1
|
Yin C, Wang M, Wang Y, Lin Q, Lin K, Du H, Lang C, Dai Y, Peng X. BHLHE22 drives the immunosuppressive bone tumor microenvironment and associated bone metastasis in prostate cancer. J Immunother Cancer 2023; 11:jitc-2022-005532. [PMID: 36941015 PMCID: PMC10030795 DOI: 10.1136/jitc-2022-005532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The molecular characteristics of prostate cancer (PCa) cells and the immunosuppressive bone tumor microenvironment (TME) contribute to the limitations of immune checkpoint therapy (ICT). Identifying subgroups of patients with PCa for ICT remains a challenge. Herein, we report that basic helix-loop-helix family member e22 (BHLHE22) is upregulated in bone metastatic PCa and drives an immunosuppressive bone TME. METHODS In this study, the function of BHLHE22 in PCa bone metastases was clarified. We performed immunohistochemical (IHC) staining of primary and bone metastatic PCa samples, and assessed the ability to promote bone metastasis in vivo and in vitro. Then, the role of BHLHE22 in bone TME was determined by immunofluorescence (IF), flow cytometry, and bioinformatic analyses. RNA sequencing, cytokine array, western blotting, IF, IHC, and flow cytometry were used to identify the key mediators. Subsequently, the role of BHLHE22 in gene regulation was confirmed using luciferase reporter, chromatin immunoprecipitation assay, DNA pulldown, co-immunoprecipitation, and animal experiments. Xenograft bone metastasis mouse models were used to assess whether the strategy of immunosuppressive neutrophils and monocytes neutralization by targeting protein arginine methyltransferase 5 (PRMT5)/colony stimulating factor 2 (CSF2) could improve the efficacy of ICT. Animals were randomly assigned to treatment or control groups. Moreover, we performed IHC and correlation analyses to identify whether BHLHE22 could act as a potential biomarker for ICT combination therapies in bone metastatic PCa. RESULTS Tumorous BHLHE22 mediates the high expression of CSF2, resulting in the infiltration of immunosuppressive neutrophils and monocytes and a prolonged immunocompromised T-cell status. Mechanistically, BHLHE22 binds to the CSF2 promoter and recruits PRMT5, forming a transcriptional complex. PRMT5 epigenetically activates CSF2 expression. In a tumor-bearing mouse model, ICT resistance of Bhlhe22+ tumors could be overcome by inhibition of Csf2 and Prmt5. CONCLUSIONS These results reveal the immunosuppressive mechanism of tumorous BHLHE22 and provide a potential ICT combination therapy for patients with BHLHE22+ PCa.
Collapse
Affiliation(s)
- Chi Yin
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Min Wang
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yingzhao Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Qijun Lin
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Kaiyuan Lin
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Hong Du
- Department of Pathology, the First People's Hospital of Guangzhou City, Guangzhou, Guangdong, China
| | - Chuandong Lang
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
3
|
Makrides N, Panayiotou E, Fanis P, Karaiskos C, Lapathitis G, Malas S. Sequential Role of SOXB2 Factors in GABAergic Neuron Specification of the Dorsal Midbrain. Front Mol Neurosci 2018; 11:152. [PMID: 29867344 PMCID: PMC5952183 DOI: 10.3389/fnmol.2018.00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Studies proposed a model for embryonic neurogenesis where the expression levels of the SOXB2 and SOXB1 factors regulate the differentiation status of the neural stem cells. However, the precise role of the SOXB2 genes remains controversial. Therefore, this study aims to investigate the effects of individual deletions of the SOX21 and SOX14 genes during the development of the dorsal midbrain. We show that SOX21 and SOX14 function distinctly during the commitment of the GABAergic lineage. More explicitly, deletion of SOX21 reduced the expression of the GABAergic precursor marker GATA3 and BHLHB5 while the expression of GAD6, which marks GABAergic terminal differentiation, was not affected. In contrast deletion of SOX14 alone was sufficient to inhibit terminal differentiation of the dorsal midbrain GABAergic neurons. Furthermore, we demonstrate through gain-of-function experiments, that despite the homology of SOX21 and SOX14, they have unique gene targets and cannot compensate for the loss of each other. Taken together, these data do not support a pan-neurogenic function for SOXB2 genes in the dorsal midbrain, but instead they influence, sequentially, the specification of GABAergic neurons.
Collapse
Affiliation(s)
- Neoklis Makrides
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology & Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Elena Panayiotou
- Neurologic Clinic A, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - George Lapathitis
- Neuroscience Laboratory, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Stavros Malas
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology & Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
4
|
Nguyen LT, Reverter A, Cánovas A, Venus B, Anderson ST, Islas-Trejo A, Dias MM, Crawford NF, Lehnert SA, Medrano JF, Thomas MG, Moore SS, Fortes MRS. STAT6, PBX2, and PBRM1 Emerge as Predicted Regulators of 452 Differentially Expressed Genes Associated With Puberty in Brahman Heifers. Front Genet 2018; 9:87. [PMID: 29616079 PMCID: PMC5869259 DOI: 10.3389/fgene.2018.00087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The liver plays a central role in metabolism and produces important hormones. Hepatic estrogen receptors and the release of insulin-like growth factor 1 (IGF1) are critical links between liver function and the reproductive system. However, the role of liver in pubertal development is not fully understood. To explore this question, we applied transcriptomic analyses to liver samples of pre- and post-pubertal Brahman heifers and identified differentially expressed (DE) genes and genes encoding transcription factors (TFs). Differential expression of genes suggests potential biological mechanisms and pathways linking liver function to puberty. The analyses identified 452 DE genes and 82 TF with significant contribution to differential gene expression by using a regulatory impact factor metric. Brain-derived neurotrophic factor was observed as the most down-regulated gene (P = 0.003) in post-pubertal heifers and we propose this gene influences pubertal development in Brahman heifers. Additionally, co-expression network analysis provided evidence for three TF as key regulators of liver function during pubertal development: the signal transducer and activator of transcription 6, PBX homeobox 2, and polybromo 1. Pathway enrichment analysis identified transforming growth factor-beta and Wnt signaling pathways as significant annotation terms for the list of DE genes and TF in the co-expression network. Molecular information regarding genes and pathways described in this work are important to further our understanding of puberty onset in Brahman heifers.
Collapse
Affiliation(s)
- Loan T Nguyen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Bronwyn Venus
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Stephen T Anderson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Marina M Dias
- Departamento de Zootecnia, Faculdade de Ciências Agráìrias e Veterináìrias, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Natalie F Crawford
- Department of Animal Science, Colorado State University, Fort Collins, CO, United States
| | - Sigrid A Lehnert
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Milt G Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO, United States
| | - Stephen S Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
5
|
Sekine M, Makino T. Inference of Causative Genes for Alzheimer's Disease Due to Dosage Imbalance. Mol Biol Evol 2017; 34:2396-2407. [PMID: 28666362 DOI: 10.1093/molbev/msx183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Copy number variations (CNVs) have recently drawn attention as an important genetic factor for diseases, especially common neuropsychiatric disorders including Alzheimer's disease (AD). Because most of the pathogenic CNV regions overlap with multiple genes, it has been challenging to identify the true disease-causing genes amongst them. Notably, a recent study reported that CNV regions containing ohnologs, which are dosage-sensitive genes, are likely to be deleterious. Utilizing the unique feature of ohnologs could be useful for identifying causative genes with pathogenic CNVs, however its effectiveness