. The pol3-t mutation restored MMEJ in the rad50 or xrs2 mutant backgrounds. Moreover, we demonstrated that NHEJ of incompatible ends required RAD50 and POL4 more than POL3. In conclusion, POL3 and POL4 have differential functions in NHEJ, independent of the RAD50-mediated repair pathway.
Collapse
Affiliation(s)
| | - Cecilia Y Chan
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, 71-295 CHS, 650 Charles E. Young Drive South, Los Angeles, CA, USA
| | - Liubov Parfenova
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, 71-295 CHS, 650 Charles E. Young Drive South, Los Angeles, CA, USA
| | | | - Robert H Schiestl
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, 71-295 CHS, 650 Charles E. Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
6
|
Kobayashi K, Fujii T, Asada R, Ooka M, Hirota K. Development of a targeted flip-in system in avian DT40 cells. PLoS One 2015; 10:e0122006. [PMID: 25799417 PMCID: PMC4370768 DOI: 10.1371/journal.pone.0122006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Gene-targeting to create null mutants or designed-point mutants is a powerful tool for the molecular dissection of complex phenotypes involving DNA repair, signal transduction, and metabolism. Because gene-targeting is critically impaired in mutants exhibiting attenuated homologous recombination (HR), it is believed that gene-targeting is mediated via homologous recombination, though the precise mechanism remains unknown. We explored gene-targeting in yeast and avian DT40 cells. In animal cells, gene-targeting is activated by DNA double strand breaks introduced into the genomic region where gene-targeting occurs. This is evidenced by the fact that introducing double strand breaks at targeted genome sequences via artificial endonucleases such as TALEN and CRISPR facilitates gene-targeting. We found that in fission yeast, Schizosaccharomyces pombe, gene-targeting was initiated from double strand breaks on both edges of the homologous arms in the targeting construct. Strikingly, we also found efficient gene-targeting initiated on the edges of homologous arms in avian DT40 cells, a unique animal cell line in which efficient gene-targeting has been demonstrated. It may be that yeast and DT40 cells share some mechanism in which unknown factors detect and recombine broken DNA ends at homologous arms accompanied by crossover. We found efficient targeted integration of gapped plasmids accompanied by crossover in the DT40 cells. To take advantage of this finding, we developed a targeted flip-in system for avian DT40 cells. This flip-in system enables the rapid generation of cells expressing tag-fused proteins and the stable expression of transgenes from OVA loci.
Collapse
Affiliation(s)
- Kaori Kobayashi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Toshihiko Fujii
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ryuta Asada
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
- * E-mail:
| |
Collapse
|
7
|
Kikukawa H, Sakuradani E, Nakatani M, Ando A, Okuda T, Sakamoto T, Ochiai M, Shimizu S, Ogawa J. Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid. Curr Genet 2015; 61:579-89. [PMID: 25782448 DOI: 10.1007/s00294-015-0481-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 11/26/2022]
Abstract
To develop an efficient gene-targeting system in Mortierella alpina 1S-4, we identified the ku80 gene encoding the Ku80 protein, which is involved in the nonhomologous end-joining pathway in genomic double-strand break (DSB) repair, and constructed ku80 gene-disrupted strains via single-crossover homologous recombination. The Δku80 strain from M. alpina 1S-4 showed no negative effects on vegetative growth, formation of spores, and fatty acid productivity, and exhibited high sensitivity to methyl methanesulfonate, which causes DSBs. Dihomo-γ-linolenic acid (DGLA)-producing strains were constructed by disruption of the Δ5-desaturase gene, encoding a key enzyme of bioconversion of DGLA to ARA, using the Δku80 strain as a host strain. The significant improvement of gene-targeting efficiency was not observed by disruption of the ku80 gene, but the construction of DGLA-producing strain by disruption of the Δ5-desaturase gene was succeeded using the Δku80 strain as a host strain. This report describes the first study on the identification and disruption of the ku80 gene in zygomycetes and construction of a DGLA-producing transformant using a gene-targeting system in M. alpina 1S-4.
Collapse
Affiliation(s)
- Hiroshi Kikukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Eiji Sakuradani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Institute of Technology and Science, Tokushima University, 2-1 Minami-josanjima, Tokushima, 770-8506, Japan
| | - Masato Nakatani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomoyo Okuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takaiku Sakamoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Misa Ochiai
- Research Institute, Suntory Global Innovation Center Ltd., 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka, 618-8503, Japan
| | - Sakayu Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto Gakuen University, 1-1 Nanjo, Sogabe, Kameoka, 621-8555, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
- Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
8
|
Abstract
Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.
Collapse
Affiliation(s)
- Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
9
|
Charlot F, Chelysheva L, Kamisugi Y, Vrielynck N, Guyon A, Epert A, Le Guin S, Schaefer DG, Cuming AC, Grelon M, Nogué F. RAD51B plays an essential role during somatic and meiotic recombination in Physcomitrella. Nucleic Acids Res 2014; 42:11965-78. [PMID: 25260587 PMCID: PMC4231755 DOI: 10.1093/nar/gku890] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.
Collapse
Affiliation(s)
- Florence Charlot
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Liudmila Chelysheva
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, Leeds University, Leeds LS2 9JT, UK
| | - Nathalie Vrielynck
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Anouchka Guyon
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Aline Epert
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Sylvia Le Guin
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Didier G Schaefer
- Laboratoire de Biologie Moleculaire et Cellulaire, Institut de Biologie, Universite de Neuchatel, rue Emile-Argand 11, CH-2007 Neuchatel, Switzerland
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, Leeds University, Leeds LS2 9JT, UK
| | - Mathilde Grelon
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Fabien Nogué
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
10
|
Galli A, Cervelli T. Inverted terminal repeats of adeno-associated virus decrease random integration of a gene targeting fragment in Saccharomyces cerevisiae. BMC Mol Biol 2014; 15:5. [PMID: 24521444 PMCID: PMC3925961 DOI: 10.1186/1471-2199-15-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/06/2014] [Indexed: 12/03/2022] Open
Abstract
Background Homologous recombination mediated gene targeting is still too inefficient to be applied extensively in genomics and gene therapy. Although sequence-specific nucleases could greatly stimulate gene targeting efficiency, the off-target cleavage sites of these nucleases highlighted the risk of this strategy. Adeno-associated virus (AAV)-based vectors are used for specific gene knockouts, since several studies indicate that these vectors are able to induce site-specific genome alterations at high frequency. Since each targeted event is accompanied by at least ten random integration events, increasing our knowledge regarding the mechanisms behind these events is necessary in order to understand the potential of AAV-mediated gene targeting for therapy application. Moreover, the role of AAV regulatory proteins (Rep) and inverted terminal repeated sequences (ITRs) in random and homologous integration is not completely known. In this study, we used the yeast Saccharomyces cerevisiae as a genetic model system to evaluate whether the presence of ITRs in the integrating plasmid has an effect on gene targeting and random integration. Results We have shown that the presence of ITRs flanking a gene targeting vector containing homology to its genomic target decreased the frequency of random integration, leading to an increase in the gene targeting/random integration ratio. On the other hand, the expression of Rep proteins, which produce a nick in the ITR, significantly increased non-homologous integration of a DNA fragment sharing no homology to the genome, but had no effect on gene targeting or random integration when the DNA fragment shared homology with the genome. Molecular analysis showed that ITRs are frequently conserved in the random integrants, and that they induce rearrangements. Conclusions Our results indicate that ITRs may be a useful tool for decreasing random integration, and consequently favor homologous gene targeting.
