1
|
Tam KP, Xie J, Au-Yeung RKH, Chiang AKS. Combination of bortezomib and venetoclax targets the pro-survival function of LMP-1 and EBNA-3C of Epstein-Barr virus in spontaneous lymphoblastoid cell lines. PLoS Pathog 2024; 20:e1012250. [PMID: 39325843 PMCID: PMC11481030 DOI: 10.1371/journal.ppat.1012250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/08/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Epstein-Barr virus (EBV) manipulates the ubiquitin-proteasome system and regulators of Bcl-2 family to enable the persistence of the virus and survival of the host cells through the expression of viral proteins in distinct latency patterns. We postulate that the combination of bortezomib (proteasome inhibitor) and venetoclax (Bcl-2 inhibitor) [bort/venetoclax] will cause synergistic killing of post-transplant lymphoproliferative disorder (PTLD) through targeting the pro-survival function of latent viral proteins such as latent membrane protein-1 (LMP-1) and EBV nuclear antigen-3C (EBNA-3C). Bort/venetoclax could synergistically kill spontaneous lymphoblastoid cell lines (sLCLs) derived from patients with PTLD and EBV-associated hemophagocytic lymphohistiocytosis by inducing DNA damage response, apoptosis and G1-S cell cycle arrest in a ROS-dependent manner. Bortezomib potently induced the expression of Noxa, a pro-apoptotic initiator and when combined with venetoclax, inhibited Mcl-1 and Bcl-2 simultaneously. Bortezomib prevented LMP-1 induced proteasomal degradation of IκBα leading to the suppression of the NF-κB signaling pathway. Bortezomib also rescued Bcl-6 from EBNA-3C mediated proteasomal degradation thus maintaining the repression of cyclin D1 and Bcl-2 causing G1-S arrest and apoptosis. Concurrently, venetoclax inhibited Bcl-2 upregulated by either LMP-1 or EBNA-3C. Bort/venetoclax decreased the expression of phosphorylated p65 and Bcl-2 at serine 70 thereby suppressing the NF-κB signaling pathway and promoting apoptosis, respectively. These data corroborated the marked suppression of the growth of xenograft of sLCL in SCID mice (p<0.001). Taken together, the combination of bortezomib and venetoclax targets the pro-survival function of LMP-1 and EBNA-3C of Epstein-Barr virus in spontaneous lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Kam Pui Tam
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia Xie
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rex Kwok Him Au-Yeung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alan K. S. Chiang
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
3
|
van Niekerk G, Coelmont L, Alpizar YA, Kelchtermans L, Broeckhoven E, Dallmeier K. GLP-1R agonist therapy and vaccine response: Neglected implications. Cytokine Growth Factor Rev 2024; 78:14-24. [PMID: 39025754 DOI: 10.1016/j.cytogfr.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs), such as semaglutide (Ozempic®), have emerged as effective treatments for diabetes and weight management. However, recent evidence indicates that GLP-1R signalling influences various tissues, including the immune system. Notably, GLP-1 has a short half-life (< 5 minutes) and exists in the picomolar range, while GLP-1RAs like semaglutide have extended half-lives of several days and are administered at supraphysiological doses. This review explores the potential impact of these medications on vaccine efficacy. We examine evidence suggesting that GLP-1RAs may attenuate vaccine responses through direct effects on immune cells and modulation of other tissues. Additionally, we discuss how GLP-1R signalling may create a tolerogenic environment, potentially reducing vaccine immunogenicity. Given the widespread use of GLP-1RAs, it is crucial to understand their impact on immune responses and the translational implications for vaccination outcomes.
Collapse
Affiliation(s)
- Gustav van Niekerk
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lara Kelchtermans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Elias Broeckhoven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium.
| |
Collapse
|
4
|
Kopp KO, Li Y, Glotfelty EJ, Tweedie D, Greig NH. Incretin-Based Multi-Agonist Peptides Are Neuroprotective and Anti-Inflammatory in Cellular Models of Neurodegeneration. Biomolecules 2024; 14:872. [PMID: 39062586 PMCID: PMC11275108 DOI: 10.3390/biom14070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1)-based drugs have been approved by the United States Food and Drug Administration (FDA) and are widely used to treat type 2 diabetes mellitus (T2DM) and obesity. More recent developments of unimolecular peptides targeting multiple incretin-related receptors ("multi-agonists"), including the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon (Gcg) receptor (GcgR), have emerged with the aim of enhancing drug benefits. In this study, we utilized human and mouse microglial cell lines, HMC3 and IMG, respectively, together with the human neuroblastoma SH-SY5Y cell line as cellular models of neurodegeneration. Using these cell lines, we studied the neuroprotective and anti-inflammatory capacity of several multi-agonists in comparison with a single GLP-1 receptor (GLP-1R) agonist, exendin-4. Our data demonstrate that the two selected GLP-1R/GIPR dual agonists and a GLP-1R/GIPR/GcgR triple agonist not only have neurotrophic and neuroprotective effects but also have anti-neuroinflammatory properties, as indicated by the decreased microglial cyclooxygenase 2 (COX2) expression, nitrite production, and pro-inflammatory cytokine release. In addition, our results indicate that these multi-agonists have the potential to outperform commercially available single GLP-1R agonists in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Katherine O. Kopp
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| | - Elliot J. Glotfelty
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA;
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| |
Collapse
|
5
|
Oberholtzer N, Mills S, Mehta S, Chakraborty P, Mehrotra S. Role of antioxidants in modulating anti-tumor T cell immune resposne. Adv Cancer Res 2024; 162:99-124. [PMID: 39069371 DOI: 10.1016/bs.acr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
It has been well established that in addition to oxygen's vital in cellular respiration, a disruption of oxygen balance can lead to increased stress and oxidative injury. Similarly, reduced oxygen during tumor proliferation and invasion generates a hypoxic tumor microenvironment, resulting in dysfunction of immune cells and providing a conducive milieu for tumors to adapt and grow. Strategies to improve the persistence tumor reactive T cells in the highly oxidative tumor environment are being pursued for enhancing immunotherapy outcomes. To this end, we have focused on various strategies that can help increase or maintain the antioxidant capacity of T cells, thus reducing their susceptibility to oxidative stress/damage. Herein we lay out an overview on the role of oxygen in T cell signaling and how pathways regulating oxidative stress or antioxidant signaling can be targeted to enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephanie Mills
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shubham Mehta
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Paramita Chakraborty
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
6
|
Estevez I, Buckley BD, Panzera N, Lindman M, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during CNS viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591333. [PMID: 38712188 PMCID: PMC11071512 DOI: 10.1101/2024.04.26.591333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While recent work has identified roles for immune mediators in the regulation of neural activity, the capacity for cell intrinsic innate immune signaling within neurons to influence neurotransmission remains poorly understood. However, the existing evidence linking immune signaling with neuronal function suggests that modulation of neurotransmission may serve previously undefined roles in host protection during infection of the central nervous system. Here, we identify a specialized function for RIPK3, a kinase traditionally associated with necroptotic cell death, in preserving neuronal survival during neurotropic flavivirus infection through the suppression of excitatory neurotransmission. We show that RIPK3 coordinates transcriptomic changes in neurons that suppress neuronal glutamate signaling, thereby desensitizing neurons to excitotoxic cell death. These effects occur independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promotes phosphorylation of the key neuronal regulatory kinase CaMKII, which in turn activates the transcription factor CREB to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting new mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D. Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J. Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
7
|
Varma M, Bhandari R, Kuhad A. Repurposing Niclosamide as a plausible neurotherapeutic in autism spectrum disorders, targeting mitochondrial dysfunction: a strong hypothesis. Metab Brain Dis 2024; 39:387-401. [PMID: 37284987 PMCID: PMC10957696 DOI: 10.1007/s11011-023-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Autism Spectrum Disorders (ASD) are a complex set of neurodevelopmental manifestations which present in the form of social and communication deficits. Affecting a growing proportion of children worldwide, the exact pathogenesis of this disorder is not very well understood, and multiple signaling pathways have been implicated. Among them, the ERK/MAPK pathway is critical in a number of cellular processes, and the normal functioning of neuronal cells also depends on this cascade. As such, recent studies have increasingly focused on the impact this pathway has on the development of autistic symptoms. Improper ERK signaling is suspected to be involved in neurotoxicity, and the same might be implicated in autism spectrum disorders (ASD), through a variety of effects including mitochondrial dysfunction and oxidative stress. Niclosamide, an antihelminthic and anti-inflammatory agent, has shown potential in inhibiting this pathway, and countering the effects shown by its overactivity in inflammation. While it has previously been evaluated in other neurological disorders like Alzheimer's Disease and Parkinson's Disease, as well as various cancers by targeting ERK/MAPK, it's efficacy in autism has not yet been evaluated. In this article, we attempt to discuss the potential role of the ERK/MAPK pathway in the pathogenesis of ASD, specifically through mitochondrial damage, before moving to the therapeutic potential of niclosamide in the disorder, mediated by the inhibition of this pathway and its detrimental effects of neuronal development.
