1
|
Aza-Carmona M, Barca-Tierno V, Hisado-Oliva A, Belinchón A, Gorbenko-del Blanco D, Rodriguez JI, Benito-Sanz S, Campos-Barros A, Heath KE. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development. PLoS One 2014; 9:e83104. [PMID: 24421874 PMCID: PMC3885427 DOI: 10.1371/journal.pone.0083104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.
Collapse
Affiliation(s)
- Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Veronica Barca-Tierno
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Alfonso Hisado-Oliva
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Alberta Belinchón
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Darya Gorbenko-del Blanco
- Dept. Celular Biology, Immunology & Neurosciences, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | | | - Sara Benito-Sanz
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Angel Campos-Barros
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Karen E. Heath
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
2
|
Freddie CT, Ji Z, Marais A, Sharrocks AD. Functional interactions between the Forkhead transcription factor FOXK1 and the MADS-box protein SRF. Nucleic Acids Res 2007; 35:5203-12. [PMID: 17670796 PMCID: PMC1976435 DOI: 10.1093/nar/gkm528] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The combinatorial control of gene expression by the association of members of different families of transcription factors is a common theme in eukaryotic transcriptional control. The MADS-box transcription factors SRF and Mcm1 represent paradigms for such regulation through their interaction with numerous partner proteins. For example, in Saccharomyces cerevisiae, Mcm1 interacts with the forkhead transcription factor Fkh2. Here, we identify a novel interaction between SRF and the Forkhead transcription factor FOXK1 in human cells. The importance of this interaction is shown for the regulation of the SRF target genes SM alpha-actin and PPGB. The binding of FOXK1 to the SM alpha-actin and PPGB promoters requires the presence of SRF on the promoter. FOXK1 acts as a transcriptional repressor and it represses SM alpha-actin and PPGB expression. Thus FOXK1 represents an additional member of the growing repertoire of transcription factors that can interact with SRF and modulate the transcriptional output from SRF-regulated promoters.
Collapse
Affiliation(s)
- Cecilie T. Freddie
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK and Medizinische Klinik II, Max-Burger-Forschungszentrum, Universitat Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | - Zongling Ji
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK and Medizinische Klinik II, Max-Burger-Forschungszentrum, Universitat Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | - Anett Marais
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK and Medizinische Klinik II, Max-Burger-Forschungszentrum, Universitat Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | - Andrew D. Sharrocks
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK and Medizinische Klinik II, Max-Burger-Forschungszentrum, Universitat Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
- *To whom correspondence should be addressed.+0044 161 275 5979+0044 161 275 5082
| |
Collapse
|
3
|
Herring BP, El-Mounayri O, Gallagher PJ, Yin F, Zhou J. Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues. Am J Physiol Cell Physiol 2006; 291:C817-27. [PMID: 16774989 PMCID: PMC2836780 DOI: 10.1152/ajpcell.00198.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mylk1 gene is a large gene spanning approximately 250 kb and comprising at least 31 exons. The mylk1 gene encodes at least four protein products: two isoforms of the 220-kDa myosin light chain kinase (MLCK), a 130-kDa MLCK, and telokin. Transcripts encoding these products are derived from four independent promoters within the mylk1 gene. The kinases expressed from the mylk1 gene have been extensively characterized and function to regulate the activity of nonmuscle and smooth muscle myosin II. Activation of these myosin motors by MLCK modulates a variety of contractile processes, including smooth muscle contraction, cell adhesion, migration, and proliferation. Dysregulation of these processes contributes to a number of diseases. The noncatalytic gene product telokin also has been shown to modulate contraction in smooth muscle cells through its ability to inhibit myosin light chain phosphatase. Given the crucial role of the products of the mylk1 gene in regulating numerous contractile processes, it seems intuitive that alterations in the transcriptional activity of the mylk1 gene also will have a significant impact on many physiological and pathological processes. In this review we highlight some of the recent studies that have described the transcriptional regulation of mylk1 gene products in smooth muscle tissues and discuss the implications of these findings for regulation of expression of other smooth muscle-specific genes.
Collapse
Affiliation(s)
- B Paul Herring
- Dept. of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA.
| | | | | | | | | |
Collapse
|
4
|
Schneider KU, Marchini A, Sabherwal N, Röth R, Niesler B, Marttila T, Blaschke RJ, Lawson M, Dumic M, Rappold G. Alteration of DNA binding, dimerization, and nuclear translocation of SHOX homeodomain mutations identified in idiopathic short stature and Leri-Weill dyschondrosteosis. Hum Mutat 2005; 26:44-52. [PMID: 15931687 DOI: 10.1002/humu.20187] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Haploinsufficiency of the short stature homeobox gene SHOX has been found in patients with idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis (LWD). In addition to complete gene deletions and nonsense mutations, several missense mutations have been identified in both patient groups, leading to amino acid substitutions in the SHOX protein. The majority of missense mutations were found to accumulate in the region encoding the highly conserved homeodomain of the paired-like type. In this report, we investigated nine different amino acid exchanges in the homeodomain of SHOX patients with ISS and LWD. We were able show that these mutations cause an alteration of the biological function of SHOX by loss of DNA binding, reduced dimerization ability, and/or impaired nuclear translocation. Additionally, one of the mutations (c.458G>T, p.R153L) is defective in transcriptional activation even though it is still able to bind to DNA, dimerize, and translocate to the nucleus. Thus, we demonstrate that single missense mutations in the homeodomain fundamentally impair SHOX key functions, thereby leading to the phenotype observed in patients with LWD and ISS.
Collapse
Affiliation(s)
- Katja U Schneider
- Department of Molecular Human Genetics, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Busek SU, Fantappie M, Malaquias LC, Wilson RA, Corrêa-Oliveira R, Oliveira GC. Cis-acting elements, CArG-, E-, CCAAT- and TATA-boxes may be involved in sexually regulated gene transcription in Schistosoma mansoni. Mem Inst Oswaldo Cruz 2003; 97 Suppl 1:85-90. [PMID: 12426599 DOI: 10.1590/s0074-02762002000900017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schistosomes undergo various morphological and metabolic changes during their development, reflected in a finely tuned regulation of protein and/or gene expression. The mechanisms involved in the control of gene expression during the development of the parasite are not understood. Two actin genes had been previously cloned and observed to be differentially expressed during the maturation of the parasite. The SmAct gene contains four putative cis-regulatory elements (TATA-, CCAAT-, E- and CArG-boxes). Our objective was to investigate in greater detail the expression pattern of two actin genes and verify if the binding of nuclear proteins to the promoter elements of SmAct correlated with the expression profile observed. We detected little variation in the expression of actin genes during the first seven days of schistosomula culture in vitro. However, we observed significantly higher levels of expression in males compared to female adults. CArG and CCAAT elements bound to a greater extent and formed distinct complexes with male in comparison to female nuclear extracts. In contrast, female extracts bound weakly to the E-box probe while no binding was observed with male extracts. Taken together these results describe cis-acting elements that appear to be involved in sexually regulated gene expression in Schistosoma mansoni.