Collapse
Affiliation(s)
- Alvaro Galli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, via Moruzzi 1, 56125 Pisa, Italy.
| | | |
Collapse
|
11
|
Impaired resection of meiotic double-strand breaks channels repair to nonhomologous end joining in Caenorhabditis elegans. Mol Cell Biol 2013; 33:2732-47. [PMID: 23671188 DOI: 10.1128/mcb.00055-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repair of double-strand DNA breaks (DSBs) by the homologous recombination (HR) pathway results in crossovers (COs) required for a successful first meiotic division. Mre11 is one member of the MRX/N (Mre11, Rad50, and Xrs2/Nbs1) complex required for meiotic DSB formation and for resection in Saccharomyces cerevisiae. In Caenorhabditis elegans, evidence for the MRX/N role in DSB resection is limited. We report the first separation-of-function allele, mre-11(iow1) in C. elegans, which is specifically defective in meiotic DSB resection but not in formation. The mre-11(iow1) mutants displayed chromosomal fragmentation and aggregation in late prophase I. Recombination intermediates and crossover formation was greatly reduced in mre-11(iow1) mutants. Irradiation-induced DSBs during meiosis failed to be repaired from early to middle prophase I in mre-11(iow1) mutants. In the absence of a functional HR, our data suggest that some DSBs in mre-11(iow1) mutants are repaired by the nonhomologous end joining (NHEJ) pathway, as removing NHEJ partially suppressed the meiotic defects shown by mre-11(iow1). In the absence of NHEJ and a functional MRX/N, meiotic DSBs are channeled to EXO-1-dependent HR repair. Overall, our analysis supports a role for MRE-11 in the resection of DSBs in middle meiotic prophase I and in blocking NHEJ.
Collapse
|
12
|
Tosato V, Sidari S, Bruschi CV. Bridge-induced chromosome translocation in yeast relies upon a Rad54/Rdh54-dependent, Pol32-independent pathway. PLoS One 2013; 8:e60926. [PMID: 23613757 PMCID: PMC3629078 DOI: 10.1371/journal.pone.0060926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/04/2013] [Indexed: 11/18/2022] Open
Abstract
While in mammalian cells the genetic determinism of chromosomal translocation remains unclear, the yeast Saccharomyces cerevisiae has become an ideal model system to generate ad hoc translocations and analyze their cellular and molecular outcome. A linear DNA cassette carrying a selectable marker flanked by perfect homologies to two chromosomes triggers a bridge-induced translocation (BIT) in budding yeast, with variable efficiency. A postulated two-step process to produce BIT translocants is based on the cooperation between the Homologous Recombination System (HRS) and Break-Induced Replication (BIR); however, a clear indication of the molecular factors underlying the genetic mechanism is still missing. In this work we provide evidence that BIT translocation is elicited by the Rad54 helicase and completed by a Pol32-independent replication pathway. Our results demonstrate also that Rdh54 is involved in the stability of the translocants, suggesting a mitotic role in chromosome pairing and segregation. Moreover, when RAD54 is over-expressed, an ensemble of secondary rearrangements between repeated DNA tracts arise after the initial translocation event, leading to severe aneuploidy with loss of genetic material, which prompts the identification of fragile sites within the yeast genome.
Collapse
Affiliation(s)
- Valentina Tosato
- Yeast Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | | | |
Collapse
|
13
|
Chan CY, Zhu J, Schiestl RH. Effect of rad50 mutation on illegitimate recombination in Saccharomyces cerevisiae. Mol Genet Genomics 2011; 285:471-84. [PMID: 21512733 DOI: 10.1007/s00438-011-0619-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
Abstract
Genes in the RAD52 epistasis group are involved in repairing DNA double-stranded breaks via homologous recombination. We have previously shown that RAD50 is involved in mitotic nonhomologous integration but not in homologous integration. However, the role of Rad50 in nonhomologous integration has not previously been examined. In the current work, we report that the rad50∆ mutation caused a tenfold decrease in the frequency of nonhomologous integration with the majority of nonhomologous integrants showing an unstable Ura(+) phenotype. Sequencing analysis of the integration target sites showed that integration events of both ends of the integrating vector in the rad50∆ mutant occurred at different chromosomal locations, resulting in large deletions or translocations on the genomic insertion sites. Interestingly, 47% of events in the rad50∆ mutant were integrated into repetitive sequences including rDNA locus, telomeres and Ty elements and 27% of events were integrated into non-repetitive sequences as compared to 11% of events integrated into rDNA and 70% into non-repetitive sequences in the wild-type cells. These results showed that deletion of RAD50 significantly changes the distribution of different classes of integration events, suggesting that Rad50 is required for nonhomologous integration at non-repetitive sequences more so than at repetitive ones. Furthermore, Southern analysis indicated that half of the events contained deletions at one or at both ends of the integrating DNA fragment, suggesting that Rad50 might have a role in protecting free ends of double-strand breaks. In contrast to the rad50∆ mutant, the rad50S mutant (separation of function allele) slightly increases the frequency of nonhomologous integration but the distribution of integration events is similar to that of wild-type cells with the majority of events integrated into a chromosomal locus. Our results suggest that deletion of RAD50 may block the major pathway of nonhomologous integration into a non-repetitive chromosomal locus and Rad50 may be involved in tethering two ends of the integrating DNA into close proximity that facilitates nonhomologous integration of both ends into a single chromosomal locus.
Collapse
Affiliation(s)
- Cecilia Y Chan
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
14
|
Delacôte F, Perez C, Guyot V, Mikonio C, Potrel P, Cabaniols JP, Delenda C, Pâques F, Duchateau P. Identification of genes regulating gene targeting by a high-throughput screening approach. J Nucleic Acids 2011; 2011:947212. [PMID: 21716659 PMCID: PMC3118287 DOI: 10.4061/2011/947212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/23/2011] [Indexed: 12/29/2022] Open
Abstract
Homologous gene targeting (HGT) is a precise but inefficient process for genome engineering. Several methods for increasing its efficiency have been developed, including the use of rare cutting endonucleases. However, there is still room for improvement, as even nuclease-induced HGT may vary in efficiency as a function of the nuclease, target site, and cell type considered. We have developed a high-throughput screening assay for the identification of factors stimulating meganuclease-induced HGT. We used this assay to explore a collection of siRNAs targeting 19,121 human genes. At the end of secondary screening, we had identified 64 genes for which knockdown affected nuclease-induced HGT. Two of the strongest candidates were characterized further. We showed that siRNAs directed against the ATF7IP gene, encoding a protein involved in chromatin remodeling, stimulated HGT by a factor of three to eight, at various loci and in different cell types. This method thus led to the identification of a number of genes, the manipulation of which might increase rates of targeted recombination.