Collapse
Affiliation(s)
- Manasi Varma
- Pharmacology Research Laboratory, UGC- Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, UGC- Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, UGC- Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
8
|
Qiu F, He S, Zhang Z, Dai S, Wang J, Liu N, Li Z, Hu X, Xiang S, Wei C. MiR-93 alleviates DEHP plasticizer-induced neurotoxicity by negatively regulating TNFAIP1 and inhibiting ubiquitin-mediated degradation of CK2β. Food Chem Toxicol 2023:113888. [PMID: 37302538 DOI: 10.1016/j.fct.2023.113888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used in various products, such as plastic packaging in food industries. As an environmental endocrine disruptor, it induces adverse effects on brain development and function. However, the molecular mechanisms by which DEHP induces learning and memory impairment remain poorly understood. Herein, we found that DEHP impaired learning and memory in pubertal C57BL/6 mice, decreased the number of neurons, downregulated miR-93 and the β subunit of casein kinase 2 (CK2β), upregulated tumor necrosis factor-induced protein 1 (TNFAIP1), and inhibited Akt/CREB pathway in mouse hippocampi. Coimmunoprecipitation and western blotting assays revealed that TNFAIP1 interacted with CK2β and promoted its degradation by ubiquitination. Bioinformatics analysis showed a miR-93 binding site in the 3'-untranslated region of Tnfaip1. A dual-luciferase reporter assay revealed that miR-93 targeted TNFAIP1 and negatively regulated its expression. MiR-93 overexpression prevented DEHP-induced neurotoxicity by downregulating TNFAIP1 and then activating CK2/Akt/CREB pathway. These data indicate that DEHP upregulates TNFAIP1 expression by downregulating miR-93, thus promoting ubiquitin-mediated degradation of CK2β, subsequently inhibiting Akt/CREB pathway, and finally inducing learning and memory impairment. Therefore, miR-93 can relieve DEHP-induced neurotoxicity and may be used as a potential molecular target for prevention and treatment of related neurological disorders.
Collapse
Affiliation(s)
- Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Simei He
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zilong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Siyu Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jin Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhiwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
9
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
10
|
Lee C, Lee S, Park E, Hong J, Shin DY, Byun JM, Yun H, Koh Y, Yoon SS. Transcriptional signatures of the BCL2 family for individualized acute myeloid leukaemia treatment. Genome Med 2022; 14:111. [PMID: 36171613 PMCID: PMC9520894 DOI: 10.1186/s13073-022-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although anti-apoptotic proteins of the B-cell lymphoma-2 (BCL2) family have been utilized as therapeutic targets in acute myeloid leukaemia (AML), their complicated regulatory networks make individualized therapy difficult. This study aimed to discover the transcriptional signatures of BCL2 family genes that reflect regulatory dynamics, which can guide individualized therapeutic strategies. METHODS From three AML RNA-seq cohorts (BeatAML, LeuceGene, and TCGA; n = 451, 437, and 179, respectively), we constructed the BCL2 family signatures (BFSigs) by applying an innovative gene-set selection method reflecting biological knowledge followed by non-negative matrix factorization (NMF). To demonstrate the significance of the BFSigs, we conducted modelling to predict response to BCL2 family inhibitors, clustering, and functional enrichment analysis. Cross-platform validity of BFSigs was also confirmed using NanoString technology in a separate cohort of 47 patients. RESULTS We established BFSigs labeled as the BCL2, MCL1/BCL2, and BFL1/MCL1 signatures that identify key anti-apoptotic proteins. Unsupervised clustering based on BFSig information consistently classified AML patients into three robust subtypes across different AML cohorts, implying the existence of biological entities revealed by the BFSig approach. Interestingly, each subtype has distinct enrichment patterns of major cancer pathways, including MAPK and mTORC1, which propose subtype-specific combination treatment with apoptosis modulating drugs. The BFSig-based classifier also predicted response to venetoclax with remarkable performance (area under the ROC curve, AUROC = 0.874), which was well-validated in an independent cohort (AUROC = 0.950). Lastly, we successfully confirmed the validity of BFSigs using NanoString technology. CONCLUSIONS This study proposes BFSigs as a biomarker for the effective selection of apoptosis targeting treatments and cancer pathways to co-target in AML.
Collapse
Affiliation(s)
- Chansub Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eunchae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ja Min Byun
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Poupon-Bejuit L, Hughes MP, Liu W, Geard A, Faour-Slika N, Whaler S, Massaro G, Rahim AA. A GLP1 receptor agonist diabetes drug ameliorates neurodegeneration in a mouse model of infantile neurometabolic disease. Sci Rep 2022; 12:13825. [PMID: 35970890 PMCID: PMC9378686 DOI: 10.1038/s41598-022-17338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare paediatric neurodegenerative condition caused by mutations in the PLA2G6 gene, which is also the causative gene for PARK14-linked young adult-onset dystonia parkinsonism. INAD patients usually die within their first decade of life, and there are currently no effective treatments available. GLP1 receptor (GLP-1R) agonists are licensed for treating type 2 diabetes mellitus but have also demonstrated neuroprotective properties in a clinical trial for Parkinson's disease. Therefore, we evaluated the therapeutic efficacy of a new recently licensed GLP-1R agonist diabetes drug in a mouse model of INAD. Systemically administered high-dose semaglutide delivered weekly to juvenile INAD mice improved locomotor function and extended the lifespan. An investigation into the mechanisms underlying these therapeutic effects revealed that semaglutide significantly increased levels of key neuroprotective molecules while decreasing those involved in pro-neurodegenerative pathways. The expression of mediators in both the apoptotic and necroptotic pathways were also significantly reduced in semaglutide treated mice. A reduction of neuronal loss and neuroinflammation was observed. Finally, there was no obvious inflammatory response in wild-type mice associated with the repeated high doses of semaglutide used in this study.
Collapse
Affiliation(s)
- L Poupon-Bejuit
- UCL School of Pharmacy, University College London, London, UK
| | - M P Hughes
- UCL School of Pharmacy, University College London, London, UK
| | - W Liu
- UCL School of Pharmacy, University College London, London, UK
| | - A Geard
- UCL School of Pharmacy, University College London, London, UK
| | - N Faour-Slika
- UCL School of Pharmacy, University College London, London, UK
| | - S Whaler
- UCL School of Pharmacy, University College London, London, UK
| | - G Massaro
- UCL School of Pharmacy, University College London, London, UK.
| | - A A Rahim
- UCL School of Pharmacy, University College London, London, UK.
| |
Collapse
|
12
|
CREB1 contributes colorectal cancer cell plasticity by regulating lncRNA CCAT1 and NF-κB pathways. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1481-1497. [PMID: 35696016 DOI: 10.1007/s11427-022-2108-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
The CREB1 gene encodes an exceptionally pleiotropic transcription factor that frequently dysregulated in human cancers. CREB1 can regulate tumor cell status of proliferation and/or migration; however, the molecular basis for this switch involvement in cell plasticity has not fully been understood yet. Here, we first show that knocking out CREB1 triggers a remarkable effect of epithelial-mesenchymal transition (EMT) and leads to the occurrence of inhibited proliferation and enhanced motility in HCT116 colorectal cancer cells. By monitoring 45 cellular signaling pathway activities, we find that multiple growth-related pathways decline significantly while inflammatory pathways including NF-κB are largely upregulated in comparing between the CREB1 wild-type and knocked out cells. Mechanistically, cells with CREB1 knocked out show downregulation of MYC as a result of impaired CREB1-dependent transcription of the oncogenic lncRNA CCAT1. Interestingly, the unbalanced competition between the coactivator CBP/p300 for CREB1 and p65 leads to the activation of the NF-κB pathway in cells with CREB1 disrupted, which induces an obvious EMT phenotype of the cancer cells. Taken together, these studies identify previously unknown mechanisms of CREB1 in CRC cell plasticity via regulating lncRNA CCAT1 and NF-κB pathways, providing a critical insight into a combined strategy for CREB1-targeted tumor therapies.
Collapse
|
13
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
14
|
Cirinelli A, Wheelan J, Grieg C, Molina CA. Evidence that the transcriptional repressor ICER is regulated via the N-end rule for ubiquitination. Exp Cell Res 2022; 414:113083. [PMID: 35227662 PMCID: PMC8930515 DOI: 10.1016/j.yexcr.2022.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
Abstract
ICER is a transcriptional repressor that is mono- or poly-ubiquitinated. This either causes ICER to be translocated from the nucleus, or degraded via the proteasome, respectively. In order to further studies the proteins involved in ICER regulation mass spectrometry analysis was performed to identify potential candidates. We identified twenty eight ICER-interacting proteins in human melanoma cells, Sk-Mel-24. In this study we focus on two proteins with potential roles in ICER proteasomal degradation in response to the N-end rule for ubiquitination: the N-alpha-acetyltransferase 15 (NAA15) and the E3 ubiquitin-protein ligase UBR4. Using an HA-tag on the N- or C-terminus of ICER (NHAICER or ICERCHA) it was found that the N-terminus of ICER is important for its interaction to UBR4, whereas NARG1 interaction is independent of HA-tag position. Silencing RNA experiments show that both NAA15 and UBR4 up-regulates ICER levels and that ICER's N-terminus is important for this regulation. The N-terminus of ICER was found to have dire consequences on its regulation by ubiquitination and cellular functions. The half-life of NHAICER was found to be about twice as long as ICERCHA. Polyubiquitination of ICER was found to be dependent on its N-terminus and mediated by UBR4. This data strongly suggests that ICER is ubiquitinated as a response to the N-end rule that governs protein degradation rate through recognition of the N-terminal residue of proteins. Furthermore, we found that NHAICER inhibits transcription two times more efficiently than ICERCHA, and causes apoptosis 5 times more efficiently than ICERCHA. As forced expression of ICER has been shown before to block cells in mitosis, our data represent a potentially novel mechanism for apoptosis of cells in mitotic arrest.
