1
|
Xiang K, Bartel DP. The molecular basis of coupling between poly(A)-tail length and translational efficiency. eLife 2021; 10:66493. [PMID: 34213414 PMCID: PMC8253595 DOI: 10.7554/elife.66493] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
In animal oocytes and early embryos, mRNA poly(A)-tail length strongly influences translational efficiency (TE), but later in development this coupling between tail length and TE disappears. Here, we elucidate how this coupling is first established and why it disappears. Overexpressing cytoplasmic poly(A)-binding protein (PABPC) in Xenopus oocytes specifically improved translation of short-tailed mRNAs, thereby diminishing coupling between tail length and TE. Thus, strong coupling requires limiting PABPC, implying that in coupled systems longer-tail mRNAs better compete for limiting PABPC. In addition to expressing excess PABPC, post-embryonic mammalian cell lines had two other properties that prevented strong coupling: terminal-uridylation-dependent destabilization of mRNAs lacking bound PABPC, and a regulatory regime wherein PABPC contributes minimally to TE. Thus, these results revealed three fundamental mechanistic requirements for coupling and defined the context-dependent functions for PABPC, which promotes TE but not mRNA stability in coupled systems and mRNA stability but not TE in uncoupled systems. Cells are microscopic biological factories that are constantly creating new proteins. To do so, a cell must first convert its master genetic blueprint, the DNA, into strands of messenger RNA or mRNA. These strands are subsequently translated to make proteins. Cells have two ways to adjust the number of proteins they generate so they do not produce too many or too few: by changing how many mRNA molecules are available for translation, and by regulating how efficiently they translate these mRNA molecules into proteins. In animals, both unfertilized eggs and early-stage embryos lack the ability to create or destroy mRNAs, and consequently cannot adjust the number of mRNA molecules available for translation. These cells can therefore only regulate how efficiently each mRNA is translated. They do this by changing the length of the so-called poly(A) tail at the end of each mRNA molecule, which is made up of a long stretch of repeating adenosine nucleotides. The mRNAs with longer poly(A) tails are translated more efficiently than those with shorter poly(A) tails. However, this difference disappears in older embryos, when both long and short poly(A) tails are translated with equal efficiency, and it is largely unknown why. To find out more, Xiang and Bartel studied frog eggs, and discovered that artificially raising levels of a protein that binds poly(A) tails, also known as PABPC, improved the translation of short-tailed mRNAs to create a situation in which both short- and long-tailed mRNAs were translated with near-equal efficiency. This suggested that short- and long-tailed mRNAs compete for limited amounts of the translation-enhancing PABPC, and that long-tailed mRNAs are better at it than short-tailed mRNAs. Further investigation revealed that eggs also had to establish the right conditions for PABPC to enhance translation and had to protect mRNAs not associated with PABPC from being destroyed before they could be translated. Overall, Xiang and Bartel found that in eggs and early embryos, PABPC and poly(A) tails enhanced the translation of mRNAs but did not influence their stability, whereas later in development, they enhanced mRNA stability but not translation. This research provides new insights into how protein production is controlled at different stages of animal development, from unfertilized eggs to older embryos. Understanding how this process is regulated during normal development is crucial for gaining insights into how it can become dysfunctional and cause disease. These findings may therefore have important implications for research into areas such as infertility, reproductive medicine and rare genetic diseases.
Collapse
Affiliation(s)
- Kehui Xiang
- Howard Hughes Medical Institute, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
2
|
Prasad CK, Mahadevan M, MacNicol MC, MacNicol AM. Mos 3' UTR regulatory differences underlie species-specific temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational recruitment during oocyte maturation. Mol Reprod Dev 2008; 75:1258-68. [PMID: 18246541 DOI: 10.1002/mrd.20877] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Mos proto-oncogene is a critical regulator of vertebrate oocyte maturation. The maturation-dependent translation of Mos protein correlates with the cytoplasmic polyadenylation of the maternal Mos mRNA. However, the precise temporal requirements for Mos protein function differ between oocytes of model mammalian species and oocytes of the frog Xenopus laevis. Despite the advances in model organisms, it is not known if the translation of the human Mos mRNA is also regulated by cytoplasmic polyadenylation or what regulatory elements may be involved. We report that the human Mos 3' untranslated region (3' UTR) contains a functional cytoplasmic polyadenylation element (CPE) and demonstrate that the endogenous Mos mRNA undergoes maturation-dependent cytoplasmic polyadenylation in human oocytes. The human Mos 3' UTR interacts with the human CPE-binding protein and exerts translational control on a reporter mRNA in the heterologous Xenopus oocyte system. Unlike the Xenopus Mos mRNA, which is translationally activated by an early acting Musashi/polyadenylation response element (PRE)-directed control mechanism, the translational activation of the human Mos 3' UTR is dependent on a late acting CPE-dependent process. Taken together, our findings suggest a fundamental difference in the 3' UTR regulatory mechanisms controlling the temporal induction of maternal Mos mRNA polyadenylation and translational activation during Xenopus and mammalian oocyte maturation.