Collapse
Affiliation(s)
- Fabien Delacôte
- Cellectis SA, 102 Avenue Gaston Roussel, 93340 Romainville Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ty1 integrase overexpression leads to integration of non-Ty1 DNA fragments into the genome of Saccharomyces cerevisiae. Mol Genet Genomics 2010; 284:231-42. [PMID: 20677012 PMCID: PMC2939329 DOI: 10.1007/s00438-010-0561-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/08/2010] [Indexed: 10/25/2022]
Abstract
The integrase of the Saccharomyces cerevisiae retrotransposon Ty1 integrates Ty1 cDNA into genomic DNA likely via a transesterification reaction. Little is known about the mechanisms ensuring that integrase does not integrate non-Ty DNA fragments. In an effort to elucidate the conditions under which Ty1 integrase accepts non-Ty DNA as substrate, PCR fragments encompassing a selectable marker gene were transformed into yeast strains overexpressing Ty1 integrase. These fragments do not exhibit similarity to Ty1 cDNA except for the presence of the conserved terminal dinucleotide 5'-TG-CA-3'. The frequency of fragment insertion events increased upon integrase overexpression. Characterization of insertion events by genomic sequencing revealed that most insertion events exhibited clear hallmarks of integrase-mediated reactions, such as 5 bp target site duplication and target site preferences. Alteration of the terminal dinucleotide abolished the suitability of the PCR fragments to serve as substrates. We hypothesize that substrate specificity under normal conditions is mainly due to compartmentalization of integrase and Ty cDNA, which meet in virus-like particles. In contrast, recombinant integrase, which is not confined to virus-like particles, is able to accept non-Ty DNA, provided that it terminates in the proper dinucleotide sequence.
Collapse
|
16
|
Putnam CD, Hayes TK, Kolodner RD. Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet 2010; 6:e1000933. [PMID: 20463880 PMCID: PMC2865514 DOI: 10.1371/journal.pgen.1000933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/31/2010] [Indexed: 11/18/2022] Open
Abstract
RAD6 is known to suppress duplication-mediated gross chromosomal rearrangements (GCRs) but not single-copy sequence mediated GCRs. Here, we found that the RAD6- and RAD18-dependent post-replication repair (PRR) and the RAD5-, MMS2-, UBC13-dependent error-free PRR branch acted in concert with the replication stress checkpoint to suppress duplication-mediated GCRs formed by homologous recombination (HR). The Rad5 helicase activity, but not its RING finger, was required to prevent duplication-mediated GCRs, although the function of Rad5 remained dependent upon modification of PCNA at Lys164. The SRS2, SGS1, and HCS1 encoded helicases appeared to interact with Rad5, and epistasis analysis suggested that Srs2 and Hcs1 act upstream of Rad5. In contrast, Sgs1 likely functions downstream of Rad5, potentially by resolving DNA structures formed by Rad5. Our analysis is consistent with models in which PRR prevents replication damage from becoming double strand breaks (DSBs) and/or regulates the activity of HR on DSBs. Genome instability is a hallmark of many cancers and underlies many inherited disorders that cause a predisposition to cancer. The human genome has many different types of duplicated sequences that can lead to genome instability by recombination-mediated pathways. We previously discovered that duplication-mediated chromosomal rearrangements are suppressed by a number of pathways. Some of these pathways were specific to rearrangements between genomic duplications. Here, we have performed a detailed analysis of pathways dependent upon RAD6, and have discovered that the error-free branch of post-replication repair (PRR) either is as an alternative to homologous recombination or prevents the generation of homologous recombination intermediates. Both of these functions could lead to genomic instability in the context of genomes containing substantial amounts of duplications. The extreme sensitivity of our assay to post-replication repair defects reveals substantial complexity in the interaction of PRR defects, suggesting the presence of many alternative PRR pathways. Together, the results emphasize the importance for appropriately balancing different repair pathways to maintain global genomic stability and highlight a number of defects that could underlie genome instabilities in some cancers.
Collapse
Affiliation(s)
- Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Tikvah K. Hayes
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Homologous recombination plays a key role in the maintenance of genome integrity, especially during DNA replication and the repair of double-stranded DNA breaks (DSBs). Just a single un-repaired break can lead to aneuploidy, genetic aberrations or cell death. DSBs are caused by a vast number of both endogenous and exogenous agents including genotoxic chemicals or ionizing radiation, as well as through replication of a damaged template DNA or the replication fork collapse. It is essential for cell survival to recognise and process DSBs as well as other toxic intermediates and launch most appropriate repair mechanism. Many helicases have been implicated to play role in these processes, however their detail roles, specificities and co-operativity in the complex protein-protein interaction networks remain unclear. In this review we summarize the current knowledge about Saccharomyces cerevisiae helicase Srs2 and its effect on multiple DNA metabolic processes that generally affect genome stability. It would appear that Srs2 functions as an “Odd-Job Man” in these processes to make sure that the jobs proceed when and where they are needed.
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, Brno CZ-625 00, Czech Republic
| | | |
Collapse
|
18
|
de Mayolo AA, Sunjevaric I, Reid R, Mortensen UH, Rothstein R, Lisby M. The rad52-Y66A allele alters the choice of donor template during spontaneous chromosomal recombination. DNA Repair (Amst) 2009; 9:23-32. [PMID: 19892607 DOI: 10.1016/j.dnarep.2009.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/30/2009] [Accepted: 10/03/2009] [Indexed: 11/30/2022]
Abstract
Spontaneous mitotic recombination is a potential source of genetic changes such as loss of heterozygosity and chromosome translocations, which may lead to genetic disease. In this study we have used a rad52 hyper-recombination mutant, rad52-Y66A, to investigate the process of spontaneous heteroallelic recombination in the yeast Saccharomyces cerevisiae. We find that spontaneous recombination has different genetic requirements, depending on whether the recombination event occurs between chromosomes or between chromosome and plasmid sequences. The hyper-recombination phenotype of the rad52-Y66A mutation is epistatic with deletion of MRE11, which is required for establishment of DNA damage-induced cohesion. Moreover, single-cell analysis of strains expressing YFP-tagged Rad52-Y66A reveals a close to wild-type frequency of focus formation, but with foci lasting 6 times longer. This result suggests that spontaneous DNA lesions that require recombinational repair occur at the same frequency in wild-type and rad52-Y66A cells, but that the recombination process is slow in rad52-Y66A cells. Taken together, we propose that the slow recombinational DNA repair in the rad52-Y66A mutant leads to a by-pass of the window-of-opportunity for sister chromatid recombination normally promoted by MRE11-dependent damage-induced cohesion thereby causing a shift towards interchromosomal recombination.
Collapse
Affiliation(s)
- Adriana Antúnez de Mayolo
- Department of Genetics & Development, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
19
|
The pol3-t hyperrecombination phenotype and DNA damage-induced recombination in Saccharomyces cerevisiae is RAD50 dependent. J Biomed Biotechnol 2009; 2009:312710. [PMID: 19834566 PMCID: PMC2761004 DOI: 10.1155/2009/312710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 07/21/2009] [Indexed: 11/18/2022] Open
Abstract
The DNA polymerase delta (POL3/CDC2) allele pol3-t of Saccharomyces cerevisiae has previously been shown to be sensitive to methylmethanesulfonate (MMS) and has been proposed to be involved in base excision repair. Our results, however, show that the pol3-t mutation is synergistic for MMS sensitivity with MAG1, a known base excision repair gene, but it is epistatic with rad50Delta, suggesting that POL3 may be involved not only in base excision repair but also in a RAD50 dependent function. We further studied the interaction of pol3-t with rad50Delta by examining their effect on spontaneous, MMS-, UV-, and ionizing radiation-induced intrachromosomal recombination. We found that rad50Delta completely abolishes the elevated spontaneous frequency of intrachromosomal recombination in the pol3-t mutant and significantly decreases UV- and MMS-induced recombination in both POL3 and pol3-t strains. Interestingly, rad50Delta had no effect on gamma-ray-induced recombination in both backgrounds between 0 and 50 Gy. Finally, the deletion of RAD50 had no effect on the elevated frequency of homologous integration conferred by the pol3-t mutation. RAD50 is possibly involved in resolution of replication forks that are stalled by mutagen-induced external DNA damage, or internal DNA damage produced by growing the pol3-t mutant at the restrictive temperature.