Collapse
Affiliation(s)
- S U Busek
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brasil
| | | | | | | | | | | |
Collapse
|
6
|
La Celle PT, Polakowska RR. Human homeobox HOXA7 regulates keratinocyte transglutaminase type 1 and inhibits differentiation. J Biol Chem 2001; 276:32844-53. [PMID: 11435435 DOI: 10.1074/jbc.m104598200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratinocyte proliferation and differentiation result from expression of specific groups of genes regulated by unique combinations of transcription factors. To better understand these regulatory processes, we studied HOXA7 expression and its regulation of differentiation-specific keratinocyte genes. We isolated the homeobox transcription factor HOXA7 from keratinocytes through binding to a differentiation-dependent viral enhancer and analyzed its effect on endogenous differentiation-dependent genes, primarily transglutaminase 1. HOXA7 overexpression repressed transglutaminase 1-reporter activity. HOXA7 message markedly decreased, and transglutaminase RNA increased, upon phorbol ester-induced differentiation, in a protein kinase C-dependent manner. Overexpression of HOXA7 attenuated the transglutaminase 1 induction by phorbol ester, demonstrating that HOXA7 expression is inversely related to keratinocyte differentiation, and to transglutaminase 1 expression. Antisense HOXA7 expression activated transglutaminase 1, involucrin, and keratin 10 message and protein levels, demonstrating that endogenous HOXA7 down-regulates multiple differentiation-specific keratinocyte genes. In keeping with these observations, epidermal growth factor receptor activation stimulated HOXA7 expression. HOX genes function in groups, and we found that HOXA5 and HOXB7 were also down-regulated by phorbol ester. These results provide the first example of protein kinase C-mediated homeobox gene regulation in keratinocytes, and new evidence that HOXA7, potentially in conjunction with HOXA5 and HOXAB7, silences differentiation-specific genes during keratinocyte proliferation, that are then released from inhibition in response to differentiation signals.
Collapse
Affiliation(s)
- P T La Celle
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
7
|
Norris RA, Kern MJ. The identification of Prx1 transcription regulatory domains provides a mechanism for unequal compensation by the Prx1 and Prx2 loci. J Biol Chem 2001; 276:26829-37. [PMID: 11373278 DOI: 10.1074/jbc.m100239200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription regulatory domains of the Prx1a and Prx1b homeoproteins were analyzed in transient transfection assays using artificial promoters as well as an established downstream target promoter (tenascin-c). Activation and repression domains were detected in their common amino end. In the carboxyl end of Prx1a an activation domain and an inhibition/masking region (OAR domain) were detected. The Prx1b isoform, generated by alternative splicing, does not contain these carboxyl activation or inhibition domains. Instead, the data demonstrate that the carboxyl tail of Prx1b contains a potent repressor region. This difference in the carboxyl tail accounts for a 45-fold difference observed in transcription regulatory activity between Prx1a and Prx1b. The data also support the likelihood that this difference between Prx1a and Prx1b is higher in the presence of still undetermined cofactors. DNA binding affinities of Prx1a, Prx1b, and a series of truncation mutants were also examined. The carboxyl tail of Prx1a, which inhibited transcription activation in the transfection assays, also inhibited DNA binding. These differences in biochemical function between Prx1a and Prx1b, as well as the recently described activities of Prx2, provide a mechanism for the unequal compensation between the Prx1 and Prx2 loci.
Collapse
Affiliation(s)
- R A Norris
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425-2204, USA
| | | |
Collapse
|
8
|
Chang PS, Li L, McAnally J, Olson EN. Muscle specificity encoded by specific serum response factor-binding sites. J Biol Chem 2001; 276:17206-12. [PMID: 11278806 DOI: 10.1074/jbc.m010983200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Serum response factor (SRF) is a MADS box transcription factor that regulates muscle-specific and growth factor-inducible genes by binding the consensus sequence CC(A/T)6GG, known as a CArG box. Because SRF expression is not restricted solely to muscle, its expression alone cannot account for the muscle specificity of some of its target genes. To understand further the role of SRF in muscle-specific transcription, we created transgenic mice harboring lacZ transgenes linked to tandem copies of different CArG boxes with flanking sequences. CArG boxes from the SM22 and skeletal alpha-actin promoters directed highly restricted expression in developing smooth, cardiac, and skeletal muscle cells during early embryogenesis. In contrast, the CArG box and flanking sequences from the c-fos promoter directed expression throughout the embryo, with no preference for muscle cells. Systematic swapping of the core and flanking sequences of the SM22 and c-fos CArG boxes revealed that cell type specificity was dictated in large part by sequences immediately flanking the CArG box core. Sequences that directed widespread embryonic expression bound SRF more strongly than those that directed muscle-restricted expression. We conclude that sequence variations among CArG boxes influence cell type specificity of expression and account, at least in part, for the ability of SRF to distinguish between growth factor-inducible and muscle-specific genes in vivo.
Collapse
Affiliation(s)
- P S Chang
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | |
Collapse
|
9
|
Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol 2001; 18:491-502. [PMID: 11264400 DOI: 10.1093/oxfordjournals.molbev.a003828] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Homeobox genes encode transcription factors involved in many aspects of developmental processes. The homeodomain-leucine zipper (HD-Zip) genes, which are characterized by the presence of both a homeodomain and a leucine zipper motif, form a clade within the homeobox superfamily and were previously reported only from vascular plants. Here we report the isolation of 10 HD-Zip genes (named PPHB:1-PPHB:10) from the moss Physcomitrella patens. Based on a phylogenetic analysis of the 10 PPHB: genes and previously reported vascular plant HD-Zip genes, all of the PPHB: genes except Pphb3 belong to three of the four HD-Zip subfamilies (HD-Zip I, II, and III), indicating that these subfamilies originated before the divergence of the vascular plant and moss lineages. Pphb3 is sister to the HD-Zip II subfamily and has some distinctive characteristics, including the difference of the a(1) and d(1) sites of its leucine zipper motif, which are well conserved in each HD-Zip subfamily. Comparison of the genetic divergence of representative HD-Zip I and II genes showed that the evolutionary rate of HD-Zip I genes was faster than that of HD-Zip II genes.
Collapse
Affiliation(s)
- K Sakakibara
- National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
10
|
Norris RA, Kern MJ. Identification of domains mediating transcription activation, repression, and inhibition in the paired-related homeobox protein, Prx2 (S8). DNA Cell Biol 2001; 20:89-99. [PMID: 11244566 DOI: 10.1089/104454901750070292] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the growing information concerning the developmental importance of the Prx2 protein, the structural determinants of Prx2 function are poorly understood. To gain insight into the transcription regulatory regions of the Prx2 protein, we generated a series of truncation mutants. Both the Prx2 response element (PRE) and a portion of the tenascin promoter, a downstream target of Prx2, were used as reporters in transient transfection assays. This analysis showed that a conserved domain (PRX), found in both Prx1 and Prx2, activated transcription in NIH 3T3 cells. This PRX domain, as well as other functional regions of Prx2, demonstrated both cell-specific and promoter-dependent transcriptional regulation. A second important region, the OAR (aristaless) domain, which is conserved among 35 Paired-type homeodomain proteins, was observed to inhibit transcription. Deletion of this element resulted in a 20-fold increase of transcription from the tenascin reporter in NIH 3T3 cells but not in C2C12 cells. The OAR domain did not function as a repressor in chimeric fusions with the Gal4 DNA binding domain in either cell type, characterizing it as an inhibitor instead of a repressor. These results give insight into the function of the Prx2 transcription factor while establishing the framework for comparison with the two isoforms of Prx1.
Collapse
Affiliation(s)
- R A Norris
- University of South Carolina, Department of Cell Biology and Anatomy, Charleston, South Carolina, USA
| | | |
Collapse
|
11
|
Carson JA, Fillmore RA, Schwartz RJ, Zimmer WE. The smooth muscle gamma-actin gene promoter is a molecular target for the mouse bagpipe homologue, mNkx3-1, and serum response factor. J Biol Chem 2000; 275:39061-72. [PMID: 10993896 DOI: 10.1074/jbc.m006532200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An evolutionarily conserved vertebrate homologue of the Drosophila NK-3 homeodomain gene bagpipe, Nkx3-1, is expressed in vascular and visceral mesoderm-derived muscle tissues and may influence smooth muscle cell differentiation. Nkx3-1 was evaluated for mediating smooth muscle gamma-actin (SMGA) gene activity, a specific marker of smooth muscle differentiation. Expression of mNkx3-1 in heterologous CV-1 fibroblasts was unable to elicit SMGA promoter activity but required the coexpression of serum response factor (SRF) to activate robust SMGA transcription. A novel complex element containing a juxtaposed Nkx-binding site (NKE) and an SRF-binding element (SRE) in the proximal promoter region was found to be necessary for the Nkx3-1/SRF coactivation of SMGA transcription. Furthermore, Nkx3-1 and SRF associate through protein-protein interactions and the homeodomain region of Nkx3-1 facilitated SRF binding to the complex NKE.SRE. Mutagenesis of Nkx3-1 revealed an inhibitory domain within its C-terminal segment. In addition, mNkx3-1/SRF cooperative activity required an intact Nkx3-1 homeodomain along with the MADS box of SRF, which contains DNA binding and dimerization structural domains, and the contiguous C-terminal SRF activation domain. Thus, SMGA is a novel target for Nkx3-1, and the activity of Nkx3-1 on the SMGA promoter is dependent upon SRF.