Collapse
Affiliation(s)
- C Krishna Prasad
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
3
|
Iwasaki T, Koretomo Y, Fukuda T, Paronetto MP, Sette C, Fukami Y, Sato KI. Expression, phosphorylation, and mRNA-binding of heterogeneous nuclear ribonucleoprotein K in Xenopus oocytes, eggs, and early embryos. Dev Growth Differ 2007; 50:23-40. [DOI: 10.1111/j.1440-169x.2007.00974.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Vasudevan S, Seli E, Steitz JA. Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades. Genes Dev 2006; 20:138-46. [PMID: 16418480 DOI: 10.1101/gad.1398906] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shobha Vasudevan
- Department of Molecular Biophysics and Biochemistry, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | |
Collapse
|
5
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
6
|
Piccioni F, Zappavigna V, Verrotti AC. Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship. C R Biol 2005; 328:863-81. [PMID: 16286077 DOI: 10.1016/j.crvi.2005.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 11/30/2022]
Abstract
Metazoans rely on the regulated translation of select maternal mRNAs to control oocyte maturation and the initial stages of embryogenesis. These transcripts usually remain silent until their translation is temporally and spatially required during early development. Different translational regulatory mechanisms, varying from cytoplasmic polyadenylation to localization of maternal mRNAs, have evolved to assure coordinated initiation of development. A common feature of these mechanisms is that they share a few key trans-acting factors. Increasing evidence suggest that ubiquitous conserved mRNA-binding factors, including the eukaryotic translation initiation factor 4E (eIF4E) and the cytoplasmic polyadenylation element binding protein (CPEB), interact with cell-specific molecules to accomplish the correct level of translational activity necessary for normal development. Here we review how capping and polyadenylation of mRNAs modulate interaction with multiple regulatory factors, thus controlling translation during oogenesis and early development.
Collapse
Affiliation(s)
- Federica Piccioni
- CEINGE-Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples, Italy
| | | | | |
Collapse
|
7
|
Tremblay K, Vigneault C, McGraw S, Sirard MA. Expression of Cyclin B1 Messenger RNA Isoforms and Initiation of Cytoplasmic Polyadenylation in the Bovine Oocyte1. Biol Reprod 2005; 72:1037-44. [PMID: 15601923 DOI: 10.1095/biolreprod.104.034793] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Oocytes can synthesize and store maternal mRNA in an inactive translational state until the start of in vitro maturation. Cytoplasmic polyadenylation, driven by 3'-untranslated region (UTR) cis-acting cytoplasmic polyadenylation element (CPE), is associated with translational activation of cyclin B1 mRNA during maturation. The main aim of the present study was to investigate if bovine oocyte cyclin B1 mRNA undergoes cytoplasmic polyadenylation/translation during in vitro maturation, as in other species. We have found that cyclin B1 mRNA is present in two isoforms, consisting of the same open reading frame but with different 3'-UTR lengths. Only the longest isoform (cyclin B1L) has a putative CPE sequence and other regulatory sequences, and its mRNA level decreases during early embryo development. The polyadenylation state of cyclin B1L during in vitro maturation was studied. Results demonstrated that cyclin B1L bears a relatively long poly(A) tail in germinal vesicle-stage oocytes, which is further lengthened at 10 h of maturation, before metaphase I. Interestingly, cyclin B1L bears a short poly(A) tail when the ovaries and the oocytes are transported and manipulated on ice to stop the polyadenylation process. Cytoplasmic polyadenylation most probably occurs during ovary transport in warm saline, when oocytes are still in their follicular environment. Our results also show a link between cytoplasmic polyadenylation of cyclin B1 and translation/appearance of cyclin B1 protein before in vitro maturation.
Collapse
Affiliation(s)
- Karine Tremblay
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval,Sainte-Foy, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
8
|
Tanaka M, Kihara M, Meczekalski B, King GJ, Adashi EY. H1oo: a pre-embryonic H1 linker histone in search of a function. Mol Cell Endocrinol 2003; 202:5-9. [PMID: 12770723 DOI: 10.1016/s0303-7207(03)00054-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mouse oocyte-specific linker histone H1oo (1) constitutes a novel mammalian homologue of the oocyte-specific linker histone B4 of the frog and of the cs-H1 linker histone of the sea urchin; (2) is expressed as early as the germinal vesicle (PI) stage oocyte, persisting into the MII stage oocyte, the oocytic polar bodies, and the 2-cell embryo, extinction becoming apparent at the 4-8 cell embryonic stage; and (3) may play a key role in the control of gene expression during oogenesis and early embryogenesis, presumably through the perturbation of chromatin structure.
Collapse
Affiliation(s)
- Mamoru Tanaka
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
9
|
Kolev NG, Huber PW. VgRBP71 stimulates cleavage at a polyadenylation signal in Vg1 mRNA, resulting in the removal of a cis-acting element that represses translation. Mol Cell 2003; 11:745-55. [PMID: 12667456 DOI: 10.1016/s1097-2765(03)00071-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Translation of Vg1 mRNA is repressed in Xenopus oocytes until it is localized to the vegetal cortex. Localization and translational repression are mediated by separate elements in the 3'UTR of the mRNA. VgRBP71 binds to the 3' end of the localization element and stimulates cleavage at an adjacent polyadenylation signal. The protein has an RNA strand-separation activity that likely underlies this event. Polyadenylation occurs at this site in Vg1 mRNA with the consequence of removing the downstream translational repressor element. Ectopic expression of VgRBP71 in stage II oocytes results in cleavage of the mRNA and premature expression of Vg1 protein. These results support a model in which VgRBP71 activates translation of Vg1 mRNA by promoting the removal of a cis-acting repressor element.