Collapse
|
20
|
Chan CY, Schiestl RH. Rad1, rad10 and rad52 mutations reduce the increase of microhomology length during radiation-induced microhomology-mediated illegitimate recombination in saccharomyces cerevisiae. Radiat Res 2009; 172:141-51. [PMID: 19630519 DOI: 10.1667/rr1675.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Illegitimate recombination can repair DNA double-strand breaks in one of two ways, either without sequence homology or by using a few base pairs of homology at the junctions. The second process is known as microhomology-mediated recombination. Previous studies showed that ionizing radiation and restriction enzymes increase the frequency of microhomology-mediated recombination in trans during rejoining of unirradiated plasmids or during integration of plasmids into the genome. Here we show that radiation-induced microhomology-mediated recombination is reduced by deletion of RAD52, RAD1 and RAD10 but is not affected by deletion of RAD51 and RAD2. The rad52 mutant did not change the frequency of radiation-induced microhomology-mediated recombination but rather reduced the length of microhomology required to undergo repair during radiation-induced recombination. The rad1 and rad10 mutants exhibited a smaller increase in the frequency of radiation-induced microhomology-mediated recombination, and the radiation-induced integration junctions from these mutants did not show more than 4 bp of microhomology. These results suggest that Rad52 facilitates annealing of short homologous sequences during integration and that Rad1/Rad10 endonuclease mediates removal of the displaced 3' single-stranded DNA ends after base-pairing of microhomology sequences, when more than 4 bp of microhomology are used. Taken together, these results suggest that radiation-induced microhomology-mediated recombination is under the same genetic control as the single-strand annealing apparatus that requires the RAD52, RAD1 and RAD10 genes.
Collapse
Affiliation(s)
- Cecilia Y Chan
- Departments of Pathology, Environmental Health and Radiation Oncology, Geffen School of Medicine and School of Public Health, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
21
|
Delmas S, Shunburne L, Ngo HP, Allers T. Mre11-Rad50 promotes rapid repair of DNA damage in the polyploid archaeon Haloferax volcanii by restraining homologous recombination. PLoS Genet 2009; 5:e1000552. [PMID: 19593371 PMCID: PMC2700283 DOI: 10.1371/journal.pgen.1000552] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 06/09/2009] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is frequent in nature and is a hallmark of cancer cells, but little is known about the strategy of DNA repair in polyploid organisms. We have studied DNA repair in the polyploid archaeon Haloferax volcanii, which contains up to 20 genome copies. We have focused on the role of Mre11 and Rad50 proteins, which are found in all domains of life and which form a complex that binds to and coordinates the repair of DNA double-strand breaks (DSBs). Surprisingly, mre11 rad50 mutants are more resistant to DNA damage than the wild-type. However, wild-type cells recover faster from DNA damage, and pulsed-field gel electrophoresis shows that DNA double-strand breaks are repaired more slowly in mre11 rad50 mutants. Using a plasmid repair assay, we show that wild-type and mre11 rad50 cells use different strategies of DSB repair. In the wild-type, Mre11-Rad50 appears to prevent the repair of DSBs by homologous recombination (HR), allowing microhomology-mediated end-joining to act as the primary repair pathway. However, genetic analysis of recombination-defective radA mutants suggests that DNA repair in wild-type cells ultimately requires HR, therefore Mre11-Rad50 merely delays this mode of repair. In polyploid organisms, DSB repair by HR is potentially hazardous, since each DNA end will have multiple partners. We show that in the polyploid archaeon H. volcanii the repair of DSBs by HR is restrained by Mre11-Rad50. The unrestrained use of HR in mre11 rad50 mutants enhances cell survival but leads to slow recovery from DNA damage, presumably due to difficulties in the resolution of DNA repair intermediates. Our results suggest that recombination might be similarly repressed in other polyploid organisms and at repetitive sequences in haploid and diploid species.
Collapse
Affiliation(s)
- Stéphane Delmas
- Institute of Genetics, School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Lee Shunburne
- Institute of Genetics, School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Hien-Ping Ngo
- Institute of Genetics, School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Thorsten Allers
- Institute of Genetics, School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
22
|
Scuric Z, Chan CY, Hafer K, Schiestl RH. Ionizing radiation induces microhomology-mediated end joining in trans in yeast and mammalian cells. Radiat Res 2009; 171:454-63. [PMID: 19397446 DOI: 10.1667/rr1329.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA double-strand breaks repaired through nonhomologous end joining require no extended sequence homology as a template for the repair. A subset of end-joining events, termed microhomology-mediated end joining, occur between a few base pairs of homology, and such pathways have been implicated in different human cancers and genetic diseases. Here we investigated the effect of exposure of yeast and mammalian cells to ionizing radiation on the frequency and mechanism of rejoining of transfected unirradiated linear plasmid DNA. Cells were exposed to gamma radiation prior to plasmid transfection; subsequently the rejoined plasmids were recovered and the junction sequences were analyzed. In irradiated yeast cells, 68% of recovered plasmids contained microhomologies, compared to only 30% from unirradiated cells. Among them 57% of events used>or=4 bp of microhomology compared to only 11% from unirradiated cells. In irradiated mammalian cells, 54% of plasmids used>or=4 bp of microhomology compared to none from unirradiated cells. We conclude that exposure of yeast and mammalian cells to radiation prior to plasmid transfection enhances the frequency of microhomology-mediated end-joining events in trans. If such events occur within genomic locations, they may be involved in the generation of large deletions and other chromosomal aberrations that occur in cancer cells.
Collapse
Affiliation(s)
- Zorica Scuric
- David Geffen School of Medicine at UCLA, Department of Pathology, Los Angeles, California, USA
| | | | | | | |
Collapse
|
23
|
Kegel A, Martinez P, Carter SD, Åström SU. Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 2006; 34:1633-45. [PMID: 16549875 PMCID: PMC1405753 DOI: 10.1093/nar/gkl064] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/21/2006] [Accepted: 02/28/2006] [Indexed: 11/13/2022] Open
Abstract
Illegitimate recombination (IR) is the process by which two DNA molecules not sharing homology to each other are joined. In Kluyveromyces lactis, integration of heterologous DNA occurred very frequently therefore constituting an excellent model organism to study IR. IR was completely dependent on the nonhomologous end-joining (NHEJ) pathway for DNA double strand break (DSB) repair and we detected no other pathways capable of mediating IR. NHEJ was very versatile, capable of repairing both blunt and non-complementary ends efficiently. Mapping the locations of genomic IR-events revealed target site preferences, in which intergenic regions (IGRs) and ribosomal DNA were overrepresented six-fold compared to open reading frames (ORFs). The IGR-events occurred predominantly within transcriptional regulatory regions. In a rad52 mutant strain IR still preferentially occurred at IGRs, indicating that DSBs in ORFs were not primarily repaired by homologous recombination (HR). Introduction of ectopic DSBs resulted in the efficient targeting of IR to these sites, strongly suggesting that IR occurred at spontaneous mitotic DSBs. The targeting efficiency was equal when ectopic breaks were introduced in an ORF or an IGR. We propose that spontaneous DSBs arise more frequently in transcriptional regulatory regions and in rDNA and such DSBs can be mapped by analyzing IR target sites.
