1
|
Mitra A, Shanthalingam S, Sherman HL, Singh K, Canakci M, Torres JA, Lawlor R, Ran Y, Golde TE, Miele L, Thayumanavan S, Minter LM, Osborne BA. CD28 Signaling Drives Notch Ligand Expression on CD4 T Cells. Front Immunol 2020; 11:735. [PMID: 32457739 PMCID: PMC7221189 DOI: 10.3389/fimmu.2020.00735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Notch signaling provides an important cue in the mammalian developmental process. It is a key player in T cell development and function. Notch ligands such as Delta-like ligands (DLL) 1, 3, 4, and JAG1, 2 can impact Notch signaling positively or negatively, by trans-activation or cis-inhibition. Trans and cis interactions are receptor-ligand interaction on two adjacent cells and interaction on the same cell, respectively. The former sends an activation signal and the later, a signal for inhibition of Notch. However, earlier reports suggested that Notch is activated in the absence of Notch ligand-expressing APCs in a purified population of CD4 T cells. Thus, the role of ligands in Notch activation, in a purified population of CD4 T cells, remains obscure. In this study, we demonstrate that mature CD4 T cells are capable of expressing Notch ligands on their surface very early upon activation with soluble antibodies against CD3 and CD28. Moreover, signaling solely through CD28 induces Notch ligand expression and CD3 signaling inhibits ligand expression, in contrast to Notch which is induced by CD3 signaling. Additionally, by using decoys, mimicking the Notch extracellular domain, we demonstrated that DLL1, DLL4, and JAG1, expressed on the T cells, can cis-interact with the Notch receptor and inhibit activation of Notch. Thus, our data indicate a novel mechanism of the regulation of Notch ligand expression on CD4 T cells and its impact on activated Notch.
Collapse
Affiliation(s)
- Ankita Mitra
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Heather L Sherman
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Khushboo Singh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
| | - Mine Canakci
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joe A Torres
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca Lawlor
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yong Ran
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Lucio Miele
- School of Medicine, Department of Genetics, LSU Health Sciences Center, New Orleans, LA, United States
| | - Sankaran Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
2
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Yi L, Chen L, Guo X, Lu T, Wang H, Ji X, Zhang J, Ren Y, Pan P, Kinghorn AD, Huang X, Wang LS, Fan Z, Caligiuri MA, Yu J. A Synthetic Disaccharide Derivative of Diphyllin, TAARD, Activates Human Natural Killer Cells to Secrete Interferon-Gamma via Toll-Like Receptor-Mediated NF-κB and STAT3 Signaling Pathways. Front Immunol 2018; 9:1509. [PMID: 30072983 PMCID: PMC6058043 DOI: 10.3389/fimmu.2018.01509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Natural products and their derivatives have long been used as pharmacological agents in the fight against cancer. Human natural killer (NK) cells are critical in our immune system in that they are capable of destroying tumor cells directly. However, there are few reports that elucidate the role of natural products in activating NK cells. In this study, we discovered that a synthetic disaccharide derivative of diphyllin, 4-O-{[2′′,3′′,4′′-tri-O-acetyl-α-D-arabinopyranosyl-(1′′→4′)]-2′,3′-di-O-acetyl-α-L-rhamnopyranosyl}diphyllin (TAARD), can alone stimulate interferon (IFN)-γ secretion in primary human NK cells and the NKL cell line. Additionally, it had an additive effect with IL-12 or IL-15 on IFN-γ production, but little adverse effects on NK cells. Mechanistically, TAARD induced the phosphorylation of NF-κB and STAT3, resulting in their binding on the IFNG promoter, which was dependent on TLR1 and TLR3 signaling, respectively. STAT3 and NF-κB knockdown with lentivirus shRNA as well as the NF-κB-specific inhibitor, N-tosyl-l-phenylalaninechloromethyl ketone, significantly suppressed TAARD-induced IFN-γ generation in primary NK cells. Blockade of TLR1 and TLR3 with neutralizing antibodies considerably decreased TAARD-induced activation of NF-κB and STAT3, respectively, as well as IFN-γ generation in NK cells. Collectively, our data suggest that TAARD can induce NK cell IFN-γ production through TLR1-NF-κB and TLR3-STAT3 signaling pathways, rendering its potential use as an agent for cancer prevention or treatment.
Collapse
Affiliation(s)
- Long Yi
- Research Center for Nutrition and Food Safety and Third Affiliated Hospital, Third Military Medical University, Chongqing, China.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Luxi Chen
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Xiaofeng Guo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Ting Lu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Haixia Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Xiaotian Ji
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Jianying Zhang
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University, Columbus, OH, United States
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Pan Pan
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN, United States
| | - Li-Shu Wang
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Michael A Caligiuri
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Cancer Hospital, Columbus, OH, United States
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Cancer Hospital, Columbus, OH, United States
| |
Collapse
|
5
|
|
6
|
Hayashi K, Jutabha P, Endou H, Sagara H, Anzai N. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4080-5. [PMID: 24038088 DOI: 10.4049/jimmunol.1300923] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of T cells accompanies remarkable enhancement of metabolism. Sufficient and continuous nutrient supply is therefore important to support immune reaction in T cells. However, the mechanism of the promotion of nutrient incorporation in activated T cells has not been elucidated. In this study, we show that L-type amino acid transporter 1 (LAT1) is a major transporter for essential amino acids into activated human T cells. CD3/CD28 stimulation in primary human T cells triggered dramatic induction of LAT1 expression mediated by NF-κB and AP-1. Functional disturbance of LAT1 by a specific inhibitor and by small interfering RNA in human T cells suppressed essential amino acid uptake and induced a stress response mediated by DNA damage-inducible transcript 3 to attenuate cytokine production via inhibition of NF-κB and NFAT activities. These results uncover the previously unknown mechanism by which T cells accelerate essential amino acid uptake upon activation and adapt to essential amino acid starvation. Our results also raise the possibility for application of an LAT1 inhibitor as a new drug for therapy of disease caused by exaggerated immune response.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | | | | | | | | |
Collapse
|
7
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors plays important roles in various biological processes including apoptosis, stress response, immunity, and inflammation. NF-κB signaling is involved in both immune cell development and function, and it is critical in modulation of the immune response through the transcriptional regulation of cytokine and chemokine expression. An area of great interest in T-cell-mediated adaptive immunity is the ability of naive CD4(+) T cells generated in the thymus to differentiate into various subsets including T-helper 1 (Th1), Th2, Th17, Th9, follicular helper T (Tfh), Th22, and regulatory T (Treg) cells, upon encountering different pathogens and microenvironments. In this review, we discuss the role of NF-κB pathway in the development and functional divergence of the different helper T-cell subsets as well as in regulatory T cells.
Collapse
Affiliation(s)
- Hyunju Oh
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | | |
Collapse
|
8
|
Cheng CC, Yang SP, Lin WS, Ho LJ, Lai JH, Cheng SM, Lin WY. Magnesium lithospermate B mediates anti-inflammation targeting activator protein-1 and nuclear factor-kappa B signaling pathways in human peripheral T lymphocytes. Int Immunopharmacol 2012; 13:354-61. [PMID: 22569344 DOI: 10.1016/j.intimp.2012.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 01/01/2023]
Abstract
The activation of T lymphocytes contributes to the inflammatory processes of atherosclerotic diseases. Danshen is a traditional Chinese medicine and has shown therapeutic effects in patients with cardiovascular and cerebrovascular diseases. We investigated the effects of aqueous extract of Danshen (magnesium lithospermate B (MLB)) on phorbol 12-myristate acetate+ionomycin and anti-CD3+anti-CD28 monoclonal antibody-activated T cells. We showed that MLB inhibited interleukin (IL)-2, IL-4, tumor necrosis factor-alpha and interferon-gamma production from activated T cells. The expressions of T cell activation markers CD 25 and CD 69 were effectively reduced. EMSA analysis indicated that MLB down-regulated activator protein-1 (AP-1), nuclear factor kappa B (NF-κB) and octamer binding transcription factor (Oct-1) DNA-binding activity. In addition, MLB inhibited c-jun N-terminal kinase (JNK) but not extracellular signal regulated protein kinase activity. MLB also inhibited IκBα degradation, nuclear translocation of p65 and p50 as well as decreased IκBα kinase (IKK) activity. Through suppressing JNK-AP-1, IKK-IκBα-NF-κB and Oct-1 signaling pathways by MLB in activated T cells, our results provide support for efficacy of MLB in inflammatory diseases and raise its therapeutic potential in activated T cell-mediated pathologies.