Collapse
Affiliation(s)
- Nikolay G Kolev
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
10
|
Paillard L, Legagneux V, Maniey D, Osborne HB. c-Jun ARE targets mRNA deadenylation by an EDEN-BP (embryo deadenylation element-binding protein)-dependent pathway. J Biol Chem 2002; 277:3232-5. [PMID: 11707455 DOI: 10.1074/jbc.m109362200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, certain mRNAs encoding cytokines or proto-oncogenes are especially unstable, because of the presence of a particular sequence element in their 3'-untranslated region named ARE (A/U-rich element). AREs cause this instability by provoking the rapid shortening of the poly(A) tail of the mRNA. The deadenylation of mRNAs mediated by AREs containing repeats of the AUUUA motif (class I/II AREs) is conserved in Xenopus embryos. Here, we first extend these observations by showing that c-Jun ARE, a representative of class III (non-AUUUA) AREs, also provokes the deadenylation of a reporter RNA in Xenopus embryos. Next, by immunodepletion and immunoneutralization experiments, we show that, in Xenopus, the rapid deadenylation of RNAs that contain the c-Jun ARE, but not an AUUUA ARE, requires EDEN-BP. This RNA-binding protein was previously shown to provoke the rapid deadenylation of certain Xenopus maternal RNAs. Finally, we show that CUG-BP, the human homologue of EDEN-BP, specifically binds to c-Jun ARE. Together, these results identify CUG-BP as a plausible deadenylation factor responsible for the post-transcriptional control of c-Jun proto-oncogene mRNA in mammalian cells.
Collapse
Affiliation(s)
- Luc Paillard
- CNRS UMR 6061, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, 35043 Rennes Cedex, France.
| | | | | | | |
Collapse
|
11
|
Abstract
Translational control is a prevalent means of gene regulation during Drosophila oogenesis and embryogenesis. Multiple maternal mRNAs are localized within the oocyte, and this localization is often coupled to their translational regulation. Subsequently, translational control allows maternally deposited mRNAs to direct the early stages of embryonic development. In this review we outline some general mechanisms of translational regulation and mRNA localization that have been uncovered in various model systems. Then we focus on the posttranscriptional regulation of four maternal transcripts in Drosophila that are localized during oogenesis and are critical for embryonic patterning: bicoid (bcd), nanos (nos), oskar (osk), and gurken (grk). Cis- and trans-acting factors required for the localization and translational control of these mRNAs are discussed along with potential mechanisms for their regulation.
Collapse
Affiliation(s)
- O Johnstone
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, Québec, H3A 1B1 Canada.
| | | |
Collapse
|
12
|
Copeland PR, Wormington M. The mechanism and regulation of deadenylation: identification and characterization of Xenopus PARN. RNA (NEW YORK, N.Y.) 2001; 7:875-86. [PMID: 11424938 PMCID: PMC1370141 DOI: 10.1017/s1355838201010020] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In Xenopus oocytes, the deadenylation of a specific class of maternal mRNAs results in their translational repression. Here we report the purification, characterization, and molecular cloning of the Xenopus poly(A) ribonuclease (xPARN). xPARN copurifies with two polypeptides of 62 kDa and 74 kDa, and we provide evidence that the 62-kDa protein is a proteolytic product of the 74-kDa protein. We have isolated the full-length xPARN cDNA, which contains the tripartite exonuclease domain conserved among RNase D family members, a putative RNA recognition motif, and a domain found in minichromosome maintenance proteins. Characterization of the xPARN enzyme shows that it is a poly(A)-specific 3' exonuclease but does not require an A residue at the 3' end. However, the addition of 25 nonadenylate residues at the 3' terminus, or a 3' terminal phosphate is inhibitory. Western analysis shows that xPARN is expressed throughout early development, suggesting that it may participate in the translational silencing and destabilization of maternal mRNAs during both oocyte maturation and embryogenesis. In addition, microinjection experiments demonstrate that xPARN can be activated in the oocyte nucleus in the absence of cytoplasmic components and that nuclear export of deadenylated RNA is impeded. Based on the poly(A) binding activity of xPARN in the absence of catalysis, a model for substrate specificity is proposed.
Collapse
Affiliation(s)
- P R Copeland
- Department of Biology, University of Virginia, Charlottesville 22903, USA.
| | | |
Collapse
|
13
|
Nakahata S, Mita K, Katsu Y, Nagahama Y, Yamashita M. Immunological Detection and Characterization of Poly(A) Polymerase, Poly(A)-Binding Protein and Cytoplasmic Polyadenylation Element-Binding Protein in Goldfish and Xenopus Oocytes. Zoolog Sci 2001. [DOI: 10.2108/zsj.18.337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
de Moor CH, Richter JD. Translational control in vertebrate development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:567-608. [PMID: 11131527 DOI: 10.1016/s0074-7696(01)03017-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational control plays a large role in vertebrate oocyte maturation and contributes to the induction of the germ layers. Translational regulation is also observed in the regulation of cell proliferation and differentiation. The features of an mRNA that mediate translational control are found both in the 5' and in the 3' untranslated regions (UTRs). In the 5' UTR, secondary structure, the binding of proteins, and the presence of upstream open reading frames can interfere with the association of initiation factors with the cap, or with scanning of the initiation complex. The 3' UTR can mediate translational activation by directing cytoplasmic polyadenylation and can confer translational repression by interference with the assembly of initiation complexes. Besides mRNA-specific translational control elements, the nonspecific RNA-binding proteins contribute to the modulation of translation in development. This review discusses examples of translational control and their relevance for developmental regulation.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
15
|
Tanaka M, Hennebold JD, Macfarlane J, Adashi EY. A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 2001; 128:655-64. [PMID: 11171391 DOI: 10.1242/dev.128.5.655] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oocytes and early embryos of multiple (non-mammalian) species lack the somatic form of the linker histone H1. To the best of our knowledge, a mammalian oocyte-specific linker (H1) histone(s) has not, as yet, been reported. We have uncovered the cDNA in question in the course of a differential screening (suppression subtractive hybridization (SSH)) project. Elucidation of the full-length sequence of this novel 1.2 kb cDNA led to the identification of a 912 bp open reading frame. The latter encoded a novel 34 kDa linker histone protein comprised of 304 amino acids, tentatively named H1oo. Amino acid BLAST analysis revealed that H1oo displayed the highest sequence homology to the oocyte-specific B4 histone of the frog, the respective central globular (putative DNA binding) domains displaying 54% identity. Substantial homology to the cs-H1 protein of the sea urchin oocyte was also apparent. While most oocytic mRNAs corresponding to somatic linker histones are not polyadenylated (and remain untranslated), the mRNAs of (non-mammalian) oocyte-specific linker histones and of mammalian H1oo, are polyadenylated, a process driven by the consensus signal sequence, AAUAAA, detected in the 3′-untranslated region of the H1oo cDNA. Our data suggest that the mouse oocyte-specific linker histone H1oo (1) constitutes a novel mammalian homolog of the oocyte-specific linker histone B4 of the frog and of the cs-H1 linker histone of the sea urchin; (2) is expressed as early as the GV (PI) stage oocyte, persisting into the MII stage oocyte, the oocytic polar bodies, and the two-cell embryo, extinction becoming apparent at the four- to eight-cell embryonic stage; and (3) may play a key role in the control of gene expression during oogenesis and early embryogenesis, presumably through the perturbation of chromatin structure.