Collapse
Affiliation(s)
- Andreas Kegel
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Paula Martinez
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Sidney D. Carter
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Stefan U. Åström
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Abstract
Proper repair of DNA double-strand breaks (DSBs) is necessary for the maintenance of genomic integrity. Here, a new simple assay was used to study extrachromosomal DSB repair in Schizosaccharomyces pombe. Strikingly, DSB repair was associated with the capture of fission yeast mitochondrial DNA (mtDNA) at high frequency. Capture of mtDNA fragments required the Lig4p/Pku70p nonhomologous end-joining (NHEJ) machinery and its frequency was highly increased in fission yeast cells grown to stationary phase. The fission yeast Mre11 complex Rad32p/Rad50p/Nbs1p was also required for efficient capture of mtDNA at DSBs, supporting a role for the complex in promoting intermolecular ligation. Competition assays further revealed that microsatellite DNA from higher eukaryotes was preferentially captured at yeast DSBs. Finally, cotransformation experiments indicated that, in NHEJ-deficient cells, capture of extranuclear DNA at DSBs was observed if homologies--as short as 8 bp--were present between DNA substrate and DSB ends. Hence, whether driven by NHEJ, microhomology-mediated end-joining, or homologous recombination, DNA capture associated with DSB repair is a mutagenic process threatening genomic stability.
Collapse
Affiliation(s)
- Anabelle Decottignies
- Cellular Genetics, Christian de Duve Institute of Cellular Pathology, Catholic University of Louvain, Avenue Hippocrate 74+3, 1200 Brussels, Belgium.
| |
Collapse
|
25
|
Langston LD, Symington LS. Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting. EMBO J 2005; 24:2214-23. [PMID: 15920474 PMCID: PMC1150892 DOI: 10.1038/sj.emboj.7600698] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 05/06/2005] [Indexed: 12/12/2022] Open
Abstract
Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.
Collapse
Affiliation(s)
- Lance D Langston
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, NY, USA
| | - Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University Medical Center, New York, NY, USA
- Department of Microbiology and Institute of Cancer Research, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA. Tel.: +1 212 305 4793; Fax: +1 212 305 1741; E-mail:
| |
Collapse
|
26
|
Langston LD, Symington LS. Gene targeting in yeast is initiated by two independent strand invasions. Proc Natl Acad Sci U S A 2004; 101:15392-7. [PMID: 15489271 PMCID: PMC524428 DOI: 10.1073/pnas.0403748101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the mechanism of gene targeting, we examined heteroduplex DNA (hDNA) formation during targeting of two separate chromosomal locations in Saccharomyces cerevisiae. We examined both replacement of the entire gene with a heterologous selectable marker and correction of a single base pair insertion mutation by gene targeting, and in all cases our results were consistent with separate strand invasion/resolution at the two ends of the targeting fragment as the dominant mechanism in wild-type cells. A small subset of transformants was consistent with assimilation of a single strand of targeting DNA encompassing both flanking homology regions and the marker into hDNA. hDNA formation during correction of a point mutation by targeted integration was conspicuously altered in a mismatch repair-deficient background and was consistent with single-strand invasion/assimilation without mismatch correction, confirming that gene targeting by this pathway is actively impeded in wild-type yeast. Finally, inversion of one targeted locus and mutation of an active origin of DNA replication at the other locus affected hDNA formation significantly, suggesting that formation of productive interactions between the targeting DNA and the targeted site in the chromosome is sensitive to local DNA dynamics.
Collapse
Affiliation(s)
- Lance D Langston
- Integrated Program in Cellular, Molecular, and Biophysical Studies and Department of Microbiology, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
27
|
Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 2004; 101:12248-53. [PMID: 15299145 PMCID: PMC514464 DOI: 10.1073/pnas.0402780101] [Citation(s) in RCA: 427] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene disruption and overexpression play central roles in the analysis of gene function. Homologous recombination is, in principle, the most efficient method of disrupting, modifying, or replacing a target gene. Although homologous integration of exogenous DNA into the genome occurs readily in Saccharomyces cerevisiae, it is rare in many other organisms. We identified and disrupted Neurospora crassa genes homologous to human KU70 and KU80, which encode proteins that function in nonhomologous end-joining of double-stranded DNA breaks. The resulting mutants, named mus-51 and mus-52, showed higher sensitivity to methyl methanesulfonate, ethyl methanesulfonate, and bleomycin than wild type, but not to UV, 4-nitroquinoline 1-oxide, camptothecin, or hydroxyurea. Vegetative growth, conidiation, and ascospore production in homozygous crosses were normal. The frequency of integration of exogenous DNA into homologous sequences of the genome in the KU disruption strains of N. crassa was compared with that in wild type, mei-3, and mus-11. In mei-3 and mus-11, which are defective in homologous recombination, none or few homologous integration events were observed under any conditions. When mtr target DNA with approximately 2-kb 5' and 3' flanking regions was used for transformation of the KU disruption strains, 100% of transformants exhibited integration at the homologous site, compared to 10 to 30% for a wild-type recipient. Similar results were obtained when the ad-3A gene was targeted for disruption. These results indicate that KU disruption strains are efficient recipients for gene targeting.
Collapse
Affiliation(s)
- Yuuko Ninomiya
- Department of Regulation Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama City 338-8570, Japan
| | | | | | | |
Collapse
|
28
|
Abstract
A chromosome fragmentation assay was used to measure the efficiency and genetic control of break-induced replication (BIR) in Saccharomyces cerevisiae. Formation of a chromosome fragment by de novo telomere generation at one end of the linear vector and recombination-dependent replication of 100 kb of chromosomal sequences at the other end of the vector occurred at high frequency in wild-type strains. RAD51 was required for more than 95% of BIR events involving a single-end invasion and was essential when two BIR events were required for generation of a chromosome fragment. The similar genetic requirements for BIR and gene conversion suggest a common strand invasion intermediate in these two recombinational repair processes. Mutation of RAD50 or RAD59 conferred no significant defect in BIR in either RAD51 or rad51 strains. RAD52 was shown to be essential for BIR at unique chromosomal sequences, although rare recombination events were detected between the subtelomeric Y' repeats.
Collapse
Affiliation(s)
- Allison P Davis
- Department of Microbiology and Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
29
|
Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN, Xia F. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 2004; 24:708-18. [PMID: 14701743 PMCID: PMC343805 DOI: 10.1128/mcb.24.2.708-718.2004] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 09/04/2003] [Accepted: 10/23/2003] [Indexed: 12/29/2022] Open
Abstract
The pathway determining malignant cellular transformation, which depends upon mutation of the BRCA1 tumor suppressor gene, is poorly defined. A growing body of evidence suggests that promotion of DNA double-strand break repair by homologous recombination (HR) may be the means by which BRCA1 maintains genomic stability, while a role of BRCA1 in error-prone nonhomologous recombination (NHR) processes has just begun to be elucidated. The BRCA1 protein becomes phosphorylated in response to DNA damage, but the effects of phosphorylation on recombinational repair are unknown. In this study, we tested the hypothesis that the BRCA1-mediated regulation of recombination requires the Chk2- and ATM-dependent phosphorylation sites. We studied Rad51-dependent HR and random chromosomal integration of linearized plasmid DNA, a subtype of NHR, which we demonstrate to be dependent on the Mre11-Rad50-Nbs1 complex. Prevention of Chk2-mediated phosphorylation via mutation of the serine 988 residue of BRCA1 disrupted both the BRCA1-dependent promotion of HR and the suppression of NHR. Similar results were obtained when endogenous Chk2 kinase activity was inhibited by expression of a dominant-negative Chk2 mutant. Surprisingly, the opposing regulation of HR and NHR did not require the ATM phosphorylation sites on serines 1423 and 1524. Together, these data suggest a functional link between recombination control and breast cancer predisposition in carriers of Chk2 and BRCA1 germ line mutations. We propose a dual regulatory role for BRCA1 in maintaining genome integrity, whereby BRCA1 phosphorylation status controls the selectivity of repair events dictated by HR and error-prone NHR.