Collapse
|
15
|
Wang F, Zhu C, Cai S, Boudreau A, Kim SJ, Bissell M, Shao J. Ser 71 Phosphorylation Inhibits Actin-Binding of Profilin-1 and Its Apoptosis-Sensitizing Activity. Front Cell Dev Biol 2021; 9:692269. [PMID: 34235154 PMCID: PMC8255618 DOI: 10.3389/fcell.2021.692269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 01/25/2023] Open
Abstract
The essential actin-binding factor profilin-1 (Pfn1) is a non-classical tumor suppressor with the abilities toboth inhibit cellular proliferation and augment chemotherapy-induced apoptosis. Besides actin, Pfn1 interacts with proteins harboring the poly-L-proline (PLP) motifs. Our recent work demonstrated that both nuclear localization and PLP-binding are required for tumor growth inhibition by Pfn1, and this is at least partially due to Pfn1 association with the PLP-containing ENL protein in the Super Elongation Complex (SEC) and the transcriptional inhibition of pro-cancer genes. In this paper, by identifying a phosphorylation event of Pfn1 at Ser71 capable of inhibiting its actin-binding and nuclear export, we provide in vitro and in vivo evidence that chemotherapy-induced apoptotic sensitization by Pfn1 requires its cytoplasmic localization and actin-binding. With regard to tumor growth inhibition byPfn1, our data indicate a requirement for dynamic actin association and dissociation rendered by reversible Ser71phosphorylation and dephosphorylation. Furthermore, genetic and pharmacological experiments showed that Ser71 of Pfn1 can be phosphorylated by protein kinase A (PKA). Taken together, our data provide novel mechanistic insights into the multifaceted anticancer activities of Pfn1 and how they are spatially-defined in the cell and differentially regulated by ligand-binding.
Collapse
Affiliation(s)
- Faliang Wang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Surgical Oncology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuige Zhu
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Shirong Cai
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aaron Boudreau
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sun-Joong Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mina Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jieya Shao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Zhang DG, Zhao T, Hogstrand C, Ye HM, Xu XJ, Luo Z. Oxidized fish oils increased lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the CREB1-Bcl2-Beclin1 pathway in the liver tissues and hepatocytes of yellow catfish. Food Chem 2021; 360:129814. [PMID: 34023714 DOI: 10.1016/j.foodchem.2021.129814] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
At present, the harmful effects and relevant mechanism of oxidized fish oils on fish and fish cells remain unknown. Our study found that oxidized fish oils increased lipogenesis, and reduced lipolysis, activated oxidative stress by decreasing glutathione peroxidase (GPX) activity, increasing malondialdhyde (MDA) content and damaging mitochondrial structure, and activated autophagy in the liver of yellow catfish; oxidized eicosapentaenoic acid (oxEPA) induced oxidative stress in yellow catfish hepatocytes. Oxidative stress, mitochondrial dysfunction and lipophagy mediated oxEPA induced-variations in lipid metabolism. Our further investigation indicated that oxEPA-activated lipophagy was via inhibiting the DNA binding capacity of the cAMP-response element binding protein (CREB)-1 to the region of Bcl-2 promoter, which in turn suppressed the binding activity of Bcl-2 to Beclin1 and promoted autophagosome formation. For the first time, our study elucidated the mechanisms of oxidized fish oils-induced lipid deposition by the oxidative stress, mitochondrial dysfunction and CREB1-Bcl-2-Beclin1 pathway in fish.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Han-Mei Ye
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Jian Xu
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Shi Y, Ye D, Huang R, Xu Y, Lu P, Chen H, Huang J. Down Syndrome Critical Region 1 Reduces Oxidative Stress-Induced Retinal Ganglion Cells Apoptosis via CREB-Bcl-2 Pathway. Invest Ophthalmol Vis Sci 2021; 61:23. [PMID: 33104163 PMCID: PMC7594594 DOI: 10.1167/iovs.61.12.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Irreversible retina ganglion cell (RGC) loss is a key process during glaucoma progression. Down syndrome critical region 1 (DSCR1) has been shown to have protective effects against neuronal death. In this study, we aimed to investigate the neuroprotective mechanisms of DSCR1 on RGCs. Methods DBA/2J mice and optic nerve crush (ONC) rat model were used for vivo assays. Oxidative stress model of primary RGCs was carried out with in vitro transduction. DSCR1 protein localization was assessed by immunofluorescence. Differential protein expression was validated by Western blot, and gene expression was detected by real-time PCR. TUNEL was used to identify cell apoptosis, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to analyze cell viability. Results Significant upregulation of DSCR1 was observed in DBA/2J mice, ONC rat model, and RGCs treated with H2O2, reaching peaks at the age of 6 months in DBA/2J mice, 5 days after ONC in rats, and 24 hours after H2O2 treatment in RGCs, respectively. DSCR1 was shown to be expressed in the ganglion cell layer. In vitro, overexpressed DSCR1 significantly promoted phosphorylation of cyclic AMP response element binding protein (CREB), B-cell lymphoma 2 (Bcl-2) expression, and RGC survival rate while reducing cleaved caspase 3 expression in H2O2-treated RGCs. On the other hand, the opposite effects were shown after knockdown of DSCR1. In addition, silencing of CREB inhibited expression of DSCR1. Conclusions Our results suggested that DSCR1 might protect the RGCs against oxidative stress via the CREB–Bcl-2 pathway, which may provide a theoretical basis for future treatments of glaucoma.
Collapse
Affiliation(s)
- Yuxun Shi
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Chatterjee K, De S, Roy SD, Sahu SK, Chakraborty A, Ghatak S, Das N, Mal S, Chattopadhyay NR, Das P, Reddy RR, Mukherjee S, Das AK, Puii Z, Zomawia E, Singh YI, Tsering S, Riba K, Rajasubramaniam S, Suryawanshi AR, Choudhuri T. BAX -248 G>A and BCL2 -938 C>A Variant Lowers the Survival in Patients with Nasopharyngeal Carcinoma and Could be Associated with Tissue-Specific Malignancies: A Multi-Method Approach. Asian Pac J Cancer Prev 2021; 22:1171-1181. [PMID: 33906310 PMCID: PMC8325122 DOI: 10.31557/apjcp.2021.22.4.1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The association of BAX -248 G>A and BCL2 -938 C>A with different cancers created conflicts. We studied the correlation and the effect of these polymorphisms in patients with Nasopharyngeal Carcinoma (NPC). Methods: PCR-RFLP and Sanger sequencing were used to detect polymorphisms. Statistical analysis including forest plot and Kaplan-Meier Log-rank test was conducted to investigate the association and effect of these SNPs on the NPC patients' survival. The computational study was performed to investigate the possible regulatory role between these polymorphisms and the poor survival of NPC patients. Meta-analysis was executed to check the tissue-specific association of these polymorphisms in the context of global cancer prognosis. RESULTS We observed an increased and significant association of BAX -248 G>A [GA:OR=5.29, 95%CI=1.67,16.67, P=0.004; GA+AA:OR=5.71, 95%CI=1.82,17.90, P =0.002; A:OR=5.33, 95%CI=1.76,16.13, P=0.003], and BCL2 -938 C>A [CA:OR=2.26, 95%CI=1.03,4.96, P=0.04; AA:OR=3.56, 95%CI=0.97,13.05, P=0.05; CA+AA:OR=3.10, 95%CI=1.51,6.35, P=0.002; A:OR=2.90, 95% CI=1.59,5.29, P=0.0005] with the risk of NPC. Also, these SNPs were strongly correlated with poor survival in NPC patients (lower estimated survival mean, lower estimated proportion surviving at 5 years with p <0.05). The computational study showed that these SNPs altered the binding affinity of transcription factors HIF1, SP1, PAX3, PAX9 and CREB towards promoter (Lower p indicates strong affinity). The meta-analysis revealed the tissue-specific association of these polymorphisms. BAX -248 G>A showed a significant correlation with carcinomas [A vs G:OR=1.60, 95%CI=1.09,2.34, P=0.01; AA vs GG:OR=2.61, 95%CI=1.68,4.06, p <0.001; AA+GA vs GG:OR=1.53,95%CI=1.04,2.25, P=0.02); AA vs GG+GA:OR=2.53, 95%CI=1.65,3.87, p <0.001], and BCL2 -938 C>A with other malignancies [A vs C:OR=1.45, 95%CI=1.26,1.66, p <0.001; AA vs CC:OR=2.07, 95%CI: 1.15,3.72, P=0.01; AA+CA vs CC:OR=1.42, 95%CI=1.18,1.72, p <0.001; AA vs CC+CA:OR=1.89, 95%CI=1.02,3.50, P=0.04]. CONCLUSIONS BAX -248 G>A and BCL2 -938 C>A was associated with poor survival in NPC patients. It may increase cancer susceptibility through transcriptional regulation. Moreover, these SNPs' effects could be tissue-specific. .
Collapse
Affiliation(s)
- Koustav Chatterjee
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - Saikat De
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - Sankar Deb Roy
- Department of Radiation Oncology, Eden Medical Centre, Dimapur, Nagaland, India.
| | - Sushil Kumar Sahu
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States.
| | | | - Sandeep Ghatak
- Division of Animal and Fishery Science, ICAR Research Complex for North East Hill Region,Umiam, Meghalaya, India.
| | - Nilanjana Das
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - Sudipa Mal
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | | | - Piyanki Das
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - R. Rajendra Reddy
- Clinical Proteomics, Institute of Life Sciences, Bhubaneswar, India.
| | - Syamantak Mukherjee
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - Ashok Kumar Das
- Department of ENT, Dr B. Borooah Cancer Institute, Guwahati, Assam, India.
| | - Zoreng Puii
- State Referral Hospital, Falkawn, Mizoram, India.
| | - Eric Zomawia
- State Referral Hospital, Falkawn, Mizoram, India.
| | - Yengkhom Indibor Singh
- Regional Institute of Medical Sciences, Department of Radiotherapy, Imphal, Manipur, India.
| | - Sam Tsering
- Tertiary cancer center,TomoRiba Institute of Health And Medical Sciences, Arunachal Pradesh, India.
| | - Komri Riba
- Tertiary cancer center,TomoRiba Institute of Health And Medical Sciences, Arunachal Pradesh, India.
| | - Shanmugam Rajasubramaniam
- Division of Genetic Disorders ICMR-National Institute of Research in Tribal Health, NIRTH Complex, Jabalpur, Madhya Pradesh, India.
| | | | - Tathagata Choudhuri
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| |
Collapse
|
19
|
Anticancer potential of metformin: focusing on gastrointestinal cancers. Cancer Chemother Pharmacol 2021; 87:587-598. [PMID: 33744985 DOI: 10.1007/s00280-021-04256-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
Gastrointestinal cancers are one of the most common types of cancer that have high annual mortality; therefore, identification and introduction of safe drugs in the control and prevention of these cancers are of particular importance. Metformin, a lipophilic biguanide, is the most commonly prescribed agent for type 2 diabetes management. In addition to its great effects on lowering the blood glucose concentrations, the anti-cancer properties of this drug have been reported in many types of cancers such as gastrointestinal cancers. Hence the effects of this agent as a safe drug on the reduction of gastrointestinal cancer risk and suppression of these types of cancers have been studied in different clinical trials. Furthermore, the proposed mechanisms of metformin in preventing the growth of these cancers have been investigated in several studies. In this review, we discuss recent advances in elucidating the molecular mechanisms that are relevant for metformin use in gastrointestinal cancer treatment.