Collapse
Affiliation(s)
- M Tanaka
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
16
|
Charlesworth A, Welk J, MacNicol AM. The temporal control of Wee1 mRNA translation during Xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3'-untranslated region. Dev Biol 2000; 227:706-19. [PMID: 11071785 DOI: 10.1006/dbio.2000.9922] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Wee1 protein tyrosine kinase is a key regulator of cell cycle progression. Wee1 activity is necessary for the control of the first embryonic cell cycle following the fertilization of meiotically mature Xenopus oocytes. Wee1 mRNA is present in immature oocytes, but Wee1 protein does not accumulate in immature oocytes or during the early stages of progesterone-stimulated maturation. This delay in Wee1 translation is critical since premature Wee1 protein accumulation has been shown to inhibit oocyte maturation. In this study we provide evidence that Wee1 protein accumulation is regulated at the level of mRNA translation. This translational control is directed by sequences within the Wee1 mRNA 3'-untranslated region (3' UTR). Specifically, cytoplasmic polyadenylation element (CPE) sequences within the Wee1 3' UTR are necessary for full translational repression in immature oocytes. Our data further indicate that while CPE-independent mechanisms may regulate the levels of Wee1 protein accumulation during progesterone-stimulated oocyte maturation, the timing of Wee1 mRNA translational induction is directed through a CPE-dependent mechanism.
Collapse
Affiliation(s)
- A Charlesworth
- Department of Medicine, Committee on Developmental Biology, Ben May Institute for Cancer Research, The University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
17
|
Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 2000; 103:435-47. [PMID: 11081630 DOI: 10.1016/s0092-8674(00)00135-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Xenopus development, the expression of several maternal mRNAs is regulated by cytoplasmic polyadenylation. CPEB and maskin, two factors that control polyadenylation-induced translation are present on the mitotic apparatus of animal pole blastomeres in embryos. Cyclin B1 protein and mRNA, whose translation is regulated by polyadenylation, are colocalized with CPEB and maskin. CPEB interacts with microtubules and is involved in the localization of cyclin B1 mRNA to the mitotic apparatus. Agents that disrupt polyadenylation-induced translation inhibit cell division and promote spindle and centrosome defects in injected embryos. Two of these agents inhibit the synthesis of cyclin B1 protein and one, which has little effect on this process, disrupts the localization of cyclin B1 mRNA and protein. These data suggest that CPEB-regulated mRNA translation is important for the integrity of the mitotic apparatus and for cell division.
Collapse
Affiliation(s)
- I Groisman
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | |
Collapse
|
18
|
Castro A, Peter M, Magnaghi-Jaulin L, Vigneron S, Loyaux D, Lorca T, Labbé JC. Part of Xenopus translin is localized in the centrosomes during mitosis. Biochem Biophys Res Commun 2000; 276:515-23. [PMID: 11027506 DOI: 10.1006/bbrc.2000.3482] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During oogenesis, maternal mRNAs are synthesised and stored in a translationally dormant form due to the presence of regulatory elements at the 3' untranslated regions (3'UTR). In Xenopus oocytes, several studies have described the presence of RNA-binding proteins capable to repress maternal-mRNA translation. The testis-brain RNA-binding protein (TB-RBP/Translin) is a single-stranded DNA- and RNA-binding protein which can bind the 3' UTR regions (Y and H elements) of stored mRNAs and can suppress in vitro translation of the mRNAs that contain these sequences. Here we report the cloning of the Xenopus homologue of the TB-RBP/Translin protein (X-translin) as well as its expression, its localisation, and its biochemical association with the protein named Translin associated factor X (Trax) in Xenopus oocytes. The fact that this protein is highly present in the cytoplasm from stage VI oocytes until 48 h embryos and that it has been described as capable to inhibit paternal mRNA translation, indicates that it could play an important role in maternal mRNA translation control during Xenopus oogenesis and embryogenesis. Moreover, we investigated X-translin localisation during cell cycle in XTC cells. In interphase, although a weak and diffuse nuclear staining was observed, X-translin was mostly present in the cytoplasm where it exhibited a prominent granular staining. Interestingly, part of X-translin underwent a remarkable redistribution throughout mitosis and associated with centrosomes, which may suggest a new unknown role for this protein in cell cycle.