Collapse
Affiliation(s)
- Junran Zhang
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
van Attikum H, Hooykaas PJJ. Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 2003; 31:826-32. [PMID: 12560477 PMCID: PMC149203 DOI: 10.1093/nar/gkg183] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agrobacterium tumefaciens delivers transferred DNA (T-DNA) into cells of plants and yeast. In plants, the T-DNA integrates at random positions into the genome by non-homologous recombination (NHR), whereas in yeast the T-DNA preferably integrates by homologous recombination (HR). Here we show that T-DNA integration by HR in yeast requires the recombination/repair proteins Rad51 and Rad52, but not Rad50, Mre11, Xrs2, Yku70 and Lig4. In the HR events a remarkable shift from insertion-type events to replacement events was observed in rad50, mre11 and xrs2 mutants. Residual integration in the rad51 mutant occurred predominantly by HR, whereas in the rad52 mutant integration occurred exclusively by NHR. Previously, we found that T-DNA integration by NHR is abolished in a yku70 mutant. Thus, Rad52 and Yku70 are the key regulators of T-DNA integration, channeling integration into either the HR or NHR pathway.
Collapse
Affiliation(s)
- Haico van Attikum
- Institute of Molecular Plant Sciences, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | |
Collapse
|
31
|
Kiechle M, Manivasakam P, Eckardt-Schupp F, Schiestl RH, Friedl AA. Promoter-trapping in Saccharomyces cerevisiae by radiation-assisted fragment insertion. Nucleic Acids Res 2002; 30:e136. [PMID: 12490727 PMCID: PMC140085 DOI: 10.1093/nar/gnf136] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 10/19/2002] [Accepted: 10/19/2002] [Indexed: 11/13/2022] Open
Abstract
Non-homologous insertion (NHI) of DNA fragments into genomic DNA is a method widely used in insertional mutagenesis screens. In the yeast Saccharomyces cerevisiae, the efficiency of NHI is very low. Here we report that its efficiency can be increased by gamma-irradiation of recipient cells at the time of transformation. Radiation-assisted NHI depends on YKU70, but its efficiency is not improved by inactivation of RAD5 or RAD52. In a pilot study, we generated 102 transformant clones expressing a lacZ reporter gene under standard conditions (30 degrees C, rich medium). The site of insertion was determined in a subset of eight clones in which lacZ expression was altered by UV-irradiation. A comparison with published data revealed that three of the eight genes identified in our screen have not been targeted by large-scale transposon-based insertion screens. This suggests that radiation-assisted NHI offers a more homogeneous coverage of the genome than methods relying on transposons or retroviral elements.
Collapse
Affiliation(s)
- Markus Kiechle
- Department of Pathology, School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
32
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 790] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
33
|
Shibayama M, Ooi K, Johnson R, Scott B, Itoh Y. Suppression of tandem-multimer formation during genetic transformation of the mycotoxin-producing fungus Penicillium paxilli by disrupting an orthologue of Aspergillus nidulans uvsC. Curr Genet 2002; 42:59-65. [PMID: 12420147 DOI: 10.1007/s00294-002-0330-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Revised: 08/14/2002] [Accepted: 08/14/2002] [Indexed: 11/27/2022]
Abstract
An orthologue of Aspergillus nidulans uvsC and Saccharomyces cerevisiae RAD51 was cloned from the filamentous fungus, Penicillium paxilli. A mutation in uvsC causes UV sensitivity during germination. The product of RAD51 is involved in meiotic recombination and DNA damage repair. The deduced amino acid sequence of the product of this gene (Pprad51) shared 92% identity with UVSC. Site-specific disruption of pprad51 showed a significant effect for extra-cellular DNA integration. Transformation of the null mutant with pII99, which confers geneticin resistance, resulted in a shift from a predominance of direct repeats at a single site to single copies when compared with a control strain. A copy-number effect of integrated pII99 for geneticin selection was suggested as the frequency of direct repeat formation was less when selected at a lower concentration in the control strain. However, such an effect was not observed in the null mutant, further supporting an involvement of Pprad51 in direct repeat formation.
Collapse
Affiliation(s)
- Mayumi Shibayama
- Department of Biological Sciences, Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan
| | | | | | | | | |
Collapse
|
34
|
Manthey GM, Bailis AM. Multiple pathways promote short-sequence recombination in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:5347-56. [PMID: 12101230 PMCID: PMC133931 DOI: 10.1128/mcb.22.15.5347-5356.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, null alleles of several DNA repair and recombination genes confer defects in recombination that grow more severe with decreasing sequence length, indicating that they are required for short-sequence recombination (SSR). RAD1 and RAD10, which encode the subunits of the structure-specific endonuclease Rad1/10, are critical for SSR. MRE11, RAD50, and XRS2, which encode the subunits of M/R/X, another complex with nuclease activity, are also crucially important. Genetic evidence suggests that Rad1/10 and M/R/X act on the same class of substrates during SSR. MSH2 and MSH3, which encode subunits of Msh2/3, a complex active during mismatch repair and recombination, are also important for SSR but play a more restricted role. Additional evidence suggests that SSR is distinct from nonhomologous end joining and is superimposed upon basal homologous recombination.
Collapse
Affiliation(s)
- Glenn M Manthey
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, 1450 E. Duarte Road, Duarte, CA 91010-0269, USA
| | | |
Collapse
|
35
|
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into precancerous clones. Over the last decade, many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage, or a deficiency in repairing endogenous and exogenous damage. Here, we discuss homologous recombination as another mechanism that can result in a loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients, whose cells display an increased frequency of recombination, also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis.
Collapse
Affiliation(s)
| | - Robert H. Schiestl
- Department of Pathology, UCLA Medical School, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
van Attikum H, Bundock P, Hooykaas PJ. Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 2001; 20:6550-8. [PMID: 11707425 PMCID: PMC125718 DOI: 10.1093/emboj/20.22.6550] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2001] [Revised: 09/06/2001] [Accepted: 09/19/2001] [Indexed: 11/15/2022] Open
Abstract
Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T-DNA), derived from its tumour-inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T-DNA also to monocotyledonous plants, yeasts and fungi. The T-DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast Saccharomyces cerevisiae as a T-DNA recipient to demonstrate that the non-homologous end-joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T-DNA into the host genome. We discovered a minor pathway for T-DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T-DNA integration at the telomeric regions in the rad50, mre11 and xrs2 mutants was accompanied by gross chromosomal rearrangements.