Collapse
|
20
|
Krishna BA, Wass AB, Dooley AL, O'Connor CM. CMV-encoded GPCR pUL33 activates CREB and facilitates its recruitment to the MIE locus for efficient viral reactivation. J Cell Sci 2021; 134:jcs254268. [PMID: 33199520 PMCID: PMC7860128 DOI: 10.1242/jcs.254268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) establishes life-long latent infection in hematopoietic progenitor cells and circulating monocytes in infected individuals. Myeloid differentiation coupled with immune dysregulation leads to viral reactivation, which can cause severe disease and mortality. Reactivation of latent virus requires chromatin reorganization and the removal of transcriptional repressors in exchange for transcriptional activators. While some factors involved in these processes are identified, a complete characterization of the viral and cellular factors involved in their upstream regulation remains elusive. Herein, we show the HCMV-encoded G protein-coupled receptor (GPCR), UL33, is expressed during latency. Although this viral GPCR is not required to maintain latent infection, our data reveal UL33-mediated signaling is important for efficient viral reactivation. Additionally, UL33 signaling induces cellular cyclic AMP response element binding protein (CREB1, referred to here as CREB) phosphorylation, a transcription factor that promotes reactivation when recruited to the major immediate early (MIE) enhancer/promoter. Finally, targeted pharmacological inhibition of CREB activity reverses the reactivation phenotype of the UL33 signaling-deficient mutant. In sum, our data reveal UL33-mediated signaling functions to activate CREB, resulting in successful viral reactivation.
Collapse
Affiliation(s)
- Benjamin A Krishna
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amanda B Wass
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Abigail L Dooley
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
21
|
Altered Organelle Calcium Transport in Ovarian Physiology and Cancer. Cancers (Basel) 2020; 12:cancers12082232. [PMID: 32785177 PMCID: PMC7464720 DOI: 10.3390/cancers12082232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium levels have a huge impact on the physiology of the female reproductive system, in particular, of the ovaries. Cytosolic calcium levels are influenced by regulatory proteins (i.e., ion channels and pumps) localized in the plasmalemma and/or in the endomembranes of membrane-bound organelles. Imbalances between plasma membrane and organelle-based mechanisms for calcium regulation in different ovarian cell subtypes are contributing to ovarian pathologies, including ovarian cancer. In this review, we focused our attention on altered calcium transport and its role as a contributor to tumor progression in ovarian cancer. The most important proteins described as contributing to ovarian cancer progression are inositol trisphosphate receptors, ryanodine receptors, transient receptor potential channels, calcium ATPases, hormone receptors, G-protein-coupled receptors, and/or mitochondrial calcium uniporters. The involvement of mitochondrial and/or endoplasmic reticulum calcium imbalance in the development of resistance to chemotherapeutic drugs in ovarian cancer is also discussed, since Ca2+ channels and/or pumps are nowadays regarded as potential therapeutic targets and are even correlated with prognosis.
Collapse
|
22
|
Yoon C, Kim D, Lim JH, Lee GM. Forskolin Increases cAMP Levels and Enhances Recombinant Antibody Production in CHO Cell Cultures. Biotechnol J 2020. [DOI: 10.1002/biot.202000264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chansik Yoon
- Department of Biological Sciences KAIST Daejeon 34141 Republic of Korea
| | - Dongil Kim
- Department of Biological Sciences KAIST Daejeon 34141 Republic of Korea
| | - Ju Hyeon Lim
- New Drug Development Center Cheongju 28160 Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences KAIST Daejeon 34141 Republic of Korea
| |
Collapse
|
23
|
Ashok C, Selvam M, Ponne S, Parcha PK, Raja KMP, Baluchamy S. CREB acts as a common transcription factor for major epigenetic repressors; DNMT3B, EZH2, CUL4B and E2F6. Med Oncol 2020; 37:68. [PMID: 32710193 DOI: 10.1007/s12032-020-01395-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
CREB signaling is known for several decades, but how it regulates both positive and negative regulators of cell proliferation is not well understood. On the other hand functions of major epigenetic repressors such as DNMT3B, EZH2 and CUL4B for their repressive epigenetic modifications on chromatin have also been well studied. However, there is very limited information available on how these repressors are regulated at their transcriptional level. Here, using computational tools and molecular techniques including site directed mutagenesis, promoter reporter assay, chromatin immunoprecipitation (ChIP), we identified that CREB acts as a common transcription factor for DNMT3B, EZH2, CUL4B and E2F6. ChIP assay revealed that pCREB binds to promoters of these repressors at CREs and induce their transcription. As expected, the expression of these repressors and their associated repressive marks particularly H3K27me3 and H2AK119ub are increased and decreased upon CREB overexpression and knock-down conditions respectively in the cancer cells indicating that CREB regulates the functions of these repressors by activating their transcription. Since CREB and these epigenetic repressors are overexpressed in various cancer types, our findings showed the molecular relationship between them and indicate that CREB is an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Cheemala Ashok
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Murugan Selvam
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Saravanaraman Ponne
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Phani K Parcha
- Department of Biochemistry and Molecular Biology, Pondicherry Central University, Pondicherry, 605014, India
| | | | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
24
|
A Novel Compound YS-5-23 Exhibits Neuroprotective Effect by Reducing β-Site Amyloid Precursor Protein Cleaving Enzyme 1's Expression and H 2O 2-Induced Cytotoxicity in SH-SY5Y Cells. Neurochem Res 2020; 45:2113-2127. [PMID: 32556702 DOI: 10.1007/s11064-020-03073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
The abnormally accumulated amyloid-β (Aβ) and oxidative stress contribute to the initiation and progression of Alzheimer's disease (AD). β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme for the production of Aβ. Furthermore, Aβ was reported to increase oxidative stress; then the overproduced oxidative stress continues to increase the expression and activity of BACE1. Consequently, inhibition of both BACE1 and oxidative stress is a better strategy for AD therapy compared with those one-target treatment methods. In the present study, our novel small molecule YS-5-23 was proved to possess both of the activities. Specifically, we found that YS-5-23 reduces BACE1's expression in both SH-SY5Y and Swedish mutated amyloid precursor protein (APP) overexpressed HEK293 cells, and it can also suppress BACE1's expression induced by H2O2. Moreover, YS-5-23 decreases H2O2-induced cytotoxicity including alleviating H2O2-induced apoptosis and loss of mitochondria membrane potential (MMP) because it attenuates the reactive oxygen species (ROS) level elevated by H2O2. Meanwhile, PI3K/Akt signaling pathway is involved in the anti-H2O2 and BACE1 inhibition effect of YS-5-23. Our findings indicate that YS-5-23 may develop as a drug candidate in the prevention and treatment of AD.
Collapse
|
25
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
26
|
He B, Yang N, Man CH, Ng NK, Cher C, Leung H, Kan LL, Cheng BY, Lam SS, Wang ML, Zhang C, Kwok H, Cheng G, Sharma R, Ma AC, So CE, Kwong Y, Leung AY. Follistatin is a novel therapeutic target and biomarker in FLT3/ITD acute myeloid leukemia. EMBO Mol Med 2020; 12:e10895. [PMID: 32134197 PMCID: PMC7136967 DOI: 10.15252/emmm.201910895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Internal tandem duplication of Fms-like tyrosine kinase 3 (FLT3/ITD) occurs in about 30% of acute myeloid leukemia (AML) and is associated with poor response to conventional treatment and adverse outcome. Here, we reported that human FLT3/ITD expression led to axis duplication and dorsalization in about 50% of zebrafish embryos. The morphologic phenotype was accompanied by ectopic expression of a morphogen follistatin (fst) during early embryonic development. Increase in fst expression also occurred in adult FLT3/ITD-transgenic zebrafish, Flt3/ITD knock-in mice, and human FLT3/ITD AML cells. Overexpression of human FST317 and FST344 isoforms enhanced clonogenicity and leukemia engraftment in xenotransplantation model via RET, IL2RA, and CCL5 upregulation. Specific targeting of FST by shRNA, CRISPR/Cas9, or antisense oligo inhibited leukemic growth in vitro and in vivo. Importantly, serum FST positively correlated with leukemia engraftment in FLT3/ITD AML patient-derived xenograft mice and leukemia blast percentage in primary AML patients. In FLT3/ITD AML patients treated with FLT3 inhibitor quizartinib, serum FST levels correlated with clinical response. These observations supported FST as a novel therapeutic target and biomarker in FLT3/ITD AML.