Collapse
Affiliation(s)
- Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325 Section 2 Cheng-Kung Road, Neihu, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
9
|
Cell-intrinsic NF-κB activation is critical for the development of natural regulatory T cells in mice. PLoS One 2011; 6:e20003. [PMID: 21625598 PMCID: PMC3097234 DOI: 10.1371/journal.pone.0020003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/08/2011] [Indexed: 12/21/2022] Open
Abstract
Background Naturally occurring CD4+CD25+Foxp3+ regulatory T (Treg) cells develop in the thymus and represent a mature T cell subpopulation critically involved in maintaining peripheral tolerance. The differentiation of Treg cells in the thymus requires T cell receptor (TCR)/CD28 stimulation along with cytokine-promoted Foxp3 induction. TCR-mediated nuclear factor kappa B (NF-κB) activation seems to be involved in differentiation of Treg cells because deletion of components of the NF-κB signaling pathway, as well as of NF-κB transcription factors, leads to markedly decreased Treg cell numbers in thymus and periphery. Methodology/Principal Findings To investigate if Treg cell-intrinsic NF-κB activation is required for thymic development and peripheral homeostasis of Treg cells we used transgenic (Tg) mice with thymocyte-specific expression of a stable IκBα mutant to inhibit NF-κB activation solely within the T cell lineage. Here we show that Treg cell-intrinsic NF-κB activation is important for the generation of cytokine-responsive Foxp3− thymic Treg precursors and their further differentiation into mature Treg cells. Treg cell development could neither be completely rescued by the addition of exogenous Interleukin 2 (IL-2) nor by the presence of wild-type derived cells in adoptive transfer experiments. However, peripheral NF-κB activation appears to be required for IL-2 production by conventional T cells, thereby participating in Treg cell homeostasis. Moreover, pharmacological NF-κB inhibition via the IκB kinase β (IKKβ) inhibitor AS602868 led to markedly diminished thymic and peripheral Treg cell frequencies. Conclusion/Significance Our results indicate that Treg cell-intrinsic NF-κB activation is essential for thymic Treg cell differentiation, and further suggest pharmacological NF-κB inhibition as a potential therapeutic approach for manipulating this process.
Collapse
|
10
|
Low levels of NF-κB/p65 mark anergic CD4+ T cells and correlate with disease severity in sarcoidosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:223-34. [PMID: 21177920 DOI: 10.1128/cvi.00469-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T lymphocytes from patients with sarcoidosis respond weakly when stimulated with mitogen or antigen. However, the mechanisms responsible for this anergy are not fully understood. Here, we investigated the protein levels of nuclear transcription factor NF-κB (p50, p65, and p105), IκBα (inhibitor of NF-κB), T-cell receptor (TCR) CD3ζ-chain, tyrosine kinase p56(LCK), and nuclear factor of activated T cells c2 (NF-ATc2) in peripheral blood CD4(+) T cells from patients with sarcoidosis. Baseline expression of p65 in these lymphocytes was reduced in 50% of patients. The reduced levels of p65 in sarcoid CD4(+) T cells concurred with decreased levels of p50, p105, CD3ζ, p56(LCK), IκBα, and NF-ATc2. Polyclonal stimulation of NF-κB-deficient sarcoid T cells resulted in reduced expression of CD69 and CD154, decreased proliferation, and cytokine (i.e., interleukin 2 [IL-2] and gamma interferon [IFN-γ]) production. The clinical significance of these findings is suggested by the association between low p65 levels and the development of more severe and active sarcoidosis. Although correlative, our results support a model in which multiple intrinsic signaling defects contribute to peripheral T-cell anergy and the persistence of chronic inflammation in sarcoidosis.
Collapse
|
11
|
Cheng SM, Chu KM, Lai JH. The modulatory mechanisms of fenofibrate on human primary T cells. Eur J Pharm Sci 2010; 40:316-24. [DOI: 10.1016/j.ejps.2010.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 04/07/2010] [Accepted: 04/10/2010] [Indexed: 10/19/2022]
|
12
|
Long M, Park SG, Strickland I, Hayden MS, Ghosh S. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 2010; 31:921-31. [PMID: 20064449 DOI: 10.1016/j.immuni.2009.09.022] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/22/2009] [Accepted: 09/22/2009] [Indexed: 11/19/2022]
Abstract
Naturally derived regulatory T (Treg) cells are characterized by stable expression of the transcription factor Foxp3 and characteristic epigenetic imprinting at the Foxp3 gene locus. Here, we found that enhancing nuclear factor (NF)-kappaB activity via a constitutive active inhibitor of kappaB kinase beta (IKKbeta) transgene in T cells led to increased number of Foxp3(+) cells in the thymus and can rescue Foxp3 expression in thymocytes deficient in other pleiotropic signaling molecules. Enhancing the signal strength of the NF-kappaB pathway also induced Foxp3 expression in otherwise conventionally selected T cells. NF-kappaB directly promoted the transcription of Foxp3, and upon T cell receptor (TCR) stimulation, c-Rel, a NF-kappaB family member, bound to Foxp3 enhancer region, which is specifically demethylated in natural Treg cells. Hence, NF-kappaB signaling pathway is a key regulator of Foxp3 expression during natural Treg cell development.
Collapse
Affiliation(s)
- Meixiao Long
- Department of Immunobiology and Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
13
|
Yan Y, Xiong Z, Zhang S, Song J, Huang Y, Thornton AM, Wang H, Yang XF. CD25high T cells with a prolonged survival inhibit development of diabetes. Int J Immunopathol Pharmacol 2009; 21:767-80. [PMID: 19144262 DOI: 10.1177/039463200802100401] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The goal of this study is to examine a novel hypothesis that the progression of diabetes is partially due to the weakened survival of CD25high T cells, and prolonging survival of CD25high T cells inhibits the development of diabetes. Since CD28 co-stimulation is essential for the survival of CD4+CD25high T cells, we determined whether CD28-upregulated translationally controlled tumor protein (TCTP) prolongs the survival of CD4+CD25high regulatory T cells (Tregs) by a transgenic approach. The TCTP transgene prevents Tregs from undergoing apoptosis induced by interleukin-2 withdrawal-, dexamethasone-, cyclophosphamide-, and anti-Fas treatment in vitro. In addition, transgenic Tregs express higher levels of FOXP3 than wild-type counterparts and maintain suppressive activity, suggesting that TCTP promotes Tregs escape from thymic negative selection, and that prolonged survival does not attenuate Treg suppression. Moreover, TCTP transgenic Tregs inhibit the development of autoimmune diabetes due to increased survival of suppressive Tregs and decreased expression of pancreatic TNF-alpha. Promoting the survival of CD25high T cells leads to prolonged survival of Tregs but not activated CD25+ non-Treg T cells. Thus, we propose a new model of "two phase survival" for Tregs. Our results suggest that modulation of Treg survival can be developed as a new therapy for autoimmune diseases.
Collapse
Affiliation(s)
- Y Yan
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mattson JD, Haus BM, Desai B, Ott W, Basham B, Agrawal M, Ding W, Hildemann LM, Abitorabi KM, Canfield J, Mak G, Guvenc-Tuncturk S, Malefyt RDW, McClanahan TK, Fick RB, Kuschner WG. Enhanced acute responses in an experimental exposure model to biomass smoke inhalation in chronic obstructive pulmonary disease. Exp Lung Res 2009; 34:631-62. [PMID: 19085563 DOI: 10.1080/01902140802322256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chronic obstructive pulmonary diseases (COPD) may increase air pollution-related mortality. The relationship of immune mechanisms to mortality caused by fine particulates in healthy and COPD populations is incompletely understood. The objective of this study was to determine whether fine particulates from a single biomass fuel alter stress and inflammation biomarkers in people with COPD. Healthy and COPD subjects were exposed to smoke in a controlled indoor setting. Immune responses were quantified by measuring cell surface marker expression with flow-cytometric analysis and mRNA levels with quantitative reverse transcriptase-polymerase chain reactions in whole blood before and after exposure. Preexposure COPD subjects had more leukocytes, mainly CD14(+) monocytes and neutrophils, but fewer CD3(+) T cells. Fifty-seven of 186 genes were differentially expressed between healthy and COPD subjects' peripheral blood mononuclear cells (PBMCs). Of these, only nuclear factor (NF)-kappa B1, TIMP-1, TIMP-2, and Duffy genes were up-regulated in COPD subjects. At 4 hours post smoke exposure, monocyte levels decreased only in healthy subjects. Fifteen genes, particular to inflammation, immune response, and cell-to-cell signaling, were differentially expressed in COPD subjects, versus 4 genes in healthy subjects. The authors observed significant differences in subjects' PBMCs, which may elucidate the adverse effects of air pollution particulates on people with COPD.
Collapse
Affiliation(s)
- Jeanine D Mattson
- Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cheng SM, Lai JH, Yang SP, Tsao TP, Ho LJ, Liou JT, Cheng CC. Modulation of human T cells signaling transduction by lovastatin. Int J Cardiol 2008; 140:24-33. [PMID: 19046782 DOI: 10.1016/j.ijcard.2008.10.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 07/23/2008] [Accepted: 10/26/2008] [Indexed: 11/26/2022]
Abstract
Statins are applied clinically to treat hypercholesterolemia and proposed to have some kinds of anti-inflammatory properties for reducing the incidence of atherosclerosis-related cardiovascular events. However, it was rarely known about statins on the signal transduction on human primary T cells. To gain insight into the mechanism of statins on human T cells, we investigated the effects of both lovastatin and atorvastatin on activated human primary T cells. The human primary T cells from the blood of normal human beings were isolated. We found that lovastatin, but not atorvastatin, can dose-dependently inhibit cytokine production such as interleukin-2, interleukin-4, and interferon-gamma from activated human T cells. Neither lovastatin nor atorvastatin can regulate the TNF-alpha production on both activated human T cells and monocytes. Molecular investigation was performed that lovastatin, but not atorvastatin, could down-regulate both activator protein-1 and NF-kappaB DNA binding activities, assessed by electrophoretic mobility shift assay. Our observations may extend potential and differential therapeutic mechanisms of lovastatin with cell-mediated capacity to prevent or treat some of inflammation related diseases.