Collapse
Affiliation(s)
| | | | - Paul J.J. Hooykaas
- Institute of Molecular Plant Sciences, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands
Corresponding author e-mail:
| |
Collapse
|
37
|
Gherbi H, Gallego ME, Jalut N, Lucht JM, Hohn B, White CI. Homologous recombination in planta is stimulated in the absence of Rad50. EMBO Rep 2001; 2:287-91. [PMID: 11306548 PMCID: PMC1083866 DOI: 10.1093/embo-reports/kve069] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chromosomal double-strand DNA breaks must be repaired; in the absence of repair the resulting acentromeric (and telomereless) fragments may be lost and/or the broken DNA ends may recombine causing general chromosomal instability. The Rad50/Mre11/Xrs2 protein complex acts at DNA ends and is implicated in both homologous and non-homologous recombination. We have isolated a rad50 mutant of the plant Arabidopsis thaliana and show here that it has a somatic hyper-recombination phenotype in planta. This finding supports the hypothesis of a competition between homologous and illegitimate recombination in higher eukaryotes. To our knowledge, this is the first direct in vivo support for the role of this complex in chromosomal recombination in a multicellular organism and the first description of a mutation of a known gene leading to hyper-recombination in plants.
Collapse
Affiliation(s)
- H Gherbi
- UMR 6547 BIOMOVE, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière, France
| | | | | | | | | | | |
Collapse
|
38
|
Kiechle M, Friedl AA, Manivasakam P, Eckardt-Schupp F, Schiestl RH. DNA integration by Ty integrase in yku70 mutant Saccharomyces cerevisiae cells. Mol Cell Biol 2000; 20:8836-44. [PMID: 11073984 PMCID: PMC86530 DOI: 10.1128/mcb.20.23.8836-8844.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present work we examined nonhomologous integration of plasmid DNA in a yku70 mutant. Ten of 14 plasmids integrated as composite elements, including Ty sequences probably originating from erroneous strand-switching and/or priming events. Three additional plasmids integrated via Ty integrase without cointegrating Ty sequences, as inferred from 5-bp target site duplication and integration site preferences. Ty integrase-mediated integration of non-Ty DNA has never been observed in wild-type cells, although purified integrase is capable of using non-Ty DNA as a substrate in vitro. Hence our data implicate yKu70 as the cellular function preventing integrase from accepting non-Ty DNA as a substrate.
Collapse
Affiliation(s)
- M Kiechle
- Institute of Radiobiology, GSF Research Center, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
39
|
Symington LS, Kang LE, Moreau S. Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae. Nucleic Acids Res 2000; 28:4649-56. [PMID: 11095674 PMCID: PMC115160 DOI: 10.1093/nar/28.23.4649] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Revised: 10/12/2000] [Accepted: 10/12/2000] [Indexed: 11/13/2022] Open
Abstract
A plasmid gap repair assay was used to assess the role of three known nucleases, Exo1, Mre11 and Rad1, in the processing of DNA ends and resolution of recombination intermediates during double-strand gap repair. In this assay, alterations in end processing or branch migration are reflected by the frequency of co-conversion of a chromosomal marker 200 bp from the gap. Gap repair associated with crossing over results in integration at the homologous chromosomal locus, whereas the plasmid remains episomal for non-crossover repair events. In mre11 strains, the frequency of gap repair was reduced 3- to 10-fold and conversion tracts were shorter than in the wild-type strain, consistent with a role for this nuclease in processing double-strand breaks. However, conversion tracts were longer in a strain containing the nuclease deficient allele, mre11-H125N, suggesting increased end processing by redundant nucleases. The frequency of gap repair was reduced 2-fold in rad1 mutants and crossing over was reduced, consistent with a role for Rad1 in cleaving recombination intermediates. The frequency of gap repair was increased in exo1 mutants with a significant increase in crossing over. In exo1 mre11 double mutants gap repair was reduced to below the mre11 single mutant level.
Collapse
Affiliation(s)
- L S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
40
|
Hegde V, Klein H. Requirement for the SRS2 DNA helicase gene in non-homologous end joining in yeast. Nucleic Acids Res 2000; 28:2779-83. [PMID: 10908335 PMCID: PMC102644 DOI: 10.1093/nar/28.14.2779] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitotic cells experience double-strand breaks (DSBs) from both exogenous and endogenous sources. Since unrepaired DSBs can result in genome rearrangements or cell death, cells mobilize multiple pathways to repair the DNA damage. In the yeast Saccharomyces cerevisiae, mitotic cells preferentially use a homologous recombination repair pathway. However, when no significant homology to the DSB ends is available, cells utilize a repair process called non-homologous end joining (NHEJ), which can join ends with no homology through resection to uncover microhomologies of a few nucleotides. Although components of the homologous recombination repair system are also involved in NHEJ, the rejoining does not involve all of the homologous recombination repair genes. The SRS2 DNA helicase has been shown to be required for DSB repair when the homologous single-stranded regions are short. Here it is shown that SRS2 is also required for NHEJ, regardless of the cell mating type. Efficient NHEJ of sticky ends requires the Ku70 and Ku80 proteins and the silencing genes SIR2, SIR3 and SIR4. However, NHEJ of blunt ends, while very inefficient, is not further reduced by mutations in YKU70, SIR2, SIR3, SIR4 or SRS2, suggesting that this rejoining process occurs by a different mechanism.
Collapse
Affiliation(s)
- V Hegde
- Department of Biochemistry and Kaplan Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
41
|
Paull TT, Gellert M. A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc Natl Acad Sci U S A 2000; 97:6409-14. [PMID: 10823903 PMCID: PMC18616 DOI: 10.1073/pnas.110144297] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repair of DNA double-strand breaks in vertebrate cells occurs mainly by an end-joining process that often generates junctions with sequence homologies of a few nucleotides. Mre11 is critical for this mode of repair in budding yeast and has been implicated in the microhomology-based joining. Here, we show that Mre11 exonuclease activity is sensitive to the presence of heterologous DNA, and to the structure and sequence of its ends. Addition of mismatched DNA ends stimulates degradation of DNA by Mre11, whereas cohesive ends strongly inhibit it. Furthermore, if a sequence identity is revealed during the course of degradation, it causes Mre11 nuclease activity to pause, thus stabilizing the junction at a site of microhomology. A nuclease-deficient Mre11 mutant that still binds DNA can also stimulate degradation by wild-type Mre11, suggesting that Mre11-DNA complexes may interact to bridge DNA ends and facilitate DNA joining.
Collapse
Affiliation(s)
- T T Paull
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | | |
Collapse
|
42
|
Nasar F, Jankowski C, Nag DK. Long palindromic sequences induce double-strand breaks during meiosis in yeast. Mol Cell Biol 2000; 20:3449-58. [PMID: 10779335 PMCID: PMC85638 DOI: 10.1128/mcb.20.10.3449-3458.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inverted-repeated or palindromic sequences have been found to occur in both prokaryotic and eukaryotic genomes. Such repeated sequences are usually short and present at several functionally important regions in the genome. However, long palindromic sequences are rare and are a major source of genomic instability. The palindrome-mediated genomic instability is believed to be due to cruciform or hairpin formation and subsequent cleavage of this structure by structure-specific nucleases. Here we present both genetic and physical evidence that long palindromic sequences (>50 bp) generate double-strand breaks (DSBs) at a high frequency during meiosis in the yeast Saccharomyces cerevisiae. The palindrome-mediated DSB formation depends on the primary sequence of the inverted repeat and the location and length of the repeated units. The DSB formation at the palindrome requires all of the gene products that are known to be responsible for DSB formation at the normal meiosis-specific sites. Since DSBs are initiators of nearly all meiotic recombination events, most of the palindrome-induced breaks appear to be repaired by homologous recombination. Our results suggest that short palindromic sequences are highly stable in vivo. In contrast, long palindromic sequences make the genome unstable by inducing DSBs and such sequences are usually removed from the genome by homologous recombination events.