Collapse
Affiliation(s)
- Bai‐Liang He
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiGuangdong ProvinceChina
| | - Ning Yang
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Cheuk Him Man
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Nelson Ka‐Lam Ng
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Chae‐Yin Cher
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Ho‐Ching Leung
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Leo Lai‐Hok Kan
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Bowie Yik‐Ling Cheng
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Stephen Sze‐Yuen Lam
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Michelle Lu‐Lu Wang
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Chun‐Xiao Zhang
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Hin Kwok
- Centre for Genomic SciencesThe University of Hong KongHong Kong SARChina
| | - Grace Cheng
- Centre for Genomic SciencesThe University of Hong KongHong Kong SARChina
| | - Rakesh Sharma
- Centre for Genomic SciencesThe University of Hong KongHong Kong SARChina
| | - Alvin Chun‐Hang Ma
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong SARChina
| | - Chi‐Wai Eric So
- Leukemia and Stem Cell Biology GroupDivision of Cancer StudiesDepartment of Hematological MedicineKing's College LondonLondonUK
| | - Yok‐Lam Kwong
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Anskar Yu‐Hung Leung
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
27
|
Ilex paraguariensis extracts and its polyphenols prevent oxidative damage and senescence of human retinal pigment epithelium cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
28
|
Azoramide protects iPSC-derived dopaminergic neurons with PLA2G6 D331Y mutation through restoring ER function and CREB signaling. Cell Death Dis 2020; 11:130. [PMID: 32071291 PMCID: PMC7028918 DOI: 10.1038/s41419-020-2312-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER)-stress-induced cascade events are implicated in Parkinson’s disease (PD). The discovery of drug candidates to protect dopaminergic (DA) neurons from ER-stress-induced oxidative damage is important to resolve the pathological aspects of PD and modify its progress. In this study, we found that a recently identified unfolded protein response (UPR) modulator, azoramide, showed protective effects on patient induced pluripotent stem cells-derived midbrain DA neurons with the homozygous phospholipase A2 group 6 (PLA2G6) D331Y mutant. A series of PD-related cascade events such as ER stress, abnormal calcium homeostasis, mitochondrial dysfunction, increase of reactive oxygen species, and apoptosis were observed in PLA2G6 D331Y mutant DA neurons, whereas azoramide significantly protected PLA2G6 D331Y mutant DA neurons against these events. The beneficial effects of azoramide were abolished by treatment with a cAMP-response element binding protein (CREB) inhibitor. Our results suggest that azoramide is a potential neuroprotectant against DA neuron damage via restoring ER function and the CREB signaling.
Collapse
|
29
|
Qiu F, Zhou Y, Deng Y, Yi J, Gong M, Liu N, Wei C, Xiang S. Knockdown of TNFAIP1 prevents di-(2-ethylhexyl) phthalate-induced neurotoxicity by activating CREB pathway. CHEMOSPHERE 2020; 241:125114. [PMID: 31683445 DOI: 10.1016/j.chemosphere.2019.125114] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer. It has neurotoxicity and exposure to it causes impairment of neurodevelopment, behavior and cognition. However, the molecular mechanisms responsible for the DEHP-induced neurotoxicity are not yet clearly defined. Tumor necrosis factor-induced protein 1 (TNFAIP1) was first discovered in umbilical vein endothelial cells and was further found to be important in the progress of Alzheimer's disease. Herein we explore the mechanism of TNFAIP1 in DEHP-induced neurotoxicity with the involvement of cyclic AMP response elements binding protein (CREB) signaling pathway in a mouse neuroblastoma cell line (N2a cells). We found that exposure to DEHP induced apoptosis and downregulated the expression of brain-derived neurotrophic factor (BDNF), synaptic proteins PSD 95 and synapsin-1 while upregulated the expression of TNFAIP1 and decreased the levels of phosphorylated Akt, CaMK Ⅳ, catalytic subunits of PKA and CREB in CREB signaling pathway. Knockdown of TNFAIP1 using TNFAIP1 small interfering RNA (siRNA) expression vector prevented DEHP from inhibiting CREB pathway, thus reduced apoptosis and restored expression of BDNF, PSD 95 and synapsin-1. Our data indicate that downregulation of TNFAIP1 prevents DEHP-induced neurotoxicity via activating CREB pathway. Therefore, TNFAIP1 is a potential target for relieving the DEHP-induced neurotoxicity and related neurological disorders.
Collapse
Affiliation(s)
- Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yubo Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yeke Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Junzhi Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Mengting Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
30
|
Shekarian M, Komaki A, Shahidi S, Sarihi A, Salehi I, Raoufi S. The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by an intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide. Behav Brain Res 2020; 383:112512. [PMID: 31991177 DOI: 10.1016/j.bbr.2020.112512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease leading to cognitive and memory impairment. This study aimed at investigating the therapeutic and preserving effects of vinpocetine on amyloid beta (Aβ)-induced rat model of AD. Sixty male adult Wistar rats were randomly divided into 6 groups (n = 10 per group) as follows: 1; control, 2; sham, 3; Aβ, 4; pre-treatment (vinpocetine + Aβ): oral gavage administration of vinpocetine at 4 mg/kg for 30 days followed by intracerebroventricular (ICV) injection of Aβ, 5; treatment (Aβ + vinpocetine): Aβ ICV injection followed by vinpocetine administration for 30 days, 6; pre-treatment + treatment (vinpocetine + Aβ + vinpocetine): vinpocetine administration for 30 days before and 30 days after AD induction. Following treatments, the animals' learning and memory were investigated using passive avoidance learning (PAL) task, Morris water maze (MWM), and novel object recognition (NOR) tests. The results demonstrated that Aβ significantly enhanced escape latency and the distance traveled in the MWM, decreased step-through latency, and increased time spent in the dark compartment in PAL. Vinpocetine ameliorated the Aβ-infused memory deficits in both MWM and PAL tests. Administration of vinpocetine in the Aβ rats increased the discrimination index of the NOR test. It also significantly diminished the nitric oxide and malondialdehyde levels and restored the reduced glutathione (GSH) levels. Vinpocetine can improve memory and learning impairment following Aβ infusion due to its different properties, including antioxidant effects, which indicates that vinpocetine administration can lead to the amelioration of cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Meysam Shekarian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
31
|
Zhang K, Liu Y, Liu X, Peng M, Liu J, Zhang Q. A functional polymorphism in the promoter of RhoB is associated with susceptibility to Vibrio anguillarum in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2019; 93:269-277. [PMID: 31306762 DOI: 10.1016/j.fsi.2019.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
As an isoform of Rho family GTPases, RhoB plays a pivotal role in cytoskeletal organization, cell proliferation, apoptosis and immune response. However, the regulatory mechanisms of RhoB expression in aquatic animals are still unknown. In the present study, we first construct Vibrio anguillarum infection model in S. maximus, including susceptible and resistant individuals. Then the temporal expression of RhoB was detected after V. anguillarum challenge using qRT-PCR and found that RhoB transcripts were significantly induced in the liver, gill and blood despite of differential expression levels and responsive time points. In addition, the mRNA levels of RhoB in resistant individuals were significantly higher than in susceptible ones. The length of 2083 bp sequences of RhoB promoter was cloned and characterized. Moreover, DNA methylation of the RhoB promoter was measured by bisulfite sequencing (BSP) and hypo-methylated was detected in the CpG islands. Three SNPs (-1590, -1575 and -1449) and two haplotypes in the promoter region of RhoB were identified to be associated with V. anguillarum resistance in turbot by association analysis in group 17-R and 17-S. Deletion analysis indicated that these SNPs could negatively mediate the activity of RhoB promoter. Site-directed mutagenesis and qRT-PCR of individuals with different genotypes demonstrated that -1575 T/A polymorphism affected promoter activity. Further study showed that this mutation altered the binding site of the transcription factor CREB. Co-transfection of SmCREB and RhoB promoter was performed in HEK293T cells which confirmed the -1575 allelic differences on transcriptional activity, with the susceptibility allele showing reduced activity. Taken together, our findings implicate that losing of binding of CREB to SmRhoB promoter due to -1575T/A polymorphisms enhances SmRhoB expression in resistant turbot, which provide insights into the effect of SmRhoB expression in response to V. anguillarum infection.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Meiting Peng
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
32
|
Signaling pathways involved in adaptive responses to cell membrane disruption. CURRENT TOPICS IN MEMBRANES 2019; 84:99-127. [PMID: 31610867 DOI: 10.1016/bs.ctm.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plasma membrane disruption occurs frequently in many animal tissues. Cell membrane disruption induces not only a rapid and massive influx of Ca2+ into the cytosol but also an efflux or release of various signaling molecules, such as ATP, from the cytosol; in turn, these signaling molecules stimulate a variety of pathways in both wounded and non-wounded neighboring cells. These signals first trigger cell membrane repair responses in the wounded cell but then induce an adaptive response, which results in faster membrane repair in the event of future wounds in both wounded and non-wounded neighboring cells. In addition, signaling pathways stimulated by membrane disruption induce other adaptive responses, including cell survival, regeneration, migration, and proliferation. This chapter summarizes the role of intra- and intercellular signaling pathways in adaptive responses triggered by cell membrane disruption.