Collapse
Affiliation(s)
- A Castro
- Centre de Recherches de Biochimie Macromoléculaire, CNRS UPR 1086, 1919 Route de Mende, Montpellier cedex 5, 34293, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Good PJ, Chen Q, Warner SJ, Herring DC. A family of human RNA-binding proteins related to the Drosophila Bruno translational regulator. J Biol Chem 2000; 275:28583-92. [PMID: 10893231 DOI: 10.1074/jbc.m003083200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-transcriptional regulation of gene expression by RNA-binding proteins is an important element in controlling both normal cell functions and animal development. The diverse roles are demonstrated by the Elav family of RNA-binding proteins, where various members have been shown to regulate several processes involving mRNA. We have identified another family of RNA-binding proteins distantly related to the Elav family but closely related to Bruno, a translational regulator in Drosophila melanogaster. In humans, six Bruno-like genes have been identified, whereas other species such as Drosophila, Xenopus laevis, and Caenorhabditis elegans have at least two members of this family, and related genes have also been detected in plants and ascidians. The human BRUNOL2 and BRUNOL3 are 92% identical in the RNA-binding domains, although the BRUNOL2 gene is expressed ubiquitously whereas BRUNOL3 is expressed predominantly in the heart, muscle, and nervous system. Both of these proteins bind the same target RNA, the Bruno response element. The RNA-binding domain that recognizes the Bruno response element is composed of two consecutive RNA recognition motifs at the amino terminus of vertebrate Bruno protein. The possible involvement of the Bruno family of proteins in the CUG repeat expansion disease myotonic dystrophy is discussed.
Collapse
Affiliation(s)
- P J Good
- Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University, Health Sciences Center, Shreveport, Lousiana 71130, USA.
| | | | | | | |
Collapse
|
20
|
Paillard L, Maniey D, Lachaume P, Legagneux V, Osborne HB. Identification of a C-rich element as a novel cytoplasmic polyadenylation element in Xenopus embryos. Mech Dev 2000; 93:117-25. [PMID: 10781945 DOI: 10.1016/s0925-4773(00)00279-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During Xenopus early development, the length of the poly(A) tail of maternal mRNAs is a key element of translational control. Several sequence elements (cytoplasmic polyadenylation elements) localized in 3' untranslated regions have been shown to be responsible for the cytoplasmic polyadenylation of certain maternal mRNAs. Here, we demonstrate that the mRNA encoding the catalytic subunit of phosphatase 2A is polyadenylated after fertilization of Xenopus eggs. This polyadenylation is mediated by the additive effects of two cis elements, one being similar to already described cytoplasmic polyadenylation elements and the other consisting of a polycytosine motif. Finally, a candidate specificity factor for polycytosine-mediated cytoplasmic polyadenylation has been purified and identified as the Xenopus homologue of human alpha-CP2.
Collapse
Affiliation(s)
- L Paillard
- CNRS UPR 41, Université de Rennes I, Faculté de Médecine, Léon Bernard, CS 34317, 35043, Rennes, France.
| | | | | | | | | |
Collapse
|
21
|
Abstract
In maturing mouse oocytes, protein synthesis is required for meiotic maturation subsequent to germinal vesicle breakdown (GVBD). While the number of different proteins that must be synthesized for this progression to occur is unknown, at least one of them appears to be cyclin B1, the regulatory subunit of M-phase-promoting factor. Here, we investigate the mechanism of cyclin B1 mRNA translational control during mouse oocyte maturation. We show that the U-rich cytoplasmic polyadenylation element (CPE), a cis element in the 3' UTR of cyclin B1 mRNA, mediates translational repression in GV-stage oocytes. The CPE is also necessary for cytoplasmic polyadenylation, which stimulates translation during oocyte maturation. The injection of oocytes with a cyclin B1 antisense RNA, which probably precludes the binding of a factor to the CPE, delays cytoplasmic polyadenylation as well as the transition from GVBD to metaphase II. CPEB, which interacts with the cyclin B1 CPE and is present throughout meiotic maturation, becomes phosphorylated at metaphase I. These data indicate that CPEB is involved in both the repression and the stimulation of cyclin B1 mRNA and suggest that the phosphorylation of this protein could be involved in regulating its activity.
Collapse
Affiliation(s)
- J Tay
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
22
|
Barkoff AF, Dickson KS, Gray NK, Wickens M. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation. Dev Biol 2000; 220:97-109. [PMID: 10720434 DOI: 10.1006/dbio.2000.9613] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational control is prominent during meiotic maturation and early development. In this report, we investigate a mode of translational repression in Xenopus laevis oocytes, focusing on the mRNA encoding cyclin B1. Translation of cyclin B1 mRNA is relatively inactive in the oocyte and increases dramatically during meiotic maturation. We show, by injection of synthetic mRNAs, that the cis-acting sequences responsible for repression of cyclin B1 mRNA reside within its 3'UTR. Repression can be saturated by increasing the concentration of reporter mRNA injected, suggesting that the cyclin B1 3'UTR sequences provide a binding site for a trans-acting repressor. The sequences that direct repression overlap and include cytoplasmic polyadenylation elements (CPEs), sequences known to promote cytoplasmic polyadenylation. However, the presence of a CPE per se appears insufficient to cause repression, as other mRNAs that contain CPEs are not translationally repressed. We demonstrate that relief of repression and cytoplasmic polyadenylation are intimately linked. Repressing elements do not override the stimulatory effect of a long poly(A) tail, and polyadenylation of cyclin B1 mRNA is required for its translational recruitment. Our results suggest that translational recruitment of endogenous cyclin B1 mRNA is a collaborative effect of derepression and poly(A) addition. We discuss several molecular mechanisms that might underlie this collaboration.