Collapse
Affiliation(s)
- F Nasar
- Molecular Genetics Program, Wadsworth Center, School of Public Health, State University of New York, Albany, New York 12201, USA
| | | | | |
Collapse
|
43
|
Bärtsch S, Kang LE, Symington LS. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol Cell Biol 2000; 20:1194-205. [PMID: 10648605 PMCID: PMC85244 DOI: 10.1128/mcb.20.4.1194-1205.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.
Collapse
Affiliation(s)
- S Bärtsch
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
44
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63:349-404. [PMID: 10357855 PMCID: PMC98970 DOI: 10.1128/mmbr.63.2.349-404.1999] [Citation(s) in RCA: 1664] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
45
|
Petrini JH. The mammalian Mre11-Rad50-nbs1 protein complex: integration of functions in the cellular DNA-damage response. Am J Hum Genet 1999; 64:1264-9. [PMID: 10205255 PMCID: PMC1377860 DOI: 10.1086/302391] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- J H Petrini
- Laboratory of Genetics, University of Wisconsin Medical School, Madison, WI 53706, USA
| |
Collapse
|
46
|
Moreau S, Ferguson JR, Symington LS. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 1999; 19:556-66. [PMID: 9858579 PMCID: PMC83913 DOI: 10.1128/mcb.19.1.556] [Citation(s) in RCA: 349] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1998] [Accepted: 09/29/1998] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae MRE11 gene is required for the repair of ionizing radiation-induced DNA damage and for the initiation of meiotic recombination. Sequence analysis has revealed homology between Mre11 and SbcD, the catalytic subunit of an Escherichia coli enzyme with endo- and exonuclease activity, SbcCD. In this study, the purified Mre11 protein was found to have single-stranded endonuclease activity. This activity was absent from mutant proteins containing single amino acid substitutions in either one of two sequence motifs that are shared by Mre11 and SbcD. Mutants with allele mre11-D56N or mre11-H125N were partially sensitive to ionizing radiation but lacked the other mitotic phenotypes of poor vegetative growth, hyperrecombination, defective nonhomologous end joining, and shortened telomeres that are characteristic of the mre11 null mutant. Diploids homozygous for the mre11-H125N mutation failed to sporulate and accumulated unresected double-strand breaks (DSB) during meiosis. We propose that in mitotic cells DSBs can be processed by other nucleases that are partially redundant with Mre11, but these activities are unable to process Spo11-bound DSBs in meiotic cells.
Collapse
Affiliation(s)
- S Moreau
- Institute of Cancer Research and Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
47
|
Yamagata K, Kato J, Shimamoto A, Goto M, Furuichi Y, Ikeda H. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc Natl Acad Sci U S A 1998; 95:8733-8. [PMID: 9671747 PMCID: PMC21145 DOI: 10.1073/pnas.95.15.8733] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bloom's syndrome (BS) and Werner's syndrome (WS) are genetic disorders in which an increased rate of chromosomal aberration is detected. The genes responsible for these diseases, BLM and WRN, have been found to be homologs of Escherichia coli recQ and Saccharomyces cerevisiae SGS1 genes. Here we show that yeast Sgs1 helicase acts as a suppressor of illegitimate recombination through homologous recombination and that human BLM and WRN helicases can suppress the increased homologous and illegitimate recombinations in the S. cerevisiae sgs1 mutant. The results imply a role of BLM and WRN helicases to control genomic stability in human cells. Similar to Sgs1 helicase, BLM helicase suppressed the cell growth in the top3 sgs1 mutation background and restored the increased sensitivity of the sgs1 mutant to hydroxyurea, but the WRN helicase did not. We discussed differential roles of BLM and WRN helicases in human cells. BLM- and WRN-bearing yeasts provide new useful models to investigate human BS and WS diseases.
Collapse
Affiliation(s)
- K Yamagata
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, P.O. Takanawa, Tokyo 108, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Lewis LK, Kirchner JM, Resnick MA. Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol Cell Biol 1998; 18:1891-902. [PMID: 9528760 PMCID: PMC121418 DOI: 10.1128/mcb.18.4.1891] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RAD52 and RAD9 are required for the repair of double-strand breaks (DSBs) induced by physical and chemical DNA-damaging agents in Saccharomyces cerevisiae. Analysis of EcoRI endonuclease expression in vivo revealed that, in contrast to DSBs containing damaged or modified termini, chromosomal DSBs retaining complementary ends could be repaired in rad52 mutants and in G1-phase Rad+ cells. Continuous EcoRI-induced scission of chromosomal DNA blocked the growth of rad52 mutants, with most cells arrested in G2 phase. Surprisingly, rad52 mutants were not more sensitive to EcoRI-induced cell killing than wild-type strains. In contrast, endonuclease expression was lethal in cells deficient in Ku-mediated end joining. Checkpoint-defective rad9 mutants did not arrest cell cycling and lost viability rapidly when EcoRI was expressed. Synthesis of the endonuclease produced extensive breakage of nuclear DNA and stimulated interchromosomal recombination. These results and those of additional experiments indicate that cohesive ended DSBs in chromosomal DNA can be accurately repaired by RAD52-mediated recombination and by recombination-independent complementary end joining in yeast cells.
Collapse
Affiliation(s)
- L K Lewis
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
49
|
Boulton SJ, Jackson SP. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 1998; 17:1819-28. [PMID: 9501103 PMCID: PMC1170529 DOI: 10.1093/emboj/17.6.1819] [Citation(s) in RCA: 496] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double-strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2, SIR3 and SIR4, three genes shown previously to function in TPE, are essential for Ku-dependent DSB repair. As is the case for Ku-deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error-prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku-associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50, MRE11 and XRS2 function both in Ku-dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing.
Collapse
Affiliation(s)
- S J Boulton
- Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
50
|
Manivasakam P, Schiestl RH. Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:1736-45. [PMID: 9488490 PMCID: PMC108888 DOI: 10.1128/mcb.18.3.1736] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The BamHI restriction enzyme mediates integration of nonhomologous DNA into the Saccharomyces cerevisiae genome (R. H. Schiestl and T. D. Petes, Proc. Natl. Acad. Sci. USA 88:7585-7589, 1991). The present study investigates the mechanism of such events: in particular, the mediating activity of various restriction enzymes and the processing of resultant fragment ends. Our results show that in addition to BamHI, BglII and KpnI increase DNA integration efficiencies severalfold, while Asp718, HindIII, EcoRI, SalI, SmaI, HpaI, MscI, and SnaBI do not. Secondly, the three active enzymes stimulated integrations only of fragments containing 5' or 3' overhangs but not of blunt-ended fragments. Thirdly, integrations mediated by one enzyme and utilizing a substrate created by another required at least 2 bp of homology. Furthermore, an Asp718 fragment possessing a 5' overhang integrated into a KpnI (isoschizomer) site possessing a 3' overhang, most likely by filling of the 5' overhang followed by 5' exonuclease digestion to produce a 3' end. We classified and analyzed the restriction enzyme-mediated integration events in the context of their genomic positions. The majority of events integrated into single sites. In the remaining 6 of 19 cases each end of the plasmid inserted into a different sequence, producing rearrangements such as duplications, deletions, and translocations.
Collapse
Affiliation(s)
- P Manivasakam
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|