Collapse
|
33
|
Mairuae N, Connor JR, Buranrat B, Lee SY. Oroxylum indicum (L.) extract protects human neuroblastoma SH‑SY5Y cells against β‑amyloid‑induced cell injury. Mol Med Rep 2019; 20:1933-1942. [PMID: 31257498 DOI: 10.3892/mmr.2019.10411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/06/2019] [Indexed: 11/05/2022] Open
Abstract
It has been reported that amyloid β peptide, the major component of senile plaques, serves a critical role in the development and progression of Alzheimer's disease (AD) by generating reactive oxygen species (ROS), leading to oxidative stress. The aim of the present study was to investigate the protective effect of Oroxylum indicum (L.) extract against Aβ25‑35‑induced oxidative stress and cell injury using SH‑SY5Y cells as a model, and at exploring the underlying mechanisms. The results revealed that the exposure of cells to 20 µM Aβ25‑35 significantly increased cellular oxidative stress, as evidenced by the increased ROS levels. Aβ25‑35 treatment also increased caspase‑3/7 activity and lactate dehydrogenase (LDH) release, and caused viability loss. Oroxylum indicum treatment not only attenuated the generation of ROS and suppressed caspase‑3/7 activity but also reduced the neurotoxicity of Aβ25‑35 in a concentration‑dependent manner, as evidenced by the increased cell viability and decreased LDH release. Treatment with Oroxylum indicum also increased superoxide dismutase (SOD) and catalase (CAT) activity, increased the phosphorylation of Akt and cAMP‑responsive element binding protein (CREB), and contributed to the upregulation of Bcl‑2 protein. In combination, these results indicated that Oroxylum indicum extract could protect SH‑SY5Y cells against Aβ25‑35‑induced cell injury, at least partly, by inhibiting oxidative stress, increasing SOD and CAT activity, attenuating caspase 3/7 activity and promoting the cell survival pathway, Akt/CREB/Bcl‑2. The approach used in the present study may also be useful for preventing the neurotoxicity induced by Aβ in AD and related neurodegenerative diseases. Further studies investigating the activity of Oroxylum indicum extract in vivo are now required.
Collapse
Affiliation(s)
- Nootchanat Mairuae
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Mueang, Maha Sarakham 44000, Thailand
| | - James R Connor
- George M. Leader Laboratory, Department of Neurosurgery, Pennsylvania State University, Hershey Medical Center, Hershey, PA 17033, USA
| | - Benjaporn Buranrat
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Mueang, Maha Sarakham 44000, Thailand
| | - Sang Y Lee
- George M. Leader Laboratory, Department of Neurosurgery, Pennsylvania State University, Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
34
|
Oncogenic Effect of the Novel Fusion Gene VAPA-Rab31 in Lung Adenocarcinoma. Int J Mol Sci 2019; 20:ijms20092309. [PMID: 31083279 PMCID: PMC6539523 DOI: 10.3390/ijms20092309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Fusion genes have been identified as oncogenes in several solid tumors including lung, colorectal, and stomach cancers. Here, we characterized the fusion gene, VAPA-Rab31, discovered from RNA-sequencing data of a patient with lung adenocarcinoma who did not harbor activating mutations in EGFR, KRAS and ALK. This fusion gene encodes a protein comprising the N-terminal region of vesicle-associated membrane protein (VAMP)-associated protein A (VAPA) fused to the C-terminal region of Ras-related protein 31 (Rab31). Exogenous expression of VAPA-Rab31 in immortalized normal bronchial epithelial cells demonstrated the potential transforming effects of this fusion gene, including increased colony formation and cell proliferation in vitro. Also, enhanced tumorigenicity upon VAPA-Rab31 was confirmed in vivo using a mouse xenograft model. Metastatic tumors were also detected in the liver and lungs of xenografted mice. Overexpression of VAPA-Rab31 upregulated anti-apoptotic protein Bcl-2 and phosphorylated CREB both in cells and xenograft tumors. Reduced apoptosis and increased phosphorylation of CREB and Erk were observed in VAPA-Rab31-overexpressing cells after bortezomib treatment. Elevated Bcl-2 level via activated CREB contributed to the resistance to the bortezomib-induced apoptosis. Our data suggest the oncogenic function of the novel fusion gene VAPA-Rab31 via upregulated Bcl-2 and activated CREB in lung cancer.
Collapse
|
35
|
Wang L, Zhang L, Chow BKC. Secretin Prevents Apoptosis in the Developing Cerebellum Through Bcl-2 and Bcl-xL. J Mol Neurosci 2019; 68:494-503. [PMID: 30874970 DOI: 10.1007/s12031-019-01287-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/28/2019] [Indexed: 01/30/2023]
Abstract
Secretin (SCT) is involved in a variety of physiological processes and has been implicated in preventing apoptosis during brain development. However, little is known about the molecular mechanism underlying its neuroprotective effects. The B cell lymphoma 2 (Bcl-2) family proteins, such as Bcl-2 and Bcl-xL, determine the commitment of neurons to apoptosis. In SCT knockout mice, we found reduced transcript levels of anti-apoptotic genes Bcl-2 and Bcl-xL, but not of pro-apoptotic gene Bax, in the developing cerebellum. SCT treatment on ex vivo cultured cerebellar slices triggered a time-dependent increase of Bcl-2 and Bcl-xL expression. This SCT-induced transcriptional regulation of Bcl-2 and Bcl-xL was dependent on the cyclic AMP (cAMP) response element-binding protein (CREB), which is a key survival factor at the convergence of multiple signaling cascades. We further demonstrated that activation of CREB by SCT was mediated by cAMP/protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) cascades. These findings, collectively, provide an uncharacterized signaling cascade for SCT-mediated neuronal survival, in which SCT promotes the key anti-apoptotic elements Bcl-2 and Bcl-xL in the intrinsic death pathway through PKA- and ERK-regulated CREB phosphorylation.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Zhang
- GHM Institute for CNS Regeneration, Jinan University, Guangzhou, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, Hong Kong.
| |
Collapse
|
36
|
Fu X, Feng Y, Shao B, Zhang Y. Activation of the ERK/Creb/Bcl‑2 pathway protects periodontal ligament stem cells against hydrogen peroxide‑induced oxidative stress. Mol Med Rep 2019; 19:3649-3657. [PMID: 30896883 PMCID: PMC6472112 DOI: 10.3892/mmr.2019.10027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are promising stem cells sources for regenerative medicine, particularly clinical periodontal ligament repair. It is critical to maintain high quality and a large quantity of PDLSCs for clinical usage. However, how PDLSCs respond to environmental stimuli, including reactive oxygen species (ROS), is poorly understood. The aim of the present study was to investigate how PDLSCs react to oxidative stress and the underlying mechanisms. Hydrogen peroxide-induced oxidative stress was used to mimic a ROS increase in rat PDLSCs. The expression levels of Creb were detected under oxidative stress to examine the role that Creb serves in PDLSCs under oxidative stress. The present results demonstrated that the expression of Creb was reduced in a dose-dependent manner in response to the H2O2 stimulus. Overexpressing Creb significantly reduced the ROS levels and protein expression levels of apoptotic genes in PDLSCs. The phosphorylation of the ERK pathway is indispensable in the activation of Creb-induced protection. Our results revealed a protective role of Creb in ROS-induced apoptosis, and validated the ERK/Creb/apoptosis regulator Bcl-2 pathway works as an anti-apoptotic signaling in PDLSCs. These findings will facilitate the in vitro culturing of PDLSCs for clinical usage and promote stem cell based therapy for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xiaohui Fu
- Department of General Dentistry, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yimiao Feng
- Department of Orthodontics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bingyi Shao
- Department of Operative Dentistry and Endodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 400015, P.R. China
| | - Yanzhen Zhang
- Department of General Dentistry, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
37
|
Tolaymat Y, Doré S, Griffin HW, Shih S, Edwards ME, Weiss MD. Inhaled Gases for Neuroprotection of Neonates: A Review. Front Pediatr 2019; 7:558. [PMID: 32047729 PMCID: PMC6996209 DOI: 10.3389/fped.2019.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022] Open
Abstract
Importance: Hypoxic-ischemic encephalopathy (HIE) is a significant cause of morbidity and mortality in neonates. The incidence of HIE is 1-8 per 1,000 live births in developed countries. Whole-body hypothermia reduces the risk of disability or death, but 7 infants needed to be treated to prevent death or major neurodevelopmental disability. Inhalational gases may be promising synergistic agents due to their rapid onset and easy titratability. Objective: To review current data on different inhaled gases with neuroprotective properties that may serve as adjunct therapies to hypothermia. Evidence review: Literature review was performed using the PubMed database, google scholar, and ClinicalTrials.Gov. Results focused on articles published from January 1, 2005, through December 31, 2017. Articles published earlier than 2005 were included when appropriate for historical perspective. Our review emphasized preclinical and clinical studies relevant to the use of inhaled agents for neuroprotection. Findings: Based on the relevance to our topic, 111 articles were selected pertaining to the incidence of HIE, pathophysiology of HIE, therapeutic hypothermia, and emerging therapies for hypoxic-ischemic encephalopathy in preclinical and clinical settings. Supplemental tables summarizes highly relevant 49 publications that were included in this review. The selected publications emphasize the emergence of promising inhaled gases that may improve neurologic survival and alleviate neurodevelopmental disability when combined with therapeutic hypothermia in the future. Conclusions: Many inhaled agents have neuroprotective properties and could serve as an adjunct therapy to whole-body hypothermia. Inhaled agents are ideal due to their easy administration, titrability, and rapid onset and offset.
Collapse
Affiliation(s)
- Youness Tolaymat
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Departments of Neurology, Psychiatry, Pharmaceuticals and Neuroscience, University of Florida, Gainesville, FL, United States
| | - Hudson W Griffin
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Susana Shih
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Mary E Edwards
- Health Science Center Libraries, University of Florida, Gainesville, FL, United States
| | - Michael D Weiss
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
38
|
Pohl SÖG, Agostino M, Dharmarajan A, Pervaiz S. Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxid Redox Signal 2018; 29:1215-1236. [PMID: 29304561 DOI: 10.1089/ars.2017.7414] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE B cell lymphoma-2 (Bcl-2) was discovered over three decades ago and is the prototype antiapoptotic member of the Bcl-2 family that comprises proteins with contrasting effects on cell fate. First identified as a consequence of chromosomal translocation (t 14:18) in human lymphoma, subsequent studies have revealed mutations and/or gene copy number alterations as well as post-translational modifications of Bcl-2 in a variety of human cancers. The canonical function of Bcl-2 is linked to its ability to inhibit mitochondrial membrane permeabilization, thereby regulating apoptosome assembly and activation by blocking the cytosolic translocation of death amplification factors. Of note, the identification of specific domains within the Bcl-2 family of proteins (Bcl-2 homology domains; BH domains) has not only provided a mechanistic insight into the various interactions between the member proteins but has also been the impetus behind the design and development of small molecule inhibitors and BH3 mimetics for clinical use. Recent Advances: Aside from its role in maintaining mitochondrial integrity, recent evidence provides testimony to a novel facet in the biology of Bcl-2 that involves an intricate cross talk with cellular redox state. Bcl-2 overexpression modulates mitochondrial redox metabolism to create a "pro-oxidant" milieu, conducive for cell survival. However, under states of oxidative stress, overexpression of Bcl-2 functions as a redox sink to prevent excessive buildup of reactive oxygen species, thereby inhibiting execution signals. Emerging evidence indicates various redox-dependent transcriptional changes and post-translational modifications with different functional outcomes. CRITICAL ISSUES Understanding the complex interplay between Bcl-2 and the cellular redox milieu from the standpoint of cell fate signaling remains vital for a better understanding of pathological states associated with altered redox metabolism and/or aberrant Bcl-2 expression. FUTURE DIRECTIONS Based on its canonical functions, Bcl-2 has emerged as a potential druggable target. Small molecule inhibitors of Bcl-2 and/or other family members with similar function, as well as BH3 mimetics, are showing promise in the clinic. The emerging evidence for the noncanonical activity linked to cellular redox metabolism provides a novel avenue for the design and development of diagnostic and therapeutic strategies against cancers refractory to conventional chemotherapy by the overexpression of this prosurvival protein.
Collapse
Affiliation(s)
- Sebastian Öther-Gee Pohl
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Mark Agostino
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,3 Curtin Institute for Computation, Curtin University , Perth, Western Australia
| | - Arun Dharmarajan
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Shazib Pervaiz
- 2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,6 National University Cancer Institute, National University Health System , Singapore, Singapore
| |
Collapse
|
39
|
Xu R, Fang Y, Hou C, Zhai B, Jiang Z, Ma N, Wang L, Han G, Wang R. BC094916 suppressed SP 2/0 xenograft tumor by down-regulating Creb1 and Bcl2 transcription. Cancer Cell Int 2018; 18:138. [PMID: 30220882 PMCID: PMC6137751 DOI: 10.1186/s12935-018-0635-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023] Open
Abstract
Background Both multiple myeloma (MM) and systemic lupus erythematosus (SLE) are associated with abnormal production of plasma cells, although their pathological mechanism of each disease is different. The main characteristic of both diseases is uncontrolled differentiation of B cells into plasmablast/plasma cells. Despite continuous research on prognostic factors and the introduction of new agents for MM and SLE, treatments still do not exist for controlling plasmablast/plasma cells. Thus, it is necessary to identify novel therapeutic targets of plasmablast/plasma cells. Because of its plasmablast-like characteristics, the mus musculus myeloma SP 2/0 cell line was used in this study to test the effect of a novel therapeutic agent (BC094916 overexpression) on plasmablast/plasma cells. Methods We first determined gene expression profiles of plasma cells using Affymetrix microarrays and RNA-sequencing. The effect of BC094916 on SP 2/0 cell proliferation, cell cycle, and apoptosis was determined by CCK8 and fluorescence-activated cell sorting. The SP 2/0 xenograft mouse model was used to assess the impact of BC094916 on tumor progression. The luciferase reporter system was used to evaluate the effect of BC094916 on Creb1 and Bcl2 transcription. Results We found that BC094916 mRNA was decreased in plasma cells. The mouse myeloma cell line SP 2/0 expressed low levels of BC094916 mRNA, whereas BC094916 overexpression suppressed SP 2/0 cell proliferation by inducing apoptosis. BC094916 overexpression suppressed tumor progression in the SP 2/0 xenograft mouse model. We also found that BC094916 mediate apoptosis by suppressing transcription of the Creb1 and Bcl2 genes, which promote the transcription of eukaryotic translation initiation and elongation factor genes. Conclusions BC094916 overexpression suppressed Creb1 and Bcl2 transcription to induce cell apoptosis, which suppressed SP 2/0 proliferation and xenograft tumor progression. Thus, BC094916 overexpression may be a potential therapeutic agent for treatment of MM and autoimmune diseases such as SLE.
Collapse
Affiliation(s)
- Ruonan Xu
- 1College of Life Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China.,2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China
| | - Ying Fang
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China.,3Department of Rheumatology, First hospital of Jilin University, Changchun, 130021 China
| | - Chunmei Hou
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China
| | - Bing Zhai
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China.,4Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zhenyu Jiang
- 3Department of Rheumatology, First hospital of Jilin University, Changchun, 130021 China
| | - Ning Ma
- 3Department of Rheumatology, First hospital of Jilin University, Changchun, 130021 China
| | - Liang Wang
- 1College of Life Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - Gencheng Han
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China
| | - Renxi Wang
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China
| |
Collapse
|
40
|
Dietrich P, Koch A, Fritz V, Hartmann A, Bosserhoff AK, Hellerbrand C. Wild type Kirsten rat sarcoma is a novel microRNA-622-regulated therapeutic target for hepatocellular carcinoma and contributes to sorafenib resistance. Gut 2018; 67:1328-1341. [PMID: 29275358 DOI: 10.1136/gutjnl-2017-315402] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/27/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Sorafenib is the only effective therapy for advanced hepatocellular carcinoma (HCC). Combinatory approaches targeting mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)- and phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)/protein-kinase B(AKT) signalling yield major therapeutic improvements. RAS proteins regulate both RAF/MAPK and PI3K/AKT signalling. However, the most important RAS isoform in carcinogenesis, Kirsten rat sarcoma (KRAS), remains unexplored in HCC. DESIGN Human HCC tissues and cell lines were used for expression and functional analysis. Sorafenib-resistant HCC cells were newly generated. RNA interference and the novel small molecule deltarasin were used for KRAS inhibition both in vitro and in a murine syngeneic orthotopic HCC model. RESULTS Expression of wild type KRAS messenger RNA and protein was increased in HCC and correlated with extracellular-signal regulated kinase (ERK) activation, proliferation rate, advanced tumour size and poor patient survival. Bioinformatic analysis and reporter assays revealed that KRAS is a direct target of microRNA-622. This microRNA was downregulated in HCC, and functional analysis demonstrated that KRAS-suppression is the major mediator of its inhibitory effect on HCC proliferation. KRAS inhibition markedly suppressed RAF/ERK and PI3K/AKT signalling and proliferation and enhanced apoptosis of HCC cells in vitro and in vivo. Combinatory KRAS inhibition and sorafenib treatment revealed synergistic antitumorigenic effects in HCC. Sorafenib-resistant HCC cells showed elevated KRAS expression, and KRAS inhibition resensitised sorafenib-resistant cells to suppression of proliferation and induction of apoptosis. CONCLUSIONS KRAS is dysregulated in HCC by loss of tumour-suppressive microRNA-622, contributing to tumour progression, sorafenib sensitivity and resistance. KRAS inhibition alone or in combination with sorafenib appears as novel promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Peter Dietrich
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Koch
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Valerie Fritz
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Berto M, Jean V, Zwart W, Picard D. ERα activity depends on interaction and target site corecruitment with phosphorylated CREB1. Life Sci Alliance 2018; 1:e201800055. [PMID: 30456355 PMCID: PMC6238530 DOI: 10.26508/lsa.201800055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The two transcription factors estrogen receptor α (ERα) and cyclic adenosine monophosphate (cAMP)-responsive element binding protein 1 (CREB1) mediate different signals, bind different response elements, and control different transcriptional programs. And yet, results obtained with transfected reporter genes suggested that their activities may intersect. We demonstrate here that CREB1 stimulates and is necessary for ERα activity on a transfected reporter gene and several endogenous targets both in response to its cognate ligand estrogen and to ligand-independent activation by cAMP. The stimulatory activity of CREB1 requires its DNA binding and activation by phosphorylation, and affects the chromatin recruitment of ERα. CREB1 and ERα are biochemically associated and share hundreds to thousands of chromatin binding sites upon stimulation by estrogen and cAMP, respectively. These shared regulatory activities may underlie the anti-apoptotic effects of estrogen and cAMP signaling in ERα-positive breast cancer cells. Moreover, high levels of CREB1 are associated with good prognosis in ERα-positive breast cancer patients, which may be because of its ability to promote ERα functions, thereby maintaining it as a successful therapeutic target.
Collapse
Affiliation(s)
- Melissa Berto
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Valerie Jean
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Didier Picard
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| |
Collapse
|
42
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
43
|
Dietrich P, Kuphal S, Spruss T, Hellerbrand C, Bosserhoff AK. Wild-type KRAS is a novel therapeutic target for melanoma contributing to primary and acquired resistance to BRAF inhibition. Oncogene 2018; 37:897-911. [PMID: 29059159 DOI: 10.1038/onc.2017.391] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Malignant melanoma reveals rapidly increasing incidence and mortality rates worldwide. By now, BRAF inhibition is the standard therapy for advanced melanoma in patients carrying BRAF mutations. However, only approximately 50% of melanoma patients harbor therapeutically attackable BRAF mutations, and overall survival after treatment with BRAF inhibitors is modest. KRAS (Kirsten Rat sarcoma) proteins are acting upstream of BRAF and have a major role in human cancer. Recent approaches awaken the hope to use KRAS inhibition (KRASi) as a clinical tool. In this study, we identified wild-type KRAS as a novel therapeutic target in melanoma. KRASi functions synergistically with BRAF inhibition to reduce melanoma proliferation and to induce apoptosis independently of BRAF mutational status. Moreover, acquired resistance to BRAF inhibitors in melanoma is dependent on dynamic regulation of KRAS expression with subsequent AKT and extracellular-signal regulated kinase activation and can be overcome by KRASi. This suggests KRASi as novel approach in melanoma-alone or in combination with other therapeutic regimes.