Collapse
Affiliation(s)
- A F Barkoff
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
23
|
Wells DG, Richter JD, Fallon JR. Molecular mechanisms for activity-regulated protein synthesis in the synapto-dendritic compartment. Curr Opin Neurobiol 2000; 10:132-7. [PMID: 10679431 DOI: 10.1016/s0959-4388(99)00050-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The creation of enduring modifications in synaptic efficacy requires new protein synthesis. Neurons face the formidable challenge of directing these newly made proteins to the appropriate subset of synapses. One attractive solution to this problem is the local translation of mRNAs that are targeted to dendrites and perhaps to synapses themselves. The molecular mechanisms mediating such local protein synthesis, notably CPEB-mediated cytoplasmic polyadenylation, are now being elucidated.
Collapse
Affiliation(s)
- D G Wells
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
24
|
Afouda AB, Reynaud-Deonauth S, Mohun T, Spohr G. Localized XId3 mRNA activation in Xenopus embryos by cytoplasmic polyadenylation. Mech Dev 1999; 88:15-31. [PMID: 10525185 DOI: 10.1016/s0925-4773(99)00166-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus development, during meiosis and cleavage, the extent of polyadenylation plays a central role in regulating the expression of transcripts and this is mediated by cis regulatory cytoplasmic polyadenylation elements (CPE) in the 3'-UTRs. We have identified a palindromic CPE in the mRNA of Xenopus Id3 which is conserved in the Id genes from other vertebrates. It promotes cytoplasmic polyadenylation and is negatively regulated by sequences further upstream in the 3'-UTR. This palindromic CPE promotes polyadenylation in both the epithelial and sensorial layers of the dorsal ectoderm in early embryos, but association with the upstream negative element blocks this effect in the epithelial layer. The asymmetric polyadenylation may be important for establishing a prepattern of transcriptional regulators.
Collapse
Affiliation(s)
- A B Afouda
- Department of Cell Biology, University of Genève, Switzerland
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- A M Fontes
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
26
|
|
27
|
Lieb B, Carl M, Hock R, Gebauer D, Scheer U. Identification of a novel mRNA-associated protein in oocytes of Pleurodeles waltl and Xenopus laevis. Exp Cell Res 1998; 245:272-81. [PMID: 9851867 DOI: 10.1006/excr.1998.4249] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amphibian oocytes accumulate a large pool of mRNA molecules for future embryonic development. Due to their association with specific proteins the stored maternal RNAs are translationally repressed. The identification of these RNA-binding proteins and the characterization of their functional domains may contribute to the understanding of the translational repression mechanisms and the subsequent activation processes during early embryogenesis. Here we present the complete Pleurodeles cDNA sequence of a cytoplasmic protein which is present in oocytes, eggs, and very early cleavage stage embryos but undetectable in postcleavage embryo and adult tissues. The predicted molecular mass of the protein is 55 kDa and the apparent molecular mass as determined by SDS-PAGE, 68 kDa. The deduced amino acid sequence reveals proline- and serine-rich domains in the aminoterminal part as well as two RGG boxes which represent characteristic motifs of several RNA-binding proteins. No distinct homologies to the consensus RNA recognition motif were found. The 55-kDa protein was recovered in cytoplasmic ribonucleoprotein (RNP) particles containing poly(A)+ RNA. It was therefore termed RAP55 for mRNA-associated protein of 55 kDa. However, a direct interaction of RAP55 with mRNA could not be demonstrated by UV-crosslinking experiments, indicating that it is bound to mRNP complexes via protein-protein interactions. RAP55 is evolutionarily conserved since antibodies raised against a recombinant Pleurodeles RAP55 fragment recognize the protein from Pleurodeles and Xenopus. The expression pattern and intracellular distribution of RAP55 suggest that it is part of those mRNP particles which are translationally repressed during oogenesis and become activated upon progesterone-induced oocyte maturation.
Collapse
Affiliation(s)
- B Lieb
- Biocenter, University of Würzburg, Am Hubland, Würzburg, D-97074, Germany.
| | | | | | | | | |
Collapse
|
28
|
Wu L, Wells D, Tay J, Mendis D, Abbott MA, Barnitt A, Quinlan E, Heynen A, Fallon JR, Richter JD. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 1998; 21:1129-39. [PMID: 9856468 DOI: 10.1016/s0896-6273(00)80630-3] [Citation(s) in RCA: 414] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Long-term changes in synaptic efficacy may require the regulated translation of dendritic mRNAs. While the basis of such regulation is unknown, it seemed possible that some features of translational control in development could be recapitulated in neurons. Polyadenylation-induced translation of oocyte mRNAs requires the cis-acting CPE sequence and the CPE-binding protein CPEB. CPEB is also present in the dendritic layers of the hippocampus, at synapses in cultured neurons, and in postsynaptic densities of adult brain. alpha-CaMKII mRNA, which is localized in dendrites and is necessary for synaptic plasticity and LTP, contains two CPEs. These CPEs are bound by CPEB and mediate polyadenylation-induced translation in injected Xenopus oocytes. In the intact brain, visual experience induces alpha-CaMKII mRNA polyadenylation and translation, suggesting that this process likely occurs at synapses.