Collapse
Affiliation(s)
- J A Carson
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
12
|
Romey MC, Pallares-Ruiz N, Mange A, Mettling C, Peytavi R, Demaille J, Claustres M. A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression. J Biol Chem 2000; 275:3561-7. [PMID: 10652351 DOI: 10.1074/jbc.275.5.3561] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have identified previously a novel complex mutant allele in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in a patient affected with cystic fibrosis (CF). This allele contained a mutation in CFTR exon 11 known to cause CF (S549R(T>G)), associated with the first alteration described so far in the minimal CFTR promoter region (-102T>A). Studies on genotype-phenotype correlations revealed striking differences between patients carrying mutation (S549R(T>G)) alone, who had a severe disease, and patients carrying the complex allele (-102(T>A)+S549R(T>G)), who exhibited milder forms of CF. We thus postulated that the sequence change (-102T>A) may attenuate the effects of the severe (S549R(T>G)) mutation through regulation of CFTR expression. Analysis of transiently transfected cell lines with wild-type and -102A variant human CFTR-directed luciferase reporter genes demonstrates that constructs containing the -102A variant (which creates a Yin Yang 1 (YY1) core element) increases CFTR expression significantly. Electrophoretic mobility shift assays indicate that the -102 site is located in a region of multiple DNA-protein interactions and that the -102A allele recruits specifically an additional nuclear protein related to YY1. The finding that the YY1-binding allele causes a significant increase in CFTR expression in vitro may allow a better understanding of the milder phenotype observed in patients who carry a severe CF mutation within the same gene.
Collapse
Affiliation(s)
- M C Romey
- Laboratoire de Génétique Moléculaire, Centre Spitalier Universitaire, 34060 Montpellier
| | | | | | | | | | | | | |
Collapse
|
13
|
Swanson DJ, Adachi M, Lewis EJ. The homeodomain protein Arix promotes protein kinase A-dependent activation of the dopamine beta-hydroxylase promoter through multiple elements and interaction with the coactivator cAMP-response element-binding protein-binding protein. J Biol Chem 2000; 275:2911-23. [PMID: 10644760 DOI: 10.1074/jbc.275.4.2911] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The differentiation and maintenance of a neurotransmitter phenotype is guided by the interaction of exogenous cues with intrinsic genetic machinery. For the noradrenergic phenotype, these influences combine to activate the expression of the catecholaminergic biosynthetic enzymes tyrosine hydroxylase and dopamine beta-hydroxylase (DBH). In this study, we evaluate the molecular mechanisms by which the transcription factor Arix/Phox2a contributes to DBH gene transcription. We have evaluated the contribution of individual homeodomain binding sites in the rat DBH promoter region and find that all are essential for both basal and cAMP-dependent protein kinase A (PKA)-stimulated transcription. Using mammalian one-hybrid and two-hybrid systems, we demonstrate that recruitment of Arix to the positions of homeodomain core recognition sites 1 and 2 at -153 to -166 of the DBH gene restores complete responsiveness of the promoter to PKA in SHSY-5Y neuroblastoma and HepG2 hepatoma cells. Intracellular Arix-Arix interactions are evident and may contribute to the interdependence of homeodomain binding sites. Analysis of functional domains of Arix reveals an N-terminal activation domain and a C-terminal repression domain. The N terminus of Arix contains an amino acid motif similar to a region in Brachyury and Pax9 transcription factors. The N-terminal activation domain of Arix interacts with the transcriptional co-activator, cAMP-response element-binding protein-binding protein, which potentiates transcription from the DBH promoter in a PKA-dependent manner. The present study supports the hypothesis that the paired-like homeodomain protein, Arix, acts as a critical phenotype-specific regulator of the DBH promoter by serving as an integrator of signal-dependent transcription activators within the network of the general transcription machinery.
Collapse
Affiliation(s)
- D J Swanson
- Department of Biochemistry, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
14
|
Cheng G, Hagen TP, Dawson ML, Barnes KV, Menick DR. The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+-Ca2+ exchanger gene. J Biol Chem 1999; 274:12819-26. [PMID: 10212268 DOI: 10.1074/jbc.274.18.12819] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac Na+-Ca2+ exchanger (NCX1) is the principal Ca2+ efflux mechanism in cardiocytes. The exchanger is up-regulated in both cardiac hypertrophy and failure. In this report, we identify the cis-acting elements that control cardiac expression and alpha-adrenergic up-regulation of the exchanger gene. Deletion analysis revealed that a minimal cardiac promoter fragment from -184 to +172 is sufficient for cardiac expression and alpha-adrenergic stimulation. Mutational analysis revealed that both the CArG element at -80 and the GATA element at -50 were required for cardiac expression. Gel mobility shift assay supershift analysis demonstrated that the serum response factor binds to the CArG element and GATA-4 binds to the GATA element. Point mutations in the -172 E-box demonstrated that it was required for alpha-adrenergic induction. In addition, deletion analysis revealed one or more enhancer elements in the first intron (+103 to +134) that are essential for phenylephrine up-regulation but bear no homology to any known transcription element. Therefore, this work demonstrates that SRF and GATA-4 are critical for NCX1 expression in neonatal cardiomyocytes and that the -172 E-box in addition to a novel enhancer element(s) are required for phenylephrine up-regulation of NCX1 and may mediate its hypertrophic up-regulation.
Collapse
Affiliation(s)
- G Cheng
- Cardiology Division, Department of Medicine, and the Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221, USA
| | | | | | | | | |
Collapse
|
15
|
Zhang N, Shen W, Hawley RG, Lu M. HOX11 interacts with CTF1 and mediates hematopoietic precursor cell immortalization. Oncogene 1999; 18:2273-9. [PMID: 10327073 DOI: 10.1038/sj.onc.1202545] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HOX11 is a homeodomain-containing oncogenic transcription factor that immortalizes hematopoietic precursor cells. The mechanism by which HOX11 facilitates this initial step of leukemogenesis is, however, not well understood. We have used a DNA binding site selection assay to investigate cooperative DNA binding by HOX11 with other transcription factors. A consensus sequence was derived and identified as the binding site for the CCAAT-box-binding transcription factors (CTF). HOX11 was shown to interact in vitro and in vivo with CTF1. Retrovirus-mediated transduction of an antisense CTF1 cDNA dramatically reduced the proliferative capacity of HOX11-immortalized hematopoietic precursor cells. CTF1 is, therefore, the first HOX11 protein partner identified that plays an important role in hematopoietic precursor cell immortalization.
Collapse
Affiliation(s)
- N Zhang
- Department of Medicine, University of California, San Diego, La Jolla 92093-0671, USA
| | | | | | | |
Collapse
|
16
|
Grow MW, Krieg PA. Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev Biol 1998; 204:187-96. [PMID: 9851852 DOI: 10.1006/dbio.1998.9080] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila, the tinman gene is absolutely required for development of the dorsal vessel, the insect equivalent of the heart. In vertebrates, the tinman gene is represented by a small family of tinman-related sequences, some of which are expressed during embryonic heart development. At present however, the precise importance of this gene family for vertebrate heart development is unclear. Using the Xenopus embryo, we have employed a dominant inhibitory strategy to interfere with the function of the endogenous tinman-related genes. In these experiments, suppression of tinman gene function can result in the complete elimination of myocardial gene expression and the absence of cell movements associated with embryonic heart development. This inhibition can be rescued by expression of wild-type tinman sequences. These experiments indicate that function of tinman family genes is essential for development of the vertebrate heart.