Collapse
Affiliation(s)
- P Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - S Kuphal
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - T Spruss
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - C Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - A K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
44
|
Wu X, Liang Y, Jing X, Lin D, Chen Y, Zhou T, Peng S, Zheng D, Zeng Z, Lei M, Huang K, Tao E. Rifampicin Prevents SH-SY5Y Cells from Rotenone-Induced Apoptosis via the PI3K/Akt/GSK-3β/CREB Signaling Pathway. Neurochem Res 2018; 43:886-893. [PMID: 29435803 DOI: 10.1007/s11064-018-2494-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
In addition to its original application for treating tuberculosis, rifampicin has multiple potential neuroprotective effects in chronic neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease. Inflammatory reactions and the PI3K/Akt pathway are strongly implicated in dopaminergic neuronal death in PD. This study aims to investigate whether rifampicin protects rotenone-lesioned SH-SY5Y cells via regulating PI3K/Akt/GSK-3β/CREB pathway. Rotenone-treated SH-SY5Y cells were used as the cell model to investigate the neuroprotective effects of rifampicin. Cell viability and apoptosis of SH-SY5Y cells were determined by CCK-8 assay and flow cytometry, respectively. The expression of Akt, p-Akt, GSK-3β, p-GSK-3β, CREB and p-CREB were measured by Western blot. Our results showed that the cell viability and level of phospho-CREB significantly decreased in SH-SY5Y cells exposed to rotenone when compared to the control group. Both the cell viability and the expression of phospho-CREB in cells pretreated with rifampicin were higher than those of cells exposed to rotenone alone. Moreover, pretreatment of SH-SY5Y cells with rifampicin enhanced phosphorylation of Akt and suppressed activity of GSK-3β. The addition of LY294002, a PI3K inhibitor, could suppress phosphorylation of Akt and CREB and activate GSK-3β, resulting in abolishment of neuroprotective effects of rifampicin on cells exposed to rotenone. Rifampicin provides neuroprotection against dopaminergic degeneration, partially via the PI3K/Akt/GSK-3β/CREB signaling pathway. These findings suggest that rifampicin could be an effective and promising neuroprotective candidate for treating PD.
Collapse
Affiliation(s)
- Xia Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
- Department of Neurology, Shenzhen Nanshan District Xili People's Hospital, No. 2051 Xili Liuxian Avenue, Shenzhen, 518055, China
| | - Yanran Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Xiuna Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Danyu Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Ying Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Tianen Zhou
- Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, China
| | - Sudan Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Dezhi Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Zhifen Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Ming Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Kaixun Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Enxiang Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
45
|
Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J 2017; 284:4177-4195. [PMID: 28548464 PMCID: PMC6193418 DOI: 10.1111/febs.14122] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
The ERK1/2 signalling pathway is best known for its role in connecting activated growth factor receptors to changes in gene expression due to activated ERK1/2 entering the nucleus and phosphorylating transcription factors. However, active ERK1/2 also translocate to a variety of other organelles including the endoplasmic reticulum, endosomes, golgi and mitochondria to access specific substrates and influence cell physiology. In this article, we review two aspects of ERK1/2 signalling at the mitochondria that are involved in regulating cell fate decisions. First, we describe the prominent role of ERK1/2 in controlling the BCL2-regulated, cell-intrinsic apoptotic pathway. In most cases ERK1/2 signalling promotes cell survival by activating prosurvival BCL2 proteins (BCL2, BCL-xL and MCL1) and repressing prodeath proteins (BAD, BIM, BMF and PUMA). This prosurvival signalling is co-opted by oncogenes to confer cancer cell-specific survival advantages and we describe how this information has been used to develop new drug combinations. However, ERK1/2 can also drive the expression of the prodeath protein NOXA to control 'autophagy or apoptosis' decisions during nutrient starvation. We also describe recent studies demonstrating a link between ERK1/2 signalling, DRP1 and the mitochondrial fission machinery and how this may influence metabolic reprogramming during tumorigenesis and stem cell reprogramming. With advances in subcellular proteomics it is likely that new roles for ERK1/2, and new substrates, remain to be discovered at the mitochondria and other organelles.
Collapse
Affiliation(s)
- Simon J. Cook
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | - Kate Stuart
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | | | | |
Collapse
|
46
|
The mutational landscape of ocular marginal zone lymphoma identifies frequent alterations in TNFAIP3 followed by mutations in TBL1XR1 and CREBBP. Oncotarget 2017; 8:17038-17049. [PMID: 28152507 PMCID: PMC5370020 DOI: 10.18632/oncotarget.14928] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022] Open
Abstract
Ocular marginal zone lymphoma is a common type of low-grade B-cell lymphoma. To investigate the genomic changes that occur in ocular marginal zone lymphoma, we analyzed 10 cases of ocular marginal zone lymphoma using whole-genome and RNA sequencing and an additional 38 cases using targeted sequencing. Major genetic alterations affecting genes involved in nuclear factor (NF)-κB pathway activation (60%), chromatin modification and transcriptional regulation (44%), and B-cell differentiation (23%) were identified. In whole-genome sequencing, the 6q23.3 region containing TNFAIP3 was deleted in 5 samples (50%). In addition, 5 structural variation breakpoints in the first intron of IL20RA located in the 6q23.3 region was found in 3 samples (30%). In targeted sequencing, a disruptive mutation of TNFAIP3 was the most common alteration (54%), followed by mutations of TBL1XR1 (18%), cAMP response element binding proteins (CREBBP) (17%) and KMT2D (6%). All TBL1XR1 mutations were located within the WD40 domain, and TBL1XR1 mutants transfected into 293T cells increased TBL1XR1 binding with nuclear receptor corepressor (NCoR), leading to increased degradation of NCoR and the activation of NF-κB and JUN target genes. This study confirms genes involving in the activation of the NF-kB signaling pathway is the major driver in the oncogenesis of ocular MZL.
Collapse
|
47
|
G-Quadruplex surveillance in BCL-2 gene: a promising therapeutic intervention in cancer treatment. Drug Discov Today 2017; 22:1165-1186. [PMID: 28506718 DOI: 10.1016/j.drudis.2017.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/20/2017] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
Abstract
Recently, therapeutic implications of BCL-2 quadruplex invigorated the field of clinical oncology. This Keynote review discusses how a BCL-2 quadruplex-selective approach circumvents the limitations of existing therapeutics; and which improvisations might ameliorate the recent trends of quadruplex-based treatment.
Collapse
|
48
|
Graaf CD, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, Ahn JM, Liao J, Fletcher MM, Yang D, Brown AJH, Zhou C, Deng J, Wang MW. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol Rev 2017; 68:954-1013. [PMID: 27630114 PMCID: PMC5050443 DOI: 10.1124/pr.115.011395] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders.
Collapse
Affiliation(s)
- Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dan Donnelly
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Denise Wootten
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jesper Lau
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Patrick M Sexton
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Laurence J Miller
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jung-Mo Ahn
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiayu Liao
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Madeleine M Fletcher
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dehua Yang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Alastair J H Brown
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Caihong Zhou
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiejie Deng
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Ming-Wei Wang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| |
Collapse
|
49
|
Gascón S, Ortega F, Götz M. Transient CREB-mediated transcription is key in direct neuronal reprogramming. NEUROGENESIS 2017; 4:e1285383. [PMID: 28321434 PMCID: PMC5345748 DOI: 10.1080/23262133.2017.1285383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/08/2017] [Accepted: 01/16/2017] [Indexed: 02/08/2023]
Abstract
Combinations of neuronal determinants and/or small-molecules such as Forskolin (Fk) can be used to convert different cell types into neurons. As Fk is known to activate cAMP-dependent pathways including CREB-activity, we aimed here to determine the role of CREB in reprogramming – including its temporal profile. We show that transient expression of the dominant-positive CREB-VP16 followed by its inactivation mediated by the dominant-negative ICER improves neuronal conversion of astrocytes mediated by the neurogenic determinant Ascl1. Contrarily, persistent over-activation by CREB-VP16 or persistent inhibition by ICER interferes with neuronal reprogramming, with the latter enhancing cell death. Taken together our work shows transient CREB activation as a key effector in neuronal reprogramming.
Collapse
Affiliation(s)
- Sergio Gascón
- Ludwig-Maximilians University of Munich, Physiological Genomics, Biomedical Center (BMC), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Felipe Ortega
- Biochemistry and Molecular Biology Department IV, Faculty of Veterinary Medicine, Complutense University , Madrid, Spain ; Institute of Neurochemistry (IUIN) , Madrid, Spain ; Health Research Institute of the Hospital Clínico San Carlos (IdISSC) , Madrid, Spain
| | - Magdalena Götz
- Ludwig-Maximilians University of Munich, Physiological Genomics, Biomedical Center (BMC), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany
| |
Collapse
|
50
|
Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon. Neurotoxicol Teratol 2017; 60:102-116. [PMID: 28065636 DOI: 10.1016/j.ntt.2017.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury. Dexmedetomidine and xenon are effective anesthetic adjuvants that appear to be less neurotoxic than other existing agents and have the potential to be neuroprotective in the neonatal and pediatric settings. Although results from recent clinical trials and case reports have indicated the neuroprotective potential of xenon and dexmedetomidine, additional randomized clinical trials corroborating these studies are necessary. By reviewing both the existing preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine and xenon, we hope to provide insight into the potential clinical efficacy of these agents in the management of pediatric surgical patients.
Collapse
|