Collapse
Affiliation(s)
- L Wu
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Saint-Jacques E, Guay J, Wirtanen L, Huard V, Stewart G, Séguin C. Cloning of a complementary DNA encoding an Ambystoma mexicanum metallothionein, AmMT, and expression of the gene during early development. DNA Cell Biol 1998; 17:83-91. [PMID: 9468225 DOI: 10.1089/dna.1998.17.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have used a polymerase chain reaction strategy to isolate a metallothionein (MT) cDNA from the amphibian Ambystoma mexicanum (axolotl). This cDNA is 875-bp long and encodes a 60 amino acid protein, AmMT, typical for family 1 MTs. It contains 20 cysteine (Cys) residues that can be aligned with those of other vertebrate MTs. The overall structure of the protein is unique among vertebrates in having only two amino acid residues before the first Cys at the amino-terminal end. Northern analyses showed that AmMT is expressed throughout embryogenesis, giving rise to three mRNA species of 650, 750, and 1,600 nucleotides (nt). The 750 and 1,600 nt transcripts appear to result from differential use of polyadenylation signals, whereas the 650 nt RNA could arise from deadenylation of the 750-nt transcript. Both the 750- and 1,600-nt RNAs were presented in embryos before the mid-blastula transition (MBT). After the MBT, the 750-nt RNA was replaced by the 650-nt RNA which was gradually degraded to undetectable levels in post-neurulation embryos. Levels of the 1,600-nt transcript increased at gastrulation and reach a maximum in Stage 30 embryos. In adult animals, levels of the 750-nt RNA were high in liver and testes, and very low in lung, gut, skin, and oviducts, whereas levels of the 1,600-nt transcript were similar and moderately elevated in all tissues examined. In contrast, in Xenopus laevis, Northern analysis did not detect XIMT-A mRNA in embryos before late neurulation (Stage 24). XIMT-A mRNA levels then increased sharply in Stage 36 hatched embryos at levels similar to those found in adult livers. These results show that AmMT presents a unique expression pattern among metazoans being transcribed as two transcripts differing in the length of their 3' untranslated regions, the levels of which vary during embryogenesis and in adult tissues.
Collapse
Affiliation(s)
- E Saint-Jacques
- Centre de Recherche en Cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The cytoplasmic life of an mRNA revolves around the regulation of its localization, translation and stability. Interactions between the two ends of the mRNA may integrate translation and mRNA turnover. Regulatory elements in the region between the termination codon and poly(A) tail - the 3' untranslated region - have been identified in a wide variety of systems, as have been some of the key players with which these elements interact.
Collapse
Affiliation(s)
- M Wickens
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA.
| | | | | |
Collapse
|
31
|
Hake LE, Richter JD. Translational regulation of maternal mRNA. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1332:M31-8. [PMID: 9061009 DOI: 10.1016/s0304-419x(96)00039-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- L E Hake
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | |
Collapse
|
32
|
Osborne HB, Richter JD. Translational control by polyadenylation during early development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:173-98. [PMID: 8994265 DOI: 10.1007/978-3-642-60471-3_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Wahle E, Kühn U. The mechanism of 3' cleavage and polyadenylation of eukaryotic pre-mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:41-71. [PMID: 9175430 DOI: 10.1016/s0079-6603(08)60277-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E Wahle
- Institut für Biochemic, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
34
|
HILLE MERRILLB, XU ZHE, DHOLAKIA JAYDEVN. The signal cascade for the activation of protein synthesis during the maturation of starfish oocytes: a role for protein kinase C and homologies with maturation inXenopusand mammatian oocytes. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Abstract
Oocytes accumulate a dowry of maternal mRNAs in preparation for embryogenesis. These maternal transcripts are kept dormant until late oogenesis or early embryogenesis when their translation is activated. In recent years, three types of translational control acting on maternal mRNAs have emerged: translational activation by cytoplasmic polyadenylation, translational activation by RNA localization, and regulated translational repression. In each case, translational control depends on the binding of trans-acting factors to sequences in the 3' untranslated region (3'UTR). Identification of these trans-acting factors is beginning to shed light on the molecular mechanisms that mediate translational control.
Collapse
Affiliation(s)
- G Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA.
| |
Collapse
|
36
|
Newman B, Dai Y. Transcription of c-mos protooncogene in the pig involves both tissue-specific promoters and alternative polyadenylation sites. Mol Reprod Dev 1996; 44:275-88. [PMID: 8858597 DOI: 10.1002/(sici)1098-2795(199607)44:3<275::aid-mrd1>3.0.co;2-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The function of the c-mos gene has been intensively studied, but its role in the mammal is still a subject for debate. For this reason, and because the gene is regulated posttranscriptionally, further study of the gene from other mammalian species is timely. The pig c-mos gene has been cloned, and the genomic sequence is presented here. The gene has no introns and shows close similarity to human and monkey genes, with striking sequence similarities in both the 5' and 3' flanking regions. The significance of this similarity in the context of gene regulation is discussed. c-mos expression was found to be restricted to gonadal tissues in the pig. The major start sites for transcription initiation in ovary and testis were identified by primer extension and found to be distinct, as in the mouse. Within the ovary, expression is confined to oocytes. Messenger RNA is synthesized in growing oocytes, and remains stable during oocyte maturation, but begins to be degraded in electrically stimulated eggs. Unexpectedly, RNase protection assays revealed that the 3' ends of transcripts in the pig ovary are heterogeneous, and this, together with the identification of three distinct cDNA clones, shows that multiple polyadenylation sites are used. The significance of these transcripts in terms of translational control is discussed.