Collapse
Affiliation(s)
- M W Grow
- Department of Zoology, University of Texas at Austin, Austin, Texas, 78712, USA
| | | |
Collapse
|
17
|
Fortin AS, Underhill DA, Gros P. Helix 2 of the paired domain plays a key role in the regulation of DNA-binding by the Pax-3 homeodomain. Nucleic Acids Res 1998; 26:4574-81. [PMID: 9753723 PMCID: PMC147906 DOI: 10.1093/nar/26.20.4574] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pax3 contains two structurally independent DNA-binding domains, a paired domain (PD) and a homeodomain (HD). Biochemical and mutagenesis studies have shown that both domains are functionally interdependent. In particular, it has been shown that the PD can regulate the DNA-binding specificity and dimerization potential of the HD. To delineate Pax3 protein segments that are involved in the regulation of HD DNA-binding, a series of chimeric proteins were created in which the HD and linker region were gradually replaced with corresponding sequences from a heterologous HD protein, Phox. Characterization of chimeric proteins by electrophoretic mobility shift analysis (EMSA) suggests that a portion of the linker region contributes to the functional interaction between the PD and HD. In addition, stepwise removal of sequences from the Pax3 PD was used to define regions within this domain that are involved in the regulation of HD DNA-binding. EMSA of these proteins in the context of the chimeric Pax3/Phox backbone provided two key findings: (i) the C-terminal subdomain of the PD does not play a major role in the regulation of HD DNA-binding and (ii) the N-terminal subdomain and, in particular, the second alpha-helix are essential for modulation of HD DNA-binding. Significantly, deletion of helix 2 was found to be sufficient to uncouple regulation of HD DNA-binding by the PD.
Collapse
Affiliation(s)
- A S Fortin
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
18
|
Swanson DJ, Zellmer E, Lewis EJ. AP1 proteins mediate the cAMP response of the dopamine beta-hydroxylase gene. J Biol Chem 1998; 273:24065-74. [PMID: 9727025 DOI: 10.1074/jbc.273.37.24065] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter biosynthesis is regulated by environmental stimuli, which transmit intracellular signals via second messengers and protein kinase pathways. For the catecholamine biosynthetic enzymes, dopamine beta-hydroxylase and tyrosine hydroxylase, regulation of gene expression by cyclic AMP, diacyl glycerol, and Ca2+ leads to increased neurotransmitter biosynthesis. In this report, we demonstrate that the cAMP-mediated regulation of transcription from the dopamine beta-hydroxylase promoter is mediated by the AP1 proteins c-Fos, c-Jun, and JunD. Following treatment of cultured cells with cAMP, protein complexes bound to the dopamine beta-hydroxylase AP1/cAMP response element element change from consisting of c-Jun and JunD to include c-Fos, c-Jun, and JunD. The homeodomain protein Arix is also a component of this DNA-protein complex, binding to the adjacent homeodomain recognition sites. Transfection of a dominant negative JunD expression plasmid inhibits cAMP-mediated expression of the dopamine beta-hydroxylase promoter construct in PC12 and CATH.a cells. In addition to the role of c-Fos in regulating dopamine beta-hydroxylase gene expression in response to cAMP, a second pathway, involving Rap1/B-Raf is involved. These experiments illustrate an unusual divergence of cAMP-dependent protein kinase signaling through multiple pathways that then reconverge on a single element in the dopamine beta-hydroxylase promoter to elicit activation of gene expression.
Collapse
Affiliation(s)
- D J Swanson
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, L224, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
19
|
Lakich MM, Diagana TT, North DL, Whalen RG. MEF-2 and Oct-1 bind to two homologous promoter sequence elements and participate in the expression of a skeletal muscle-specific gene. J Biol Chem 1998; 273:15217-26. [PMID: 9614136 DOI: 10.1074/jbc.273.24.15217] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The murine adult IIB myosin heavy chain (IIB MyHC) gene is expressed only in certain skeletal muscle fibers. Within the proximal promoter are two A + T-rich motifs, mAT1 and mAT2, which greatly enhance muscle-specific transcription; myogenic cells contain proteins that bind to these sequences. MEF-2 binds to both mAT1 and mAT2; a mutation abolishing its binding to mAT1 greatly diminishes the activity of the promoter. Both mAT motifs also form complexes with a protein requiring a target sequence typical of POU domain proteins, which migrate in electrophoretic mobility shift assays to the same position as a complex containing purified Oct-1 and which are supershifted by an antibody specific to Oct-1; this protein is therefore probably Oct-1. Footprinting experiments demonstrate that mAT1 is preferentially occupied by MEF-2 and mAT2 by Oct-1 and that these two proteins appear to bind cooperatively to their respective sites. Although the two mAT motifs have sequences that are very similar, they nonetheless exhibit distinct behaviors and perform differently in the activation of the promoter. The contribution of the IIB MyHC gene to specification of the myogenic phenotype is thus at least in part regulated by MEF-2 and Oct-1.
Collapse
Affiliation(s)
- M M Lakich
- Unité de Biochimie, Département de Biologie Moléculaire, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
20
|
Kim DW, Cheriyath V, Roy AL, Cochran BH. TFII-I enhances activation of the c-fos promoter through interactions with upstream elements. Mol Cell Biol 1998; 18:3310-20. [PMID: 9584171 PMCID: PMC108912 DOI: 10.1128/mcb.18.6.3310] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/1997] [Accepted: 03/20/1998] [Indexed: 02/07/2023] Open
Abstract
The transcription factor TFII-I was initially isolated as a factor that can bind to initiator elements in core promoters. Recent evidence suggests that TFII-I may also have a role in signal transduction. We have found that overexpression of TFII-I can enhance the response of the wild-type c-fos promoter to a variety of stimuli. This effect depends on the c-fos c-sis-platelet-derived growth factor-inducible factor binding element (SIE) and serum response element (SRE). There is no effect of cotransfected TFII-I on the TATA box containing the c-fos basal promoter. Three TFII-I binding sites can be found in c-fos promoter. Two of these overlap the c-fos SIE and SRE, and another is located just upstream of the TATA box. Mutations that distinguish between serum response factor (SRF), STAT, and TFII-I binding to the c-fos SIE and SRE suggest that the binding of TFII-I to these elements is important for c-fos induction in conjunction with the SRF and STAT transcription factors. Moreover, TFII-I can form in vivo protein-protein complexes with the c-fos upstream activators SRF, STAT1, and STAT3. These results suggest that TFII-I may mediate the functional interdependence of the c-fos SIE and SRE elements. In addition, the ras pathway is required for TFII-I to exert its effects on the c-fos promoter, and growth factor stimulation enhances tyrosine phosphorylation of TFII-I. These results indicate that TFII-I is involved in signal transduction as well as transcriptional activation of the c-fos promoter.
Collapse
Affiliation(s)
- D W Kim
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
21
|
Wasylyk B, Hagman J, Gutierrez-Hartmann A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci 1998; 23:213-6. [PMID: 9644975 DOI: 10.1016/s0968-0004(98)01211-0] [Citation(s) in RCA: 385] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Ets family of transcription factors includes nuclear phosphoproteins that are involved in cell proliferation, differentiation and oncogenic transformation. The family is defined by a conserved DNA-binding domain (the ETS-DBD), which forms a highly conserved, winged, helix-turn-helix structural motif. As targets of the Ras-MAPK signaling pathway, Ets proteins function as critical nuclear integrators of ubiquitous signaling cascades. To direct signals to specific target genes, Ets proteins interact with (other) transcription factors that promote the binding of Ets proteins to composite Ras-responsive elements.
Collapse
Affiliation(s)
- B Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, ULP, Strasbourg, France
| | | | | |
Collapse
|
22
|
Hautmann MB, Madsen CS, Mack CP, Owens GK. Substitution of the degenerate smooth muscle (SM) alpha-actin CC(A/T-rich)6GG elements with c-fos serum response elements results in increased basal expression but relaxed SM cell specificity and reduced angiotensin II inducibility. J Biol Chem 1998; 273:8398-406. [PMID: 9525950 DOI: 10.1074/jbc.273.14.8398] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have previously demonstrated that both CC(A/T-rich)6GG (CArG) elements A and B of the smooth muscle (SM) alpha-actin promoter are required for smooth muscle cell (SMC)-specific expression and angiotensin II (AII)-induced stimulation. Moreover, results provided evidence that AII responsiveness of SM alpha-actin was at least partially dependent on modulation of serum response factor (SRF) binding to the SM alpha-actin CArGs by the homeodomain containing protein, MHox. The goal of the present study was to investigate whether the degeneracy of the SM alpha-actin CArGs (both contain a Gua or Cyt substitution in their A/T-rich center) and their reduced SRF binding activity as compared with c-fos serum response element (SRE) is important for conferring cell type-specific expression and AII responsiveness. Transient transfection assays using SM alpha-actin reporter gene constructs in which the endogenous SM alpha-actin CArGs were replaced by c-fos SREs demonstrated the following: 1) relaxation of cell-specific expression, 2) a 50% reduction in AII responsiveness, and 3) reduced ability to be transactivated by MHox. In addition, we also showed that the position of the SM alpha-actin CArGs was important in that interchanging them abolished both basal and AII-induced activities. Taken together, these results suggest that the reduced SRF binding activities of the SM alpha-actin CArGs and CArG positional context contribute to SMC-specific expression of SM alpha-actin as well as maximal AII responsiveness.
Collapse
Affiliation(s)
- M B Hautmann
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
23
|
Browning CL, Culberson DE, Aragon IV, Fillmore RA, Croissant JD, Schwartz RJ, Zimmer WE. The developmentally regulated expression of serum response factor plays a key role in the control of smooth muscle-specific genes. Dev Biol 1998; 194:18-37. [PMID: 9473329 DOI: 10.1006/dbio.1997.8808] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serum response factor (SRF) is a MADS box transcription factor that has been shown to be important in the regulation of a variety of muscle-specific genes. We have previously shown SRF to be a major component of multiple cis/trans interactions found along the smooth muscle gamma-actin (SMGA) promoter. In the studies reported here, we have further characterized the role of SRF in the regulation of the SMGA gene in the developing gizzard. EMSA analyses, using nuclear extracts derived from gizzards at various stages in development, showed that the SRF-containing complexes were not present early in gizzard smooth muscle development, but appeared as development progressed. We observed an increase in SRF protein and mRNA levels during gizzard development by Western and Northern blot analyses, with a large increase just preceding an increase in SMGA expression. Thus, changes in SRF DNA-binding activity were paralleled with increased SRF gene expression. Immunohistochemical analyses demonstrated a correspondence of SRF and SMGA expression in differentiating visceral smooth muscle cells (SMCs) during gizzard tissue development. This correspondence of SRF and SMGA expression was also observed in cultured smooth muscle mesenchyme induced to express differentiated gene products in vitro. In gene transfer experiments with SMGA promoter-luciferase reporter gene constructs we observed four- to fivefold stronger SMGA promoter activity in differentiated SMCs relative to replicating visceral smooth muscle cells. Further, we demonstrate the ability of a dominant negative SRF mutant protein to specifically inhibit transcription of the SMGA promoter in visceral smooth muscle, directly linking SRF with the control of SMGA gene expression. Taken together, these data suggest that SRF plays a prominent role in the developmental regulation of the SMGA gene.
Collapse
Affiliation(s)
- C L Browning
- Department of Structural and Cellular Biology, University of South Alabama, Mobile, Alabama, 36688, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Momiyama T, Hayashi K, Obata H, Chimori Y, Nishida T, Ito T, Kamiike W, Matsuda H, Sobue K. Functional involvement of serum response factor in the transcriptional regulation of caldesmon gene. Biochem Biophys Res Commun 1998; 242:429-35. [PMID: 9446812 DOI: 10.1006/bbrc.1997.7959] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A 22-bp fragment including the CArG element (CArG1) is essential for the transcription of the caldesmon gene. In this study, we investigated the effects of serum response factor (SRF) on the functional regulation of caldesmon promoter in smooth muscle cells. Gel supershift assay revealed that SRF was one component of the CArG1-protein complex. Dominant-negative mutants of SRF suppressed the promoter activity of caldesmon, whereas wild-type SRF overcame this suppression. These results suggest that SRF functions as a core activating factor of the caldesmon promoter. Furthermore, fractionation of smooth muscle cells' nuclear extracts using DNA affinity paramagnetic particles suggests that SRF transactivates the caldesmon promoter in concert with additional factors in the flow-through fraction recruited to the CArG element.
Collapse
Affiliation(s)
- T Momiyama
- Department of Neurochemistry and Neuropharmacology, Biomedical Research Center, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Simon KJ, Grueneberg DA, Gilman M. Protein and DNA contact surfaces that mediate the selective action of the Phox1 homeodomain at the c-fos serum response element. Mol Cell Biol 1997; 17:6653-62. [PMID: 9343429 PMCID: PMC232519 DOI: 10.1128/mcb.17.11.6653] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human homeodomain protein Phox1 can impart serum-responsive transcriptional activity to the c-fos serum response element (SRE) by interacting with serum response factor (SRF). This activity is shared with other Paired class homeodomains but not with more distantly related homeodomains. To understand the mechanism of action of Phox1 at the SRE and the basis for the selective activity of Paired class homeodomains in this context, we performed a detailed mutagenesis of the Phox1 homeodomain. We found that amino acid residues that contact the major groove of the DNA are required for SRE activation in vivo, suggesting an in vivo requirement for major-groove DNA contact by the homeodomain. In contrast, substitution of a lysine residue in the N-terminal arm of the Phox1 homeodomain appeared to abolish DNA binding without affecting activity in vivo. Certain substitutions on the exposed surfaces of helices 1 and 2, not required for DNA binding, abolished activity in vivo, suggesting that these surfaces contact an accessory protein(s) required for this activity. We also found that transfer of a single amino acid residue from the surface of Phox1 helix 1 to the corresponding position in the distantly related Deformed (Dfd) homeodomain imparts to Dfd the ability to activate the SRE in vivo. We propose that Phox1 interacts with one or more factors at the SRE, in addition to SRF, and that the specificity of this interaction is determined by residues on the surfaces of helices 1 and 2.
Collapse
Affiliation(s)
- K J Simon
- Graduate Program in Molecular and Cellular Biology, State University of New York at Stony Brook, 11794, USA
| | | | | |
Collapse
|
26
|
Swanson DJ, Zellmer E, Lewis EJ. The homeodomain protein Arix interacts synergistically with cyclic AMP to regulate expression of neurotransmitter biosynthetic genes. J Biol Chem 1997; 272:27382-92. [PMID: 9341190 DOI: 10.1074/jbc.272.43.27382] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription of the neurotransmitter biosynthetic genes tyrosine hydroxylase and dopamine beta-hydroxylase (DBH) is regulated by cell type-specific transcription factors, including the homeoprotein Arix, and second messengers, including cyclic AMP. The cis-acting regulatory sites of the DBH gene which respond to Arix and cAMP lie adjacent to each other, between bases -180 and -150, in a regulatory element named DB1. Neither Arix nor cyclic AMP analogs alone effectively stimulate transcription from the DBH promoter in non-neuronal cell cultures. However, when Arix is present together with cAMP, transcription is substantially activated. Synergistic transcription from the DBH promoter can also be elicited by cotransfection of Arix with an expression vector encoding the catalytic subunit of protein kinase A. Nuclear extracts from PC12 cells display a cAMP-induced complex binding to the DB1 element, and antisera to transcription factors CREB, CREM, Fos, and Jun indicate that these proteins, or closely related family members, interact with DB1. A dominant negative construct of CREB inhibits the response of the DBH promoter to protein kinase A. These results demonstrate a synergistic interaction between a homeodomain protein and the cAMP signal transduction system and suggest that similar interactions may regulate the tissue-specific expression of neuroendocrine genes.
Collapse
Affiliation(s)
- D J Swanson
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
27
|
Grueneberg DA, Henry RW, Brauer A, Novina CD, Cheriyath V, Roy AL, Gilman M. A multifunctional DNA-binding protein that promotes the formation of serum response factor/homeodomain complexes: identity to TFII-I. Genes Dev 1997; 11:2482-93. [PMID: 9334314 PMCID: PMC316568 DOI: 10.1101/gad.11.19.2482] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1997] [Accepted: 08/12/1997] [Indexed: 02/05/2023]
Abstract
The human homeodomain protein Phox1 interacts functionally with serum response factor (SRF) to impart serum responsive transcriptional activity to SRF-binding sites in a HeLa cell cotransfection assay. However, stable ternary complexes composed of SRF, Phox1, and DNA, which presumably mediate the transcriptional effects of Phox1 in vivo, have not been observed in vitro. Here, we report the identification, purification, and molecular cloning of a human protein that promotes the formation of stable higher-order complexes of SRF and Phox1. We show that this protein, termed SPIN, interacts with SRF and Phox1 in vitro and in vivo. Furthermore, SPIN binds specifically to multiple sequences in the c-fos promoter and interacts cooperatively with Phox1 to promote serum-inducible transcription of a reporter gene driven by the c-fos serum response element (SRE). SPIN is identical to the initiator-binding protein TFII-I. Consistent with this hypothesis, SPIN exhibits modest affinity for a characterized initiator sequence in vitro. We propose that this multifunctional protein coordinates the formation of an active promoter complex at the c-fos gene, including the linkage of specific signal responsive activator complexes to the general transcription machinery.
Collapse
Affiliation(s)
- D A Grueneberg
- ARIAD Pharmaceuticals, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hautmann MB, Thompson MM, Swartz EA, Olson EN, Owens GK. Angiotensin II-induced stimulation of smooth muscle alpha-actin expression by serum response factor and the homeodomain transcription factor MHox. Circ Res 1997; 81:600-10. [PMID: 9314842 DOI: 10.1161/01.res.81.4.600] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of the present study was to examine the molecular mechanisms whereby angiotensin II (Ang II) stimulates smooth muscle (SM) alpha-actin expression in rat aortic smooth muscle cells (SMCs). Nuclear run-on analysis and transfection studies indicated that the effects of Ang II on SM alpha-actin were mediated at least in part at the transcriptional level. Transfection of various rat SM alpha-actin promoter/chloramphenicol acetyltransferase (CAT) constructs into SMCs demonstrated that the first 155 bp of the SM alpha-actin promoter was sufficient to confer maximal Ang II responsiveness, conferring an approximately 4-fold increase in reporter activities in these SMCs compared with vehicle-treated SMCs. Mutation of either of two highly conserved CArG elements, designated A (-62) and B (-112), completely abolished Ang II-induced increases in reporter activity, whereas mutation of a homeodomain-like binding sequence at -145 (ATTA) reduced reporter activity by half. Results of EMSAs showed that nuclear extracts from Ang II-treated SMCs exhibited enhanced binding activity of serum response factor (SRF) to the CArG elements and of a homeodomain factor, MHox, to the ATTA element. Northern analyses showed that Ang II also stimulated marked increases in MHox mRNA levels. Western analyses demonstrated that Ang II-induced increases in SRF binding were not due to increased SRF protein expression. Recombinant MHox markedly enhanced binding activity of SRF in EMSAs. Finally, MHox overexpression transactivated a SM alpha-actin promoter/CAT reporter construct by approximately 3.5-fold in transient cotransfection studies. These results provide evidence for involvement of a homeodomain transcription factor, MHox, in Ang II-mediated stimulation of SM alpha-actin via a CArG/SRF-dependent mechanism.
Collapse
Affiliation(s)
- M B Hautmann
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
29
|
Li L, Liu Z, Mercer B, Overbeek P, Olson EN. Evidence for serum response factor-mediated regulatory networks governing SM22alpha transcription in smooth, skeletal, and cardiac muscle cells. Dev Biol 1997; 187:311-21. [PMID: 9242426 DOI: 10.1006/dbio.1997.8621] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SM22alpha is an adult smooth muscle-specific protein that is expressed in the smooth, cardiac, and skeletal muscle lineages during early embryogenesis before becoming restricted specifically to all vascular and visceral smooth muscle cells (SMC) in late fetal development and adulthood. We have used the SM22alpha gene as a marker to define the regulatory mechanisms that control muscle-specific gene expression in SMCs. Previously, we reported that the 445-base-pair promoter of SM22alpha was sufficient to direct transcription of a lacZ reporter gene in early cardiac and skeletal muscle cell lineages and in a subset of arterial SMCs, but not in venous nor visceral SMCs in transgenic mice. Here we describe two evolutionarily conserved CArG (CC(A/T)6GG) boxes in the SM22alpha promoter, both of which are essential for full promoter activity in cultured SMCs. In contrast, only the promoter-proximal CArG box is essential for specific expression in developing smooth, skeletal, and cardiac muscle lineages in transgenic mice. Both CArG boxes bind serum response factor (SRF), but SRF binding is not sufficient for SM22alpha promoter activity, since overexpression of SRF in the embryonal teratocarcinoma cell line F9, which normally expresses low levels of SRF, fails to activate the promoter. However, a chimeric protein in which SRF was fused to the transcription activation domain of the viral coactivator VP16 is able to activate the SM22alpha promoter in F9 cells. These results demonstrate the SM22alpha promoter-proximal CArG box is a target for the regulatory programs that confer smooth, skeletal, and cardiac muscle specificity to the SM22alpha promoter and they suggest that SRF activates SM22alpha transcription in conjunction with additional regulatory factors that are cell type-restricted.
Collapse
Affiliation(s)
- L Li
- Department of Internal Medicine, Wayne State University, Detroit, Michigan 48335, USA
| | | | | | | | | |
Collapse
|
30
|
Underhill DA, Gros P. The paired-domain regulates DNA binding by the homeodomain within the intact Pax-3 protein. J Biol Chem 1997; 272:14175-82. [PMID: 9162047 DOI: 10.1074/jbc.272.22.14175] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pax-3 contains two structurally independent DNA-binding domains, a paired-domain and a homeodomain. Their functional interdependence has been suggested by the analysis of the Sp-delayed (Spd) mouse mutant, in which a glycine to arginine substitution at position 9 of the paired-domain abrogates DNA binding by both domains. This glycine is located in the beta-turn portion of a beta-hairpin motif, and the requirement for this structure was investigated by mutagenesis at this and neighboring positions. At position 9, only substitution with proline increased DNA binding by the paired-domain and homeodomain above the level observed with the Spd arginine mutation, suggesting that the beta-turn is necessary for the function of both DNA-binding domains. Alanine scanning mutagenesis also identified a number of flanking residues important for DNA binding by both domains, emphasizing the requirement of the beta-hairpin for the interaction of Pax-3 with DNA. Furthermore, we show that these mutations reduce binding by the homeodomain at the monomeric level and do not impair dimerization on a TAAT(N)2ATTA consensus motif. In contrast, the wild-type paired-domain was found to prevent dimerization on consensus motifs with 3-base pair spacing of the type TAAT(N)3ATTA. Importantly, both the deleterious effect of the Spd mutation on homeodomain DNA binding and the loss of dimerization on TAAT(N)3ATTA motifs can be transferred to a heterologous homeodomain from the human phox protein. Moreover, the presence of the paired-domain affects sequence discrimination within the 3-base pair spacer in this context. These analyses establish that the beta-hairpin motif is essential for paired-domain and homeodomain DNA binding, and suggest a novel mechanism by which the paired-domain can influence sequence specificity of the homeodomain within the Pax-3 polypeptide.
Collapse
Affiliation(s)
- D A Underhill
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | | |
Collapse
|
31
|
Martin KA, Gualberto A, Kolman MF, Lowry J, Walsh K. A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements. DNA Cell Biol 1997; 16:653-61. [PMID: 9174170 DOI: 10.1089/dna.1997.16.653] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the promoters of many immediate early genes, including c-fos, CArG DNA regulatory elements mediate basal constituitive expression and rapid and transient serum induction. CArG boxes also occur in the promoters of muscle-specific genes, including skeletal alpha-actin, where it confers muscle-specific expression. These elements are regulated, at least in part, by the ubiquitous transcription factors serum response factor (SRF) and YY1. The homeobox transcription factor Phox1/MHox has also been implicated in regulation of the c-fos CArG element and is thought to function by facilitating SRF binding to DNA. Here, we provide in vitro and in vivo evidence that the mechanism of YY1 repression of CArG elements results from competition with SRF for overlapping binding sites. We describe in detail the binding sites of YY1 and SRF through serial point mutations of the skeletal alpha-actin proximal CArG element and identify a mutation that dramatically reduces YY1 binding but retains normal SRF binding. YY1 competes with SRF for binding to wild-type CArG elements, but not to this point mutant in vitro. This mutant is sufficient for muscle-specific expression in vivo but is much less sensitive to repression by YY1 overexpression. We utilized the YY1/SRF competition to address the role of Phox1 at these elements. Phox1 overexpression did not diminish YY1-mediated repression, suggesting that transcriptional activation by Phox1 does not result from enhanced SRF binding to these elements. These methods may prove to be useful for assessing interactions between other CArG element regulatory factors.
Collapse
Affiliation(s)
- K A Martin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
32
|
Bradford AP, Wasylyk C, Wasylyk B, Gutierrez-Hartmann A. Interaction of Ets-1 and the POU-homeodomain protein GHF-1/Pit-1 reconstitutes pituitary-specific gene expression. Mol Cell Biol 1997; 17:1065-74. [PMID: 9032233 PMCID: PMC231831 DOI: 10.1128/mcb.17.3.1065] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The pituitary-specific, POU-homeodomain factor GHF-1/Pit-1 is necessary, but not sufficient, for cell-specific expression of prolactin (PRL), growth hormone (GH), and thyrotropin. Combinatorial interactions of GHF-1 with other factors are likely to be required; however, such factors and their mechanisms of action remain to be elucidated. Here we identify Ets-1 as a factor that functionally and physically interacts with GHF-1 to fully reconstitute proximal PRL promoter activity. In contrast, Ets-2 has no effect, and the alternatively spliced GHF-2/Pit-1beta variant fails to synergize with Ets-1. The Ets-1-GHF-1 synergy requires a composite Ets-1-GHF-1 cis element and is dependent on an Ets-1-specific protein domain. Furthermore, the ancestrally related and GHF-1-dependent GH promoter, which lacks this composite element, does not exhibit this response. Finally, Ets-1, but not Ets-2, binds directly to GHF-1 and GHF-2. These data show that a functional interaction of GHF-1 and Ets-1, acting via a composite DNA element, is required to establish lactotroph-specific PRL gene expression, thus providing a molecular mechanism by which GHF-1 can discriminate between the GH and PRL genes. These results underscore the importance of transcription factors that are distinct from, but interact with, homeobox proteins to establish lineage-specific gene expression.
Collapse
Affiliation(s)
- A P Bradford
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
33
|
Chen CY, Schwartz RJ. Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol 1996; 16:6372-84. [PMID: 8887666 PMCID: PMC231639 DOI: 10.1128/mcb.16.11.6372] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We recently showed that the cardiogenic homeodomain factor Nkx-2.5 served as a positive acting accessory factor for serum response factor (SRF) and that together they provided strong transcriptional activation of the cardiac alpha-actin promoter, depending upon intact serum response elements (SREs) (C. Y. Chen, J. Croissant, M. Majesky, S. Topouz, T. McQuinn, M. J. Frankovsky, and R. J. Schwartz, Dev. Genet. 19:119-130, 1996). As shown here, Nkx-2.5 and SRF collaborated to activate the endogenous murine cardiac alpha-actin gene in 10T1/2 fibroblasts by a mechanism in which SRF recruited Nkx-2.5 to the alpha-actin promoter. Activation of a truncated promoter consisting of the proximal alpha-actin SRE1 occurred even when Nkx-2.5 DNA-binding activity was blocked by a point mutation in the third helix of its homeodomain. Investigation of protein-protein interactions showed that Nkx-2.5 was bound to SRF in the absence of DNA in soluble protein complexes retrieved from cardiac myocyte nuclei but could also be detected in coassociated binding complexes on the proximal SRE1. Recruitment of Nkx-2.5 to an SRE depended upon SRF DNA-binding activity and was blocked by the dominant negative SRFpm1 mutant, which allowed for dimerization of SRF monomers but prevented DNA binding. Interactive regions shared by Nkx-2.5 and SRF were mapped to N-terminal/helix I and helix II/helix III regions of the Nkx-2.5 homeodomain and to the N-terminal extension of the MADS box. Our study suggests that physical association between Nkx-2.5 and SRF is one way that cardiac specified genes are activated in cardiac cell lineages.
Collapse
Affiliation(s)
- C Y Chen
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
34
|
Bradford AP, Conrad KE, Tran PH, Ostrowski MC, Gutierrez-Hartmann A. GHF-1/Pit-1 functions as a cell-specific integrator of Ras signaling by targeting the Ras pathway to a composite Ets-1/GHF-1 response element. J Biol Chem 1996; 271:24639-48. [PMID: 8798730 DOI: 10.1074/jbc.271.40.24639] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Activation of the rat prolactin (rPRL) promoter by Ras is a prototypical example of tissue-specific transcriptional regulation in a highly differentiated cell type. Using a series of site-specific mutations and deletions of the proximal rPRL promoter we have mapped the major Ras/Raf response element (RRE) to a composite Ets-1/GHF-1 binding site located between positions -217 and -190. Mutation of either the Ets-1 or GHF-1 binding sites inhibits Ras and Raf activation of the rPRL promoter, and insertion of this RRE into the rat growth hormone promoter confers Ras responsiveness. We show that Ets-1 is expressed in GH4 cells and, consistent with their functional synergistic interaction, both Ets-1 and GHF-1 are able to bind specifically to this bipartite RRE. We confirm that Ets-1 or a related Ets factor is the nuclear target of the Ras pathway leading to activation of the rPRL promoter and demonstrate that Elk-1 and Net do not mediate the Ras response. Thus, the pituitary-specific POU homeodomain transcription factor, GHF-1, serves as a cell-specific signal integrator by functionally interacting with an Ets-1-like factor, at uniquely juxtaposed binding sites, thereby targeting an otherwise ubiquitous Ras signaling pathway to a select subset of cell-specific GHF-1-dependent genes.
Collapse
Affiliation(s)
- A P Bradford
- Department of Medicine, Program in Molecular Biology, and Colorado Cancer Center, University of Colorado Health Sciences Center, Denver, 80262, USA
| | | | | | | | | |
Collapse
|
35
|
Zappavigna V, Falciola L, Helmer-Citterich M, Mavilio F, Bianchi ME. HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J 1996; 15:4981-91. [PMID: 8890171 PMCID: PMC452236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
High mobility group protein 1 (HMG1) is a non-histone, chromatin-associated nuclear protein with a proposed role in the regulation of eukaryotic gene expression. We show that HMG1 interacts with proteins encoded by the HOX gene family by establishing protein-protein contacts between the HMG box domains and the HOX homeodomain. The functional role of these interactions was studied using the transcriptional activity of the human HOXD9 protein as a model. HMG1 enhances, in a dose-dependent fashion, the sequence-specific DNA binding activity in vitro, and the transcriptional activation in a co-transfection assay in vivo, of the HOXD9 protein. Functional interaction between HMG1 and HOXD9 is dependent on the DNA binding activity of the homeodomain, and requires the HOXD9 transcriptional activation domain. HMG1 enhances activation by HOXD9, but not by HOXD8, of the HOXD9-controlled element. Specific target recognition and functional interaction with HMG1 can be transferred to HOXD8 by homeodomain swapping. We propose that HMG1-like proteins might be general co-factors in HOX-mediated transcriptional activation, which facilitate access of HOX proteins to specific DNA targets, and/or introduce architectural constraints in the assembly of HOX-containing transcriptional complexes.
Collapse
Affiliation(s)
- V Zappavigna
- DIBIT, Istituto Scientifico San Raffaele, Milano, Italy
| | | | | | | | | |
Collapse
|
36
|
Zhu A, Kuziora MA. Homeodomain interaction with the beta subunit of the general transcription factor TFIIE. J Biol Chem 1996; 271:20993-6. [PMID: 8702862 DOI: 10.1074/jbc.271.35.20993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Homeodomain-containing proteins play a crucial role as transcriptional regulators in the process of cell differentiation. The homeodomain performs a dual function in this regard, acting as a DNA binding domain and participating in protein-protein interactions that enhance DNA binding specificity or regulatory activity. Here we describe a homeodomain class-specific interaction with the beta subunit of the general transcription factor TFIIE. We show that the Antennapedia and Abdominal-B homeodomains bind to TFIIEbeta, but the even-skipped homeodomain does not. Using a two-hybrid assay performed in cultured cells, we demonstrate that the homeodomain-TFIIEbeta interaction occurs in vivo. The Abdominal-B homeodomain is shown to activate transcription in vitro, and this activation can be blocked with anti-TFIIEbeta antibody without affecting basal transcription levels. Together with published data demonstrating an interaction between proteins containing even-skipped class homeodomains and the TATA-binding protein (Um, M., Li, C., and Manley, J. L. (1995) Mol. Cell. Biol. 15, 5007-5016; Zhang, H., Catron, K. M., and Abate-Shen, C. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1764-1769), these results suggest various homeodomain containing proteins interact with different general transcription factors, an observation that may have important implications for transcriptional regulation.
Collapse
Affiliation(s)
- A Zhu
- Department of Biological Sciences, University of Pittsburgh, A234 Langley Hall, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
37
|
Chen CY, Croissant J, Majesky M, Topouzis S, McQuinn T, Frankovsky MJ, Schwartz RJ. Activation of the cardiac alpha-actin promoter depends upon serum response factor, Tinman homologue, Nkx-2.5, and intact serum response elements. DEVELOPMENTAL GENETICS 1996; 19:119-30. [PMID: 8900044 DOI: 10.1002/(sici)1520-6408(1996)19:2<119::aid-dvg3>3.0.co;2-c] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A murine cardiac specific homeoboxgene, Nkx-2.5/CSX, a potential Drosophila tinman homologue, may have a fundamental role in cardiac myocyte differentiation. DNA binding targets for Nkx-2.5 were recently shown to represent novel homeodomain binding sequences, some of which resembled serum response elements (SREs); [Chen CY, Schwartz RJ (1995): J Biol Chem 270: 15628-15633]. In this study, Nkx-2.5 facilitated serum response factor (SRF) DNA-binding activity to the multiple SREs found on the cardiac alpha-actin promoter and together stimulated cardiac alpha-actin promoter dependent transcription in 10T1/2 fibroblasts. Analysis of cardiac alpha-actin promoter mutants demonstrated the importance of the multiple upstream SREs and an obligatory requirement for an intact proximal SRE1, for providing high levels of activity in the presence of Nkx-2.5 and SRF coexpression. Transfection assays with mutant SRF species indicated that the C-terminal activation domain and DNA-binding MADS box were necessary for transcriptional activity in the presence of Nkx-2.5. Expression of Nkx-2.5 mutants also demonstrated that the homeodomain alone was insufficient for directing promoter activity in the presence of SRF. The central role of SRF in regulating striated alpha-actin gene activity also was revealed by its embryonic expression restricted primarily to myocardium of the developing heart and the myotomal portion of somites. Thus the function of the cardiac actin promoter SREs appeared to provide binding sites for SRF and Nkx-2.5 to interact and elicit striated muscle specific transcription that was independent of the MyoD family.
Collapse
Affiliation(s)
- C Y Chen
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Csermely P, Schnaider T, Szántó I. Signalling and transport through the nuclear membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:425-51. [PMID: 8547304 DOI: 10.1016/0304-4157(95)00015-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P Csermely
- Institute of Biochemistry I., Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
39
|
Natesan S, Gilman M. YY1 facilitates the association of serum response factor with the c-fos serum response element. Mol Cell Biol 1995; 15:5975-82. [PMID: 7565750 PMCID: PMC230849 DOI: 10.1128/mcb.15.11.5975] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
YY1 is a multifunctional transcription factor that acts as an activator or repressor in different contexts. YY1 binds to multiple sites in the mouse c-fos promoter, inducing at each site a sharp DNA bend. Binding of YY1 to a site situated between the cyclic AMP response element (CRE) and the TATA box bends the DNA in a way that interferes with the interaction of proteins bound at the CRE and TATA elements, resulting in repression of transcription. Here, we show that binding of YY1 to a different site in the c-fos promoter has a different result. Binding of YY1 to the c-fos serum response element (SRE) enhances the binding of serum response factor (SRF). This enhancement requires the binding of YY1 to SRE DNA. YY1 and SRF can cooccupy the SRE at least transiently. In the region of overlapping contact, YY1 contacts DNA in the major groove, while SRF contacts DNA in the minor groove. YY1 also enhances the association of SRF with the SRE in transfected insect cells. Thus, although YY1 induces similar structural changes in DNA at different binding sites, it can have distinct local effects on protein-DNA and protein-protein interactions. These data support a general role for YY1 in the building of highly organized promoter complexes.
Collapse
Affiliation(s)
- S Natesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
40
|
Pomerantz JL, Pabo CO, Sharp PA. Analysis of homeodomain function by structure-based design of a transcription factor. Proc Natl Acad Sci U S A 1995; 92:9752-6. [PMID: 7568211 PMCID: PMC40880 DOI: 10.1073/pnas.92.21.9752] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The homeodomain is a 60-amino acid module which mediates critical protein-DNA and protein-protein interactions for a large family of regulatory proteins. We have used structure-based design to analyze the ability of the Oct-1 homeodomain to nucleate an enhancer complex. The Oct-1 protein regulates herpes simplex virus (HSV) gene expression by participating in the formation of a multiprotein complex (C1 complex) which regulates alpha (immediate early) genes. We recently described the design of ZFHD1, a chimeric transcription factor containing zinc fingers 1 and 2 of Zif268, a four-residue linker, and the Oct-1 homeodomain. In the presence of alpha-transinduction factor and C1 factor, ZFHD1 efficiently nucleates formation of the C1 complex in vitro and specifically activates gene expression in vivo. The sequence specificity of ZFHD1 recruits C1 complex formation to an enhancer element which is not efficiently recognized by Oct-1. ZFHD1 function depends on the recognition of the Oct-1 homeodomain surface. These results prove that the Oct-1 homeodomain mediates all the protein-protein interactions that are required to efficiently recruit alpha-transinduction factor and C1 factor into a C1 complex. The structure-based design of transcription factors should provide valuable tools for dissecting the interactions of DNA-bound domains in other regulatory circuits.
Collapse
Affiliation(s)
- J L Pomerantz
- Center for Cancer Research, Harvard-Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|