Collapse
Affiliation(s)
- Shu-Meng Cheng
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
16
|
Tsao TP, Lai JH, Yang SP, Ho LJ, Liou JT, Cheng CC, Cheng SM. Suppression of tissue necrosis factor-alpha or hydrogen peroxide-activated primary human T lymphocytes by Ginkgo biloba extract through down-regulation of activator protein-1 signal transduction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:170-6. [PMID: 17481873 DOI: 10.1016/j.phymed.2007.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/28/2007] [Indexed: 05/15/2023]
Abstract
PURPOSE It was unknown whether Ginkgo biloba extract has regulatory effects on human T lymphocytes activated by tissue necrosis factor-alpha (TNF-alpha), which has an important role on the progression of inflammatory atherosclerotic plaques. We evaluated the effects of G. biloba extract on activated human peripheral T lymphocytes, which were isolated from human whole blood. METHODS The human T lymphocytes were treated with 25-100 microg G. biloba extract for 2h first. Then they were activated by TNF-alpha and H(2)O(2) to investigate the modulatory effects of G. biloba extract on human T lymphocytes. Electrophoretic mobility shift assay, Western blot (Immunoblot) analysis and immunoprecipitation kinase assays were used. RESULTS The inhibition of activated human T lymphocyte specifically correlated with the down-regulation of AP-1 DNA-binding activities. G. biloba extract was unique in its ability to inhibit the activation of c-Jun NH2-terminal protein kinase. CONCLUSIONS G. biloba extract might have its novel therapeutic effects on inflammation-based atherosclerotic diseases.
Collapse
Affiliation(s)
- Tien-Ping Tsao
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
17
|
Gu JJ, Zhang N, He YW, Koleske AJ, Pendergast AM. Defective T cell development and function in the absence of Abelson kinases. THE JOURNAL OF IMMUNOLOGY 2008; 179:7334-43. [PMID: 18025176 DOI: 10.4049/jimmunol.179.11.7334] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thymocyte proliferation, survival, and differentiation are tightly controlled by signaling from the pre-TCR. In this study, we show for the first time that the Abelson (Abl) kinases regulate proximal signaling downstream of the pre-TCR. Conditional deletion of Abl kinases in thymocytes reveals a cell-autonomous role for these proteins in T cell development. The conditional knockout mice have reduced numbers of thymocytes, exhibit an increase in the percentage of the CD4(-)CD8(-) double-negative population, and are partially blocked in the transition to the CD4(+)CD8(+) double-positive stage. Moreover, the total number of T cells is greatly reduced in the Abl mutant mice, and the null T cells exhibit impaired TCR-induced signaling, proliferation, and cytokine production. Notably, Abl mutant mice are compromised in their ability to produce IFN-positive CD8 T cells and exhibit impaired CD8(+) T cell expansion in vivo upon Listeria monocytogenes infection. Furthermore, Ab production in response to T cell-dependent Ag is severely impaired in the Abl mutant mice. Together these findings reveal cell-autonomous roles for the Abl family kinases in both T cell development and mature T cell function, and show that loss of these kinases specifically in T cells results in compromised immunity.
Collapse
Affiliation(s)
- Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
18
|
Wren JD, Wu Y, Guo SW. A system-wide analysis of differentially expressed genes in ectopic and eutopic endometrium. Hum Reprod 2007; 22:2093-102. [PMID: 17562676 DOI: 10.1093/humrep/dem129] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Decades of research suggest that endometriosis is a complex disorder, with varying severity, onset and progression. Many genes have been associated with endometriosis through a number of studies and now microarray analyses have added to the list of perturbed or differentially regulated genes. Thus, it is difficult to see 'the big picture' without first integrating these multiple, heterogeneous sources of high-quality information for analysis. METHODS The goal of this study was to infer correlative and/or causal trends by combining empirical microarray analysis with a historical knowledge base of genetic relationships in endometriosis via a program called IRIDESCENT. RESULTS Importantly, we found a number of genes, which may have a central role in endometriosis, despite the fact that few or no past studies have reported these associations. CONCLUSIONS Several genes listed as non-responders on the microarray were found to be regulated post-transcriptionally, illustrating the importance of integrating multiple data sources.
Collapse
Affiliation(s)
- Jonathan D Wren
- Arthritis and Immunology Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104-5005, USA.
| | | | | |
Collapse
|
19
|
Debret R, Le Naour RR, Sallenave JM, Deshorgue A, Hornebeck WG, Guenounou M, Bernard P, Antonicelli FD. Elastin fragments induce IL-1beta upregulation via NF-kappaB pathway in melanoma cells. J Invest Dermatol 2006; 126:1860-8. [PMID: 16675961 DOI: 10.1038/sj.jid.5700337] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a previous work, we reported the influence of elastin fragments (EFs) on matrix metalloproteinases-2 and -14 expression and activation in melanoma cells in vitro. We hypothesized that EFs might also modulate expression of other mediators involved during melanoma progression. Therefore we investigated the contribution of EFs on IL-1beta expression, a cytokine playing a key role in melanoma cells activation. Our results evidenced that high tumorigenic melanoma cells (M3Da cells) treated with EFs led to IL-1beta mRNA and protein upregulation. The effects of EFs on M3Da cells were found to be mediated by receptor (spliced galactosidase) occupancy, as being suppressed by lactose and reproduced by cell stimulation with the VGVAPG peptide. Binding of EFs to their receptor induced a rapid activation of extracellular signal-regulated kinase 1/2; and p38 mitogen-activated protein kinase pathways. However, these pathways were not associated with IL-1beta mRNA upregulation by EFs. Concomitantly, we demonstrated that EFs stimulation induced NF-kappaB nuclear translocation and DNA binding on IL-1beta promoter region whereas inhibition of NF-kappaB with the specific chemical inhibitor SN-50 or by overexpression of IkappaB, the endogenous inhibitor of NF-kappaB pathway, totally abolished EFs-mediated IL-1beta mRNA overexpression. These results demonstrate that EFs induce NF-kappaB activation, leading to IL-1beta upregulation in invasive melanoma cells.
Collapse
Affiliation(s)
- Romain Debret
- Department of Dermatology, CNRS UMR 6198 Faculty of Medicine, University of Reims, Champagne-Ardenne, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Spink CF, Gray LC, Davies FE, Morgan GJ, Bidwell JL. Haplotypic structure across the I kappa B alpha gene (NFKBIA) and association with multiple myeloma. Cancer Lett 2006; 246:92-9. [PMID: 16540234 DOI: 10.1016/j.canlet.2006.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 11/15/2022]
Abstract
Polymorphisms in NFKBIA may be important in pre-disposition to and outcome after treatment, of multiple myeloma (MM). The NFKBIA gene product, IkappaBalpha, binds to NF-kappaB preventing its activation and is important in mediating resistance to apoptosis in B-cell lymphoproliferative diseases. This study investigates eight polymorphisms across the NFKBIA gene in large patient and control populations. Significant differences in the frequency of particular polymorphisms were noted between patients and controls. A risk haplotype [GCCTATCA] for MM was also identified (P=0.006). Analysis of the genetics of NFKBIA may lead to associations with disease progression and survival and thus more personalized therapy.
Collapse
Affiliation(s)
- Charlotte F Spink
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
21
|
Schmidt-Weber CB, Blaser K. The role of the FOXP3 transcription factor in the immune regulation of allergic asthma. Curr Allergy Asthma Rep 2006; 5:356-61. [PMID: 16091206 DOI: 10.1007/s11882-005-0006-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Unbalanced immune reactions against allergens are caused by Th2 cells, which are the basis of immunoglobulin E (IgE)-mediated symptoms of allergy and asthma. Although Th2 cells are essential for allergy, they are not sufficient to cause disease, because regulatory T cells (Tregs) control their activity and expansion. Therefore, Tregs are assumed to play an important role not only in the sensitization but also in established allergic disease under therapy. A key factor of Tregs is FOXP3, which, upon expression, is sufficient to induce regulatory T-cell phenotypes. The initiation and suppressive function of FOXP3 and Tregs in the context of allergic asthma are discussed in this review.