Collapse
Affiliation(s)
- B Newman
- Department of Development and Signalling, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
37
|
Stebbins-Boaz B, Hake LE, Richter JD. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J 1996; 15:2582-92. [PMID: 8665866 PMCID: PMC450191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cytoplasmic polyadenylation is a key mechanism controlling maternal mRNA translation in early development. In most cases, mRNAs that undergo poly(A) elongation are translationally activated; those that undergo poly(A) shortening are deactivated. Poly(A) elongation is regulated by two cis-acting sequences in the 3'-untranslated region (UTR) of responding mRNAs, the polyadenylation hexanucleotide AAUAAA and the U-rich cytoplasmic polyadenylation element (CPE). Previously, we cloned and characterized the Xenopus oocyte CPE binding protein (CPEB), showing that it was essential for the cytoplasmic polyadenylation of B4 RNA. Here, we show that CPEB also binds the CPEs of G10, c-mos, cdk2, cyclins A1, B1 and B2 mRNAs. We find that CPEB is necessary for polyadenylation of these RNAs in egg extracts, suggesting that this protein is required for polyadenylation of most RNAs during oocyte maturation. Our data demonstrate that the complex timing and extent of polyadenylation are partially controlled by CPEB binding to multiple target sites in the 3' UTRs of responsive mRNAs. Finally, injection of CPEB antibody into oocytes not only inhibits polyadenylation in vivo, but also blocks progesterone-induced maturation. This is due to inhibition of polyadenylation and translation of c-mos mRNA, suggesting that CPEB is critical for early development.
Collapse
Affiliation(s)
- B Stebbins-Boaz
- Worchester Foundation for Biomedical Reserach, Shrewsbury, MA 01545, USA
| | | | | |
Collapse
|
38
|
Abstract
It is becoming increasingly apparent that translational control plays an important role in the regulation of gene expression in eukaryotic cells. Most of the known physiological effects on translation are exerted at the level of polypeptide chain initiation. Research on initiation of translation over the past five years has yielded much new information, which can be divided into three main areas: (a) structure and function of initiation factors (including identification by sequencing studies of consensus domains and motifs) and investigation of protein-protein and protein-RNA interactions during initiation; (b) physiological regulation of initiation factor activities and (c) identification of features in the 5' and 3' untranslated regions of messenger RNA molecules that regulate the selection of these mRNAs for translation. This review aims to assess recent progress in these three areas and to explore their interrelationships.
Collapse
Affiliation(s)
- V M Pain
- School of Biological Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
39
|
Wormington M, Searfoss AM, Hurney CA. Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes. EMBO J 1996; 15:900-9. [PMID: 8631310 PMCID: PMC450287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The translational regulation of maternal mRNAs is the primary mechanism by which stage-specific programs of protein synthesis are executed during early development. Translation of a variety of maternal mRNAs requires either the maintenance or cytoplasmic elongation of a 3' poly(A) tail. Conversely, deadenylation results in translational inactivation. Although its precise function remains to be elucidated, the highly conserved poly(A) binding protein I (PABP) mediates poly(A)-dependent events in translation initiation and mRNA stability. Xenopus oocytes contain less than one PABP per poly(A) binding site suggesting that the translation of maternal mRNAs could be either limited by or independent of PABP. In this report, we have analyzed the effects of overexpressing PABP on the regulation of mRNAs during Xenopus oocyte maturation. Increased levels of PABP prevent the maturation-specific deadenylation and translational inactivation of maternal mRNAS that lack cytoplasmic polyadenylation elements. Overexpression of PABP does not interfere with maturation-specific polyadenylation, but reduces the recruitment of some mRNAs onto polysomes. Deletion of the C-terminal basic region and a single RNP motif from PABP significantly reduces both its binding to polyadenylated RNA in vivo and its ability to prevent deadenylation. In contrast to a yeast PABP-dependent poly(A) nuclease, PABP inhibits Xenopus oocyte deadenylase in vitro. These results indicate that maturation-specific deadenylation in Xenopus oocytes is facilitated by a low level of PABP consistent with a primary function for PABP to confer poly(A) stability.
Collapse
Affiliation(s)
- M Wormington
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | | | |
Collapse
|
40
|
Abstract
The translational control of many maternal mRNAs in oocytes and early embryos relies on changes in poly(A) tail length; the factors controlling poly(A) tail length are being identified in a range of species.
Collapse
Affiliation(s)
- J D Vassalli
- Department of Morphology, University of Geneva Medical School, Switzerland
| | | |
Collapse
|
41
|
Affiliation(s)
- D Curtis
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Department of Biology, Cambridge, USA
| | | | | |
Collapse
|
42
|
Wahle E. 3'-end cleavage and polyadenylation of mRNA precursors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:183-94. [PMID: 7711061 DOI: 10.1016/0167-4781(94)00248-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E Wahle
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
43
|
Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 1994; 79:617-27. [PMID: 7954828 DOI: 10.1016/0092-8674(94)90547-9] [Citation(s) in RCA: 349] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The translational activation of several maternal mRNAs during Xenopus oocyte maturation is stimulated by cytoplasmic poly(A) elongation, which requires the uridine-rich cytoplasmic polyadenylation element (CPE) and the hexanucleotide AAUAAA. Here, we have enriched a CPE-binding protein (CPEB) by single-step RNA affinity chromatography, have obtained a CPEB cDNA, and have assessed the role of CPEB in cytoplasmic polyadenylation. The 62 kDa CPEB contains two RNA recognition motifs, and within this region, it is 62% identical to orb, an oocyte-specific RNA-binding protein from Drosophila. CPEB mRNA and protein are abundant in oocytes and are not detected in embryos beyond the gastrula stage. During oocyte maturation, CPEB is phosphorylated at a time that corresponds with the induction of polyadenylation. Immunodepletion of CPEB from polyadenylation-proficient egg extracts renders them incapable of adenylating exogenous RNA. Partial restoration of polyadenylation in depleted extracts is achieved by the addition of CPEB, thus demonstrating that this protein is required for cytoplasmic polyadenylation.
Collapse
Affiliation(s)
- L E Hake
- Worcester Foundation for Experimental Biology Shrewsbury, Massachusetts 01545
| | | |
Collapse
|