Collapse
Affiliation(s)
- Carsten B Schmidt-Weber
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Str. 22, CH-7270 Davos, Switzerland.
| | | |
Collapse
|
22
|
Hwang ES, Hong JH, Glimcher LH. IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508. ACTA ACUST UNITED AC 2006; 202:1289-300. [PMID: 16275766 PMCID: PMC2213245 DOI: 10.1084/jem.20051044] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interleukin (IL)-2 is the predominant cytokine that is produced by naive Th cells in a primary response. It is required for proliferation and differentiation of Th precursor cells into effector cells. Initial high-level IL-2 production is followed by its decline, and the concomitant induction of cytokines that are typical of the differentiated state. Although the factors that are responsible for the early induction of IL-2 are well defined, the mechanisms that are responsible for its down-regulation in later stages of Th development have not been studied as much. Previous work from our laboratory revealed a repressor function for the T-box transcription factor, T-bet, in IL-2 gene transcription. Here, we report that T-bet(S508) is required for the optimal repression of IL-2 production in developing Th1 cells. Phosphorylation of T-bet(S508) by casein kinase I and glycogen synthase kinase-3 kinases accompanies T-bet's interaction with the RelA nuclear factor-kappaB transcription factor. Heterodimerization of T-bet and RelA interferes with the binding of RelA to the IL-2 promoter, and hence, transcriptional activation of the IL-2 gene by RelA.
Collapse
Affiliation(s)
- Eun Sook Hwang
- Division of Molecular Life Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | | | |
Collapse
|
23
|
Sakurai H, Singhirunnusorn P, Shimotabira E, Chino A, Suzuki S, Koizumi K, Saiki I. TAK1-mediated transcriptional activation of CD28-responsive element and AP-1-binding site within the IL-2 promoter in Jurkat T cells. FEBS Lett 2005; 579:6641-6. [PMID: 16293250 DOI: 10.1016/j.febslet.2005.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 10/21/2005] [Accepted: 10/29/2005] [Indexed: 10/25/2022]
Abstract
We focused on the functional involvement of transforming growth factor-beta-activated kinase 1 (TAK1) in transcriptional regulation of interleukin-2 (IL-2) in T cells. Costimulation of Jurkat cells with 12-O-tetradecanoylphorbol-13-acetate and A23187 leads to a rapid phosphorylation of TAK1 and TAK1-binding protein 1 (TAB1), critical for TAK1 activation. A specific inhibitor of TAK1 blocked production of IL-2. In addition, overexpression of TAK1 and TAB1 induced secretion of IL-2. CD28-responsive element/activator protein-1-binding site (RE/AP) within the IL-2 promoter was a functional target for TAK1. The RE/AP-driven transcription was regulated by TAK1-mediated activation of the c-Jun NH2-terminal kinase, p38 and IkappaB kinase. These results indicate that TAK1 plays a critical role in T cell activation by controlling production of IL-2.
Collapse
Affiliation(s)
- Hiroaki Sakurai
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kang BY, Miaw SC, Ho IC. ROG negatively regulates T-cell activation but is dispensable for Th-cell differentiation. Mol Cell Biol 2005; 25:554-62. [PMID: 15632058 PMCID: PMC543427 DOI: 10.1128/mcb.25.2.554-562.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ROG, a transcriptional repressor, is a direct target gene of NF-AT and a putative negative regulator of T-cell activation. In addition, overexpression of ROG suppresses the activity of GATA-3, implying a role of ROG in the differentiation and function of Th cells. Despite these observations, the function of ROG has yet to be confirmed by loss-of-function approaches. Here we report that ROG-deficient T cells are hypersensitive to anti-CD3 stimulation and produce more interleukin-2 (IL-2) due to enhanced NF-kappaB activity. ROG-deficient dendritic cells also produce more IL-12p40, another NF-kappaB target gene. However, ROG-deficient Th cells are capable of differentiating into Th1 and Th2 cells, and ROG-deficient mice have no defect in mounting appropriate Th immune responses in vivo. Thus, ROG is dispensable for the differentiation and function of Th cells but serves as a mediator of NF-AT-initiated suppression of NF-kappaB. Its mechanism of action and its expression pattern are distinct from those of other transcription factors negatively regulating the activation of T cells.
Collapse
Affiliation(s)
- Bok Yun Kang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's HospitalSmith Building, Room 524, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Fortin JF, Barat C, Beauséjour Y, Barbeau B, Tremblay MJ. Hyper-responsiveness to stimulation of human immunodeficiency virus-infected CD4+ T cells requires Nef and Tat virus gene products and results from higher NFAT, NF-kappaB, and AP-1 induction. J Biol Chem 2004; 279:39520-31. [PMID: 15258149 DOI: 10.1074/jbc.m407477200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A chronic state of immune hyperactivation is a feature of human immunodeficiency virus type-1 (HIV-1) infection. Studies on the molecular mechanisms by which HIV-1 can modulate the activation state of T cells indicate that both Nef and Tat can alter T cell activation. However, the vast majority of data has been obtained from experiments performed with vectors encoding a single virus protein. We demonstrate that infection of human CD4(+) T lymphocytes with fully infectious HIV-1 leads to a hyper-responsiveness of the interleukin-2 promoter. Hypersensitivity in HIV-1-infected T cells was observed upon stimulation with various agents that are engaging different signal transduction pathways. Experiments performed with recombinant heat stable antigen-encoding HIV-1 indicated that the virus-infected cells are the cells with an enhanced response. Both Nef and Tat are involved in this virus-mediated enhancing effect on interleukin-2 promoter activity. Interestingly, whereas Nef seems to be acting mainly through hyperactivation of nuclear factor of activated T cells (NFAT), Tat acts in an NFAT-independent manner. Mobility shift experiments demonstrated that the HIV-1-associated priming of human T cells for stimulation results in a greater induction of transcription factors recognized as essential players in T cell activation, i.e. NFAT, NF-kappaB, and AP-1. A hyper-responsive state was also established upon HIV-1 infection of a more natural cellular reservoir, i.e. primary CD4(+) T lymphocytes. Considering that the HIV-1 life cycle is tightly regulated by the T cell signaling machinery, the priming for activation of a major viral reservoir represents a means by which this retrovirus can create an ideal cellular microenvironment for its propagation and maintenance.
Collapse
Affiliation(s)
- Jean-François Fortin
- Baxter Laboratory for Genetic Pharmacology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5175, USA
| | | | | | | | | |
Collapse
|
26
|
Cheng SM, Yang SP, Ho LJ, Tsao TP, Chang DM, Lai JH. Irbesartan inhibits human T-lymphocyte activation through downregulation of activator protein-1. Br J Pharmacol 2004; 142:933-42. [PMID: 15210574 PMCID: PMC1575109 DOI: 10.1038/sj.bjp.0705785] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 02/20/2004] [Accepted: 03/09/2004] [Indexed: 11/08/2022] Open
Abstract
1 Irbesartan is a promising antihypertensive drug with beneficial effects on atherosclerotic processes. In the progression of atherosclerosis, human T-lymphocytes play an important role, but it is not yet known how irbesartan modulates human T-lymphocytes activation. To gain insight into the mechanisms by which irbesartan acts, we investigated its effects on human T-lymphocytes. 2 Primary human T-lymphocytes were isolated from whole blood. Cytokines were determined by ELISA. Activator protein-1 (AP-1) and related protein activities were determined by electrophoretic mobility shift assays, kinase assays, Western blotting and transfection assays. 3 Irbesartan inhibited the production of both tumor necrosis factor-alpha and interferon-gamma by activated T-cells, especially at therapeutic concentrations. Further investigation at the molecular level indicated that the inhibition of activated human T-lymphocytes specifically correlated with the downregulation of AP-1 DNA-binding activity. In the Jurkat T-cell line, irbesartan also inhibited AP-1 transcriptional activity. Finally, we revealed that irbesartan is unique in its ability to inhibit the activation of both c-Jun NH2-terminal protein kinase and p38 MAPK. 4 Our studies show that irbesartan may modulate inflammation-based atherosclerotic diseases through a cell-mediated mechanism involving suppression of human T-lymphocytes activation via downregulation of AP-1 activity.
Collapse
Affiliation(s)
- Shu-Meng Cheng
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Shih-Ping Yang
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Ling-Jun Ho
- Division of Gerontology Research, National Health Research Institute, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Tien-Ping Tsao
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Deh-Ming Chang
- Division of Rheumatology/Immunology & Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | - Jenn-Haung Lai
- Division of Rheumatology/Immunology & Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| |
Collapse
|
27
|
Trushin SA, Pennington KN, Carmona EM, Asin S, Savoy DN, Billadeau DD, Paya CV. Protein kinase Calpha (PKCalpha) acts upstream of PKCtheta to activate IkappaB kinase and NF-kappaB in T lymphocytes. Mol Cell Biol 2003; 23:7068-81. [PMID: 12972622 PMCID: PMC193945 DOI: 10.1128/mcb.23.19.7068-7081.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NF-kappaB is an ubiquitous transcription factor that is a key in the regulation of the immune response and inflammation. T-cell receptor (TCR) cross-linking leads to NF-kappaB activation, an IkappaB kinase (IKK)-dependent process. However, the upstream kinases that regulate IKK activity following TCR activation remain to be fully characterized. Herein, we demonstrate using genetic analysis, pharmacological inhibition, and RNA interference (RNAi) that the conventional protein kinase C (PKC) isoform PKCalpha, but not PKCbeta1, is required for the activation of the IKK complex following T-cell activation triggered by CD3/CD28 cross-linking. We find that in the presence of Ca(2+) influx, the catalytically active PKCalphaA25E induces IKK activity and NF-kappaB-dependent transcription; which is abrogated following the mutations of two aspartates at positions 246 and 248, which are required for Ca(2+) binding to PKCalpha and cell membrane recruitment. Kinetic studies reveal that an early phase (1 to 5 min) of IKK activation following TCR/CD28 cross-linking is PKCalpha dependent and that a later phase (5 to 25 min) of IKK activation is PKCtheta dependent. Activation of IKK- and NF-kappaB-dependent transcription by PKCalphaA25E is abrogated by the PKCtheta inhibitor rottlerin or the expression of the kinase-inactive form of PKCtheta. Taken together, our results suggest that PKCalpha acts upstream of PKCtheta to activate the IKK complex and NF-kappaB in T lymphocytes following TCR activation.
Collapse
Affiliation(s)
- Sergey A Trushin
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Cheng SM, Yang SP, Ho LJ, Tsao TP, Juan TY, Chang DM, Chang SY, Lai JH. Down-regulation of c-jun N-terminal kinase-activator protein-1 signaling pathway by Ginkgo biloba extract in human peripheral blood T cells. Biochem Pharmacol 2003; 66:679-89. [PMID: 12906932 DOI: 10.1016/s0006-2952(03)00388-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The activation of T lymphocytes contributes to inflammatory process of cardiovascular and cerebrovascular diseases. We investigated the effects of the extract of Ginkgo biloba (EGb), an ancient plant preserving antioxidant property, on phorbol 12-myristate 13-acetate+ionomycin or anti-CD3+anti-CD28 monoclonal antibodies-activated T cells. Human peripheral blood T cells were negatively selected from whole blood. Cytokines were measured by ELISA, cell surface markers by flow cytometry and the activities of transcription factors and kinases were determined by electrophoresis mobility shift assays, kinase assays and transfection assays. We showed that EGb inhibited several cytokines, including tumor necrosis factor-alpha, interleukin (IL)-2, IL-4 and interferon-gamma production from activated T cells. Electrophoresis mobility shift assay analysis indicated that EGb down-regulated activator protein-1 (AP-1) but not nuclear factor kappa B DNA-binding activity. In addition, EGb inhibited c-jun N-terminal kinase but not extracellular signal regulated protein kinase activity. The inhibitory specificity on AP-1 by EGb was also demonstrated in transfection assays. The inhibition of AP-1 signaling pathway in T cells by EGb provides a support for its efficacy in cardiovascular and cerebrovascular diseases and raises a therapeutic potential for this drug in activated T cell-mediated pathologies.
Collapse
Affiliation(s)
- Shu-Meng Cheng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Many studies have shown the central importance of the co-receptors CD28, inducible costimulatory molecule (ICOS) and cytotoxic T lymphocyte antigen 4 (CTLA4) in the regulation of many aspects of T-cell function. CD28 and ICOS have both overlapping and distinct functions in the positive regulation of T-cell responses, whereas CTLA4 negatively regulates the response. The signalling pathways that underlie the function of each of the co-receptors indicate their shared and unique properties and provide compelling hints of functions that are as yet uncovered. Here, we outline the shared and distinct signalling events that are associated with each of the co-receptors and provide unifying concepts that are related to signalling functions of these co-receptors.
Collapse
Affiliation(s)
- Christopher E Rudd
- Molecular Immunology Section, Department of Immunology, Division of Investigative Science, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| | | |
Collapse
|
30
|
Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17:1263-93. [PMID: 12835716 DOI: 10.1038/sj.leu.2402945] [Citation(s) in RCA: 521] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) cascade couples signals from cell surface receptors to transcription factors, which regulate gene expression. Depending upon the stimulus and cell type, this pathway can transmit signals, which result in the prevention or induction of apoptosis or cell cycle progression. Thus, it is an appropriate pathway to target for therapeutic intervention. This pathway becomes more complex daily, as there are multiple members of the kinase and transcription factor families, which can be activated or inactivated by protein phosphorylation. The diversity of signals transduced by this pathway is increased, as different family members heterodimerize to transmit different signals. Furthermore, additional signal transduction pathways interact with the Raf/MEK/ERK pathway to regulate positively or negatively its activity, or to alter the phosphorylation status of downstream targets. Abnormal activation of this pathway occurs in leukemia because of mutations at Ras as well as genes in other pathways (eg PI3K, PTEN, Akt), which serve to regulate its activity. Dysregulation of this pathway can result in autocrine transformation of hematopoietic cells since cytokine genes such as interleukin-3 and granulocyte/macrophage colony-stimulating factor contain the transacting binding sites for the transcription factors regulated by this pathway. Inhibitors of Ras, Raf, MEK and some downstream targets have been developed and many are currently in clinical trials. This review will summarize our current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors. The prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.
Collapse
Affiliation(s)
- F Chang
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Artis D, Speirs K, Joyce K, Goldschmidt M, Caamaño J, Hunter CA, Scott P. NF-kappa B1 is required for optimal CD4+ Th1 cell development and resistance to Leishmania major. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1995-2003. [PMID: 12574369 DOI: 10.4049/jimmunol.170.4.1995] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NF-kappaB family of transcription factors regulates the expression of a wide range of immune response genes involved in immunity to pathogens. However, the need for individual family members in regulating innate and adaptive immune responses in vivo has yet to be clearly defined. We investigated the role of NF-kappaB1 in the induction of protective IL-12-dependent Th1 cell responses following infection with the intracellular protozoan parasite Leishmania major. Whereas wild-type C57BL/6 mice controlled parasite replication, NF-kappaB1 knockout (KO) mice were susceptible to infection, developing chronic unresolving lesions associated with persistent parasites. There was a profound defect in Ag-specific CD4(+) T cell proliferation and IFN-gamma production in infected KO mice, although innate responses-including IL-12 production and control of intracellular parasite replication by macrophages-were intact. In vitro polyclonal stimulation of purified naive KO T cells revealed an intrinsic defect in CD4(+) T cell proliferation associated with reduced IL-2 receptor expression, but operating independently of APC function and IL-2 production. Critically, the frequency of proliferating KO CD4(+) T cells secreting IFN-gamma matched that of wild-type cells, suggesting that NF-kappaB1 was not required for efficient transcription of the IFN-gamma gene. Taken together, these results identify a novel role for NF-kappaB1 in CD4(+) T cell proliferation and the development of Th1 cell responses required for protective immunity against intracellular pathogens.
Collapse
Affiliation(s)
- David Artis
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Harada Y, Ohgai D, Watanabe R, Okano K, Koiwai O, Tanabe K, Toma H, Altman A, Abe R. A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J Exp Med 2003; 197:257-62. [PMID: 12538664 PMCID: PMC2193818 DOI: 10.1084/jem.20021305] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The CD28 family molecules, CD28, and inducible costimulator (ICOS) all provide positive costimulatory signals. However, unlike CD28, ICOS does not costimulate IL-2 secretion. The YMNM motif that exists in the CD28 cytoplasmic domain is a known binding site for phosphatidylinositol 3-kinase (PI3-K) and Grb2. ICOS possesses the YMFM motif in the corresponding region of CD28 that binds PI3-K but not Grb2. We postulated that the reason that ICOS does not have the ability to induce IL-2 production is because it fails to recruit Grb2. To verify this hypothesis, we generated a mutant ICOS gene that contains the CD28 YMNM motif and measured IL-2 promoter activation after ICOS ligation. The results indicated that ICOS became competent to activate the IL-2 promoter by this single alteration. Further analysis demonstrated that Grb2 binding to ICOS was sufficient to activate the NFAT/AP-1 site in the IL-2 promoter and that the cytoplasmic domain of CD28 outside of the YMNM motif is required for activation of the CD28RE/AP-1 and NF-kappaB sites. Together, these observations lead us to believe that the difference of a single amino acid, which affects Grb2 binding ability, may define a functional difference between the CD28- and ICOS-mediated costimulatory signals.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Motifs
- Amino Acid Substitution
- Animals
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Binding Sites/genetics
- CD28 Antigens/chemistry
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- DNA-Binding Proteins/metabolism
- GRB2 Adaptor Protein
- Gene Expression Regulation
- Humans
- Inducible T-Cell Co-Stimulator Protein
- Interleukin-2/genetics
- Jurkat Cells
- Mice
- Mutagenesis, Site-Directed
- NF-kappa B/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Proteins/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transcription Factor AP-1/metabolism
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Yohsuke Harada
- Research Institute for Biological Sciences, Faculty of Science and Technology, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hinoi E, Balcar VJ, Kuramoto N, Nakamichi N, Yoneda Y. Nuclear transcription factors in the hippocampus. Prog Neurobiol 2002; 68:145-65. [PMID: 12450491 DOI: 10.1016/s0301-0082(02)00078-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the mammalian hippocampus, there is a trisynaptic loop that has been often referred to in studies on learning and memory mechanisms and their physiological correlate, the long-term potentiation (LTP). The three sets of synapses are formed by the fibers of perforant pathway terminating on granule cells and by the mossy fibers and Schaeffer collaterals making connections with the pyramidal cells. Each of the three types of synapses can develop LTP. LTP is accompanied by changes in gene expression and it is the nuclear transcription, involving specific transcription factors, that is the starting point for the series of biological amplifications and consolidations both necessary for such sustained changes. The transcription factors are proteins that control gene expression, development and functional formation in every eukaryotic cell. Two categories of transcription factors have been defined to date: general factors that comprise at least 20 proteins to form multiple preinitiation complex at the TATA box (TATA rich sequence) or regulatory factors that bind to promoter or enhancer regions at specific sites on the DNA close to, or distant from, the TATA box. Transcription factors have been divided into five different major classes according to unique protein motifs. These include basic domain, zinc-finger, helix-turn-helix, beta-Scaffold factors with minor groove contacts and other transcription factors not specifically classified. Much evidence has been accumulating in favor of the participation of several transcription factors in the consolidation of memory in the mammalian hippocampus following a spatial memory task. It is, therefore, of great importance that the involvement of transcription factors in de novo protein synthesis relevant to the synaptic mechanisms that mediate the formation of long-term memory should be summarized and discussed. No specific correlation between transduction of extracellular signals and expression of nuclear transcription factors, however, has been demonstrated to date.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
34
|
Abstract
Costimulatory signals complement or modify the signals provided to a lymphocyte through antigen receptors. For productive T-cell activation, the CD28 molecule is apparently the most important, although not the only, costimulatory receptor. CD28 can provide a signal that is at least partially distinct from that delivered by the T cell receptor (TCR)-CD3 complex. Several lines of evidence indicate that the nuclear factor (NF)-kappaB pathway is perhaps the most relevant biochemical or transcriptional target for the costimulatory activity of CD28. Although many questions remain, recent years have witnessed significant progress in understanding the signal transduction pathways leading from the TCR and CD28 to Rel/NF-kappaB-dependent transcription.
Collapse
Affiliation(s)
- Lawrence P Kane
- Dept of Medicine, The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 9143-0795, USA
| | | | | |
Collapse
|
35
|
Abstract
The novel protein kinase C (PKC) isoform, PKC theta, is selectively expressed in T lymphocytes and is a sine qua non for T cell antigen receptor (TCR)-triggered activation of mature T cells. Productive engagement of T cells by antigen-presenting cells (APCs) results in recruitment of PKC theta to the T cell-APC contact area--the immunological synapse--where it interacts with several signaling molecules to induce activation signals essential for productive T cell activation and IL-2 production. The transcription factors NF-kappa B and AP-1 are the primary physiological targets of PKC theta, and efficient activation of these transcription factors by PKC theta requires integration of TCR and CD28 costimulatory signals. PKC theta cooperates with the protein Ser/Thr phosphatase, calcineurin, in transducing signals leading to activation of JNK, NFAT, and the IL-2 gene. PKC theta also promotes T cell cycle progression and regulates programmed T cell death. The exact mode of regulation and immediate downstream substrates of PKC theta are still largely unknown. Identification of these molecules and determination of their mode of operation with respect to the function of PKC theta will provide essential information on the mechanism of T cell activation. The selective expression of PKC theta in T cells and its essential role in mature T cell activation establish it as an attractive drug target for immunosuppression in transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Noah Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | |
Collapse
|
36
|
Ren H, Schmalstieg A, van Oers NSC, Gaynor RB. I-kappa B kinases alpha and beta have distinct roles in regulating murine T cell function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3721-31. [PMID: 11937522 DOI: 10.4049/jimmunol.168.8.3721] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NF-kappaB is a transcription factor that regulates a variety of genes involved in the control of the immune and inflammatory responses. Activation of NF-kappaB is mediated by an inducible I-kappaB kinase (IKK) complex comprised of two catalytic subunits, IKKalpha and IKKbeta. In this study, the role of these kinases in the development and function of T lymphocytes was explored using transgenic mice expressing the dominant-negative forms of one or both kinases under the control of a T cell-specific promoter. Activation of the NF-kappaB pathway in thymocytes isolated from these transgenic mice following treatment with either PMA and ionomycin or anti-CD3 was markedly inhibited. Although inhibition of IKKalpha and/or IKKbeta function did not alter T cell development in these transgenic mice, the proliferative response to anti-CD3 was reduced in thymocytes isolated from mice expressing dominant-negative IKKbeta. However, inhibition of both IKKalpha and IKKbeta was required to markedly reduce cytokine production in thymocytes isolated from these transgenic mice. Finally, we demonstrated that IKKalpha and IKKbeta have opposite roles on the regulation of anti-CD3-induced apoptosis of double-positive thymocytes. These results suggest that IKKalpha and IKKbeta have distinct roles in regulating thymocyte function.
Collapse
Affiliation(s)
- Hong Ren
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
37
|
Tao L, Wadsworth S, Mercer J, Mueller C, Lynn K, Siekierka J, August A. Opposing roles of serine/threonine kinases MEKK1 and LOK in regulating the CD28 responsive element in T-cells. Biochem J 2002; 363:175-82. [PMID: 11903060 PMCID: PMC1222464 DOI: 10.1042/0264-6021:3630175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
T-cell activation requires signals from both the T-cell receptor (TcR) and other co-stimulatory molecules such as CD28. TcR- and CD28-mediated signals are integrated during T-cell activation resulting in the expression of cytokine genes such as interleukin-2 (IL-2). An enhancer element (CD28RE) of the IL-2 gene specifically responsive to CD28 signals has been previously identified and characterized. This response element and an adjacent Activated Protein-1 (nuclear factor-interleukin-2B) site together (RE/AP1) were shown to complex with c-rel, AP-1 and other factors. However, details of the signal transduction pathways leading from CD28 to the composite response element remain poorly understood. We present data showing that overexpression of the serine threonine kinase, mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase kinase-1 (MEKK1), but not nuclear factor-kappa B inducing kinase, or MAP kinase/ERK kinase-1 (MEK1), can significantly increase the level of CD28RE/AP1-driven luciferase (Luc) reporter gene expression in Jurkat E6-1 cells. A MEKK1 dominant negative mutant blocked such activation induced by stimulation with Raji B cells and the superantigen staphylococcus enterotoxin E (SEE), as well as via CD3/CD28. Mutations in either site of the RE/AP1 element abolished MEKK1-induced Luc expression. Calcineurin inhibitors, CsA and FK520, or inhibitors of p38 kinase (SB 203580), or MEK1 (PD 098059), did not affect MEKK1-induced reporter activation. These results directly implicate MEKK1 in the CD28 signalling pathway that activates the CD28 response element. Co-expression of the lymphocyte-oriented kinase (LOK) kinase attenuated Raji/SEE-induced IL-2 production in Jurkat cells, as well as MEKK1 and Raji/SEE-induced reporter gene activation. These data suggest that MEKK1 and LOK may have opposing roles in regulating the CD28RE/AP1 element.
Collapse
Affiliation(s)
- Li Tao
- R. W. Johnson Pharmaceutical Research Institute, Drug Discovery Research, Raritan, NJ 08869, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abraham C, Miller J. Molecular mechanisms of IL-2 gene regulation following costimulation through LFA-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5193-201. [PMID: 11673532 DOI: 10.4049/jimmunol.167.9.5193] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The integrin LFA-1 serves as an accessory molecule in T cell activation. In addition to its well-known role as an adhesion molecule, LFA-1 can contribute to T cell activation and up-regulation of IL-2 gene expression. However, the specific mechanisms by which LFA-1 influences T cell activation have not been elucidated. Therefore, we examined the impact of LFA-1:ICAM-1 interactions on transcriptional and posttranscriptional IL-2 gene regulation, using a costimulation-negative cell line transfected with MHC class II alone, or in combination with ICAM-1 or B7-1. IL-2 transcription was assessed utilizing transgenic mice expressing an IL-2 promoter luciferase reporter construct crossed to DO11.10 TCR-transgenic mice, and IL-2 mRNA stability was evaluated by real-time RT-PCR. Comparison of naive and previously activated T cells demonstrates a dramatic increase in IL-2-luciferase transcription in activated T cells that can, in part, be attributed to downstream signaling events. Costimulation through LFA-1 enhances transcription of the transgenic reporter construct across a wide Ag dose range, but does not affect IL-2 mRNA stability. In contrast, CD28 costimulation is clearly mediated through up-regulation of IL-2 transcription and through enhancement of mRNA stability. These results indicate that the primary pathway whereby engagement of LFA-1 through its ligand ICAM-1 up-regulates IL-2 gene expression is through enhanced IL-2 transcription, in the absence of any effect on IL-2 mRNA stabilization.
Collapse
Affiliation(s)
- C Abraham
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
39
|
Lindgren H, Pero RW, Ivars F, Leanderson T. N-substituted benzamides inhibit nuclear factor-kappaB and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes. Mol Immunol 2001; 38:267-77. [PMID: 11566320 DOI: 10.1016/s0161-5890(01)00060-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
N-substituted benzamides are compounds that have recently been reported to inhibit nuclear factor-kappaB (NF-kappaB) activity and induce apoptosis in a pre-B cell line. In this study, we focused on the effects of N-substituted benzamides on transcriptional regulation in Jurkat T cells. We used a model system where the cells can be stimulated either through TCR/CD28 or by treatment of the cells with PMA and ionomycin to induce transcription factors typical for T lymphocyte activation. Treatment of the Jurkat cells with procainamide did not influence the transcription factor profile of stimulated cells, while treatment with a derivative having an acetyl group in position 4 of the aromatic ring inhibited NF-kappaB and nuclear factor of activated T cells (NFAT) activity. Declopramide, which contains a chloride in position 3 of the aromatic ring, was inactive in this system, whereas also the acetylated derivative of this compound inhibited NF-kappaB and NFAT activity. In contrast, the transcriptional activity and nuclear expression of activator protein 1 induced by TCR/CD28 stimulation or PMA and ionomycin treatment was enhanced by the acetylated variants of the N-substituted benzamides. Finally, we investigated the effect of N-substituted benzamides on intact promoters for two genes central in immune regulation; the CD40 ligand (CD40L) and IL-2 promoters. The transcriptional activity of the CD40L promoter as well as surface expression of the CD40L induced by signaling through TCR/CD28 was inhibited by addition of acetylated N-substituted benzamides, while the transcriptional activity of the IL-2 promoter was enhanced. Taken together, these data indicate that derivatives of N-substituted benzamides are potential drug candidates for quantitative as well as qualitative modulation of immune functions.
Collapse
Affiliation(s)
- H Lindgren
- Department of Cell and Molecular Biology, Section for Immunology, BMC I:13, Lund University, S-221 84, Lund, Sweden.
| | | | | | | |
Collapse
|
40
|
Yeh JH, Lecine P, Nunes JA, Spicuglia S, Ferrier P, Olive D, Imbert J. Novel CD28-responsive enhancer activated by CREB/ATF and AP-1 families in the human interleukin-2 receptor alpha-chain locus. Mol Cell Biol 2001; 21:4515-27. [PMID: 11416131 PMCID: PMC87111 DOI: 10.1128/mcb.21.14.4515-4527.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 04/16/2001] [Indexed: 12/31/2022] Open
Abstract
The interaction of interleukin-2 (IL-2) with its receptor (IL-2R) critically regulates the T-cell immune response, and the alpha chain CD25/IL-2Ralpha is required for the formation of the high-affinity receptor. Tissue-specific, inducible expression of the IL-2Ralpha gene is regulated by at least three positive regulatory regions (PRRI, PRRII, and PRRIII), but none responded to CD28 engagement in gene reporter assays although CD28 costimulation strongly amplifies IL-2Ralpha gene transcription. By DNase I hypersensitivity analysis, we have identified a novel TCR-CD3- and CD28-responsive enhancer (CD28rE) located 8.5 kb 5' of the IL-2Ralpha gene. PRRIV/CD28rE contains a functional CRE/TRE element required for CD28 signaling. The T-cell-specific, CD28-responsive expression of the IL-2Ralpha gene appears controlled through PRRIV/CD28rE by cooperation of CREB/ATF and AP-1 family transcription factors.
Collapse
Affiliation(s)
- J H Yeh
- INSERM U119-IFR57, 13009 Marseilles, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Lai JH, Ho LJ, Lu KC, Chang DM, Shaio MF, Han SH. Western and Chinese antirheumatic drug-induced T cell apoptotic DNA damage uses different caspase cascades and is independent of Fas/Fas ligand interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6914-24. [PMID: 11359853 DOI: 10.4049/jimmunol.166.11.6914] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spontaneous or therapeutic induction of T cell apoptosis plays a critical role in establishing transplantation tolerance and maintaining remission of autoimmune diseases. We investigated the mechanisms of apoptosis induced by Chinese and Western antirheumatic drugs (ARDs) in human T cells. We found that hydroxychloroquine, Tripterygium wilfordii hook F, and tetrandrine (Tet), but not methotrexate, at therapeutic concentrations can cause T cell death. In addition, Tet selectively killed T cells, especially activated T cells. Although ARD-induced cytotoxicity was mediated through apoptotic mechanisms, Fas/Fas ligand interaction was not required. We further demonstrated that the processes of phosphatidylserine externalization and DNA damage along the ARD-induced T cell apoptotic pathway could operate independently, and that selective inhibition of DNA damage by caspase inhibitors did not prevent T cells from undergoing cell death. Moreover, we found that Tet- and Tripterygium wilfordii hook F-induced T cell DNA damage required caspase-3 activity, and hydroxychloroquine-induced T cell DNA damage was mediated through a caspase-3- and caspase-8-independent, but Z-Asp-Glu-Val-Asp-fluomethyl ketone-sensitive, signaling pathway. Finally, the observation that ARD-induced activation of caspase-3 in both Fas-sensitive and Fas-resistant Jurkat T cells indicates that Fas/Fas ligand interaction plays no role in ARD-induced T cell apoptosis. Our observations provide new information about the complex apoptotic mechanisms of ARDs, and have implications for combining Western and Chinese ARDs that have different immunomodulatory mechanisms in the therapy of autoimmune diseases and transplantation rejection.
Collapse
Affiliation(s)
- J H Lai
- Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
42
|
Mikula M, Schreiber M, Husak Z, Kucerova L, Rüth J, Wieser R, Zatloukal K, Beug H, Wagner EF, Baccarini M. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J 2001; 20:1952-62. [PMID: 11296228 PMCID: PMC125416 DOI: 10.1093/emboj/20.8.1952] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Raf kinases play a key role in relaying signals elicited by mitogens or oncogenes. Here, we report that c-raf-1(-/-) embryos are growth retarded and die at midgestation with anomalies in the placenta and in the fetal liver. Although hepatoblast proliferation does not appear to be impaired, c-raf-1(-/-) fetal livers are hypocellular and contain numerous apoptotic cells. Similarly, the poor proliferation of Raf-1(-/-) fibroblasts and hematopoietic cells cultivated in vitro is due to an increase in the apoptotic index of these cultures rather than to a cell cycle defect. Furthermore, Raf-1- deficient fibroblasts are more sensitive than wild- type cells to specific apoptotic stimuli, such as actinomycin D or Fas activation, but not to tumor necrosis factor-alpha. MEK/ERK activation is normal in Raf-1-deficient cells and embryos, and is probably mediated by B-RAF. These results indicate that the essential function of Raf-1 is to counteract apoptosis rather than to promote proliferation, and that effectors distinct from the MEK/ERK cascade must mediate the anti-apoptotic function of Raf-1.
Collapse
Affiliation(s)
| | - Martin Schreiber
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | | | | | | | - Rotraud Wieser
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Kurt Zatloukal
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Hartmut Beug
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Erwin F. Wagner
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Manuela Baccarini
- Department of Cell- and Microbiology, Institute of Microbiology and Genetics and
Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna and Department of Pathology, University of Graz, A-8036 Graz, Austria Present address: Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18–20, A-1090 Vienna, Austria Present address: Department of Medical Biology, University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria Corresponding author e-mail:
| |
Collapse
|
43
|
Abstract
Productive T cell activation depends on the assembly of a highly ordered and compartmentalized immunological synapse or supramolecular activation complex (SMAC). Reorganization of the actin cytoskeleton and clustering of specialized membrane microdomains, or lipid rafts, occur early following TCR/CD3 and costimulatory receptor ligation. Many key signaling molecules localize in lipid raft patches during T cell activation. Lipid raft reorganization is required for T cell activation, where it plays an apparently important role in stabilizing the T cell synapse. Here we review recent evidence supporting the role of lipid rafts in T cell activation. Particular emphasis is placed on the coupling of protein kinase C-theta(PKCtheta), which is selectively expressed in T cells and is known to function as an essential signal for T cell activation, and lipid rafts.
Collapse
Affiliation(s)
- K Bi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | |
Collapse
|
44
|
Parra E, Mustelin T, Dohlsten M, Mercola D. Identification of a CD28 response element in the CD40 ligand promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2437-43. [PMID: 11160303 DOI: 10.4049/jimmunol.166.4.2437] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ligation of the T cell coreceptor CD28 or CD2 by its cognate ligands B7-1 or LFA-3, respectively, greatly aids the Ag-induced up-regulation of several genes, including IL-2 and CD40 ligand (CD40L). Using luciferase reporter constructs under the control of the 1.2 kb of 5' noncoding region of the human CD40L gene, we have found that stimulation through CD28 was required for a strong transcriptional activity of the CD40L promoter in response to TCR ligation, while the activity induced by CD2 was slightly lower than CD28. Deletion analysis demonstrated that the transcriptional elements mediating this effect were located within a 300-bp region upstream of the start site. Further dissection of this region and gel shift analyses demonstrated the presence of a CD28 response element in a region located between nucleotides -170 to -164 relative to the start site. Transcriptional studies with a CD40L enhancer-promoter carrying a mutation in this putative CD28 response element revealed that the activity was reduced by 80 and 70% after B7-1 and LFA-3 costimulation, respectively. The transcription factor complex bound to this site contained at least JunD, c-Fos, p50, p65, and c-REL:, but not c-Jun. Mutations introduced into the CD28RE also blocked the binding of this complex. These observations identify an important role for the CD28 signaling pathway in the regulation of CD40L promoter transcriptional activity.
Collapse
Affiliation(s)
- E Parra
- Sidney Kimmel Cancer Center, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
45
|
Bergqvist A, Rice CM. Transcriptional activation of the interleukin-2 promoter by hepatitis C virus core protein. J Virol 2001; 75:772-81. [PMID: 11134290 PMCID: PMC113973 DOI: 10.1128/jvi.75.2.772-781.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2000] [Accepted: 10/02/2000] [Indexed: 02/07/2023] Open
Abstract
Most patients infected with hepatitis C virus (HCV) become chronic carriers. Viruses that efficiently establish persistent infections must have effective ways of evading host defenses. In the case of HCV, little is known about how chronic infections are established or maintained. Besides hepatocytes, several reports suggest that HCV can infect T and B lymphocytes. Since T cells are essential for viral clearance, direct or indirect effects of HCV on T-cell function could influence the outcome of infection. Given that T-cell growth and differentiation require the cytokine interleukin 2 (IL-2), we asked whether HCV might modulate synthesis of IL-2. Portions of the HCV polyprotein were expressed in Jurkat cells under a variety of conditions. We found that the highly conserved HCV core protein, in combination with other stimuli, was able to dramatically activate transcription from the IL-2 promoter. The carboxy-terminal hydrophobic portion of the core protein was required for this activity. Activation was dependent on nuclear factor of activated T cells (NFAT), occurred in cells deficient in the tyrosine kinase p56(lck), and could be blocked by addition of cyclosporin A and by depletion of calcium. These results suggest that the HCV core protein can activate transcription of the IL-2 promoter through the NFAT pathway. This novel activity may have consequences for T-cell development and establishment of persistent infections.
Collapse
Affiliation(s)
- A Bergqvist
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | |
Collapse
|
46
|
Altman A, Isakov N, Baier G. Protein kinase Ctheta: a new essential superstar on the T-cell stage. IMMUNOLOGY TODAY 2000; 21:567-73. [PMID: 11094261 DOI: 10.1016/s0167-5699(00)01749-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have identified protein kinase Cθ (PKCtheta), a member of the Ca(2+)-independent PKC family, as an essential component of the T-cell synapse that cooperates with calcineurin to activate the interleukin-2 (IL-2) gene. Several selective functions of PKCtheta involved in the activation and survival of T cells are reviewed herein. Among these, the nuclear factor-kappaB (NF-kappaB) signaling cascade appears to be the most critical target of PKCtheta in the T-cell receptor/CD28 costimulatory pathway that leads to T-cell activation.
Collapse
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
47
|
Pazirandeh A, Xue Y, Okret S, Jondal M. Glucocorticoid resistance in thymocytes from mice expressing a T cell receptor transgene. Biochem Biophys Res Commun 2000; 276:189-96. [PMID: 11006105 DOI: 10.1006/bbrc.2000.3458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A majority of thymocytes undergo apoptosis during differentiation due to lack of survival signals provided by T cell receptor (TCR) activation. As glucocorticoids (GC) have been suggested to be involved in this process, we have investigated the GC sensitivity in thymocytes from mice expressing a transgenic selecting TCR. We now report that immature CD4(+)CD8(+) double-positive thymocytes from these mice are comparatively more resistant to corticosterone-induced apoptosis. This is associated with reduced glucocorticoid receptor (GR) expression, increased levels of membrane CD28, increased NF-kappaB DNA binding activity, and increased binding to the CD28 response element in the interleukin-2 gene promoter. Analysis of NF-kappaB/Rel proteins from nuclear extracts demonstrated altered levels of some of these proteins. Our results suggest that TCR recognition of self major histocompatibility antigens generates intracellular signals which alter the thymocyte GC sensitivity and thereby protect them against apoptosis induced by endogenous GC.
Collapse
Affiliation(s)
- A Pazirandeh
- Microbiology and Tumor Biology Center (MTC), Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | | | | | | |
Collapse
|
48
|
Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 2000; 13:313-22. [PMID: 11021529 DOI: 10.1016/s1074-7613(00)00031-5] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD28 and CTLA-4 are related members of a family of T lymphocyte cell surface receptors that function to regulate T cell activation. We have found that the cytoplasmic domains of both CTLA-4 and CD28 can associate with members of the PP2A family of serine/threonine phosphatases. The association of PP2A with CD28 was negatively regulated by tyrosine phosphorylation of the CD28 cytoplasmic domain. Inhibition of PP2A activity in Jurkat leukemia T cells by treatment with okadaic acid or by expression of a dominant-negative mutant enhanced T cell activation induced by CD28 engagement. Interactions between cell surface receptors such as CTLA-4 and CD28 and serine/threonine phosphatases may represent a novel mechanism for modulating the intracellular signal transduction pathways associated with cell activation.
Collapse
Affiliation(s)
- E Chuang
- Gwen Knapp Center for Lupus and Immunobiology Research, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Machado J, Fernandez PC, Baumann I, Dobbelaere DA. Characterisation of NF-kappa B complexes in Theileria parva-transformedT cells. Microbes Infect 2000; 2:1311-20. [PMID: 11018447 DOI: 10.1016/s1286-4579(00)01284-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transformation of T cells by the intracellular parasite Theileria parva is accompanied by constitutive I-kappa B degradation and NF-kappa B activation, a process which is essential to prevent the spontaneous apoptosis of these parasite-transformed cells. NF-kappa B-mediated responses are regulated by selective combinations of NF-kappa B proteins as homo- or heterodimers and by distinct kappa B motifs. We characterised the NF-kappa B complexes induced by T. parva infection in TpM(803) T cells. By western blot, we demonstrated that all members of the NF-kappa B/Rel family of proteins translocate to the nucleus of infected cells. Using two different kappa B oligonucleotides (kappa B-1 and kappa B-2), both containing the decameric consensus kappa B motif (GGGACTTTCC), clearly distinct patterns of DNA binding activities could be demonstrated in electrophoretic mobility shift assays. Supershift analysis and UV cross-linking assays showed that complexes binding to kappa B-1 consisted of p50, p65 and RelB homo and/or heterodimers. We could also detect an association of ATF-2 and c-Fos with one of the complexes. The HIV-derived kappa B-2 oligo only bound p50 and p65. Additionally, several agents known to inhibit a wide range of NF-kappa B activation pathways had no inhibitory effect on the activation of NF-kappa B DNA binding in TpM(803) T cells.
Collapse
Affiliation(s)
- J Machado
- Laboratory of Molecular Pathology, Institute of Animal Pathology, University of Berne, Länggass-Strasse 122, 3012, Berne, Switzerland
| | | | | | | |
Collapse
|
50
|
Stepkowski SM, Qu X, Wang ME, Tian L, Chen W, Wancewicz EV, Johnston JF, Bennett CF, Monia BP. Inhibition of C-raf expression by antisense oligonucleotides extends heart allograft survival in rats. Transplantation 2000; 70:656-61. [PMID: 10972225 DOI: 10.1097/00007890-200008270-00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND C-raf is a well-characterized serine/ threonine (Ser/Thr) protein kinase that is involved in the transduction of multiple signals of T cells. We demonstrate that the inhibition of C-raf mRNA expression prolongs heart allograft survival. METHODS Three 20-mer C-raf antisense oligonucleotides, each with identical sequences, were synthesized with different chemical modifications: one as a uniform phosphorothioate oligodeoxynucleotide (PS oligo), a second with a PS backbone and 2'-methoxyethyl (ME) substitutions at the 2'-sugar positions in the first and last five nucleotides, and a third with a mixed PS and phosphodiester (PD) backbone and ME modifications on the first and last five nucleotides. RESULTS Both ME-modified C-raf antisense oligos were at least 5-fold more effective than the PS C-raf antisense oligo in blocking C-raf mRNA expression in two cell lines. Similarly, each of the ME C-raf antisense oligos produced better heart allograft survival rates than did PS C-raf oligo. Furthermore, although the combination of PS C-raf antisense oligo with sirolimus (SRL) acted synergistically to extend heart allograft survival, the effect was potentiated by either of the ME-modified oligos. CONCLUSIONS C-raf inhibition extends heart allograft survival, and ME-modification potentiates antisense activity.
Collapse
Affiliation(s)
- S M Stepkowski
- Division of Immunology and Organ Transplantation, The University of Texas Medical School at Houston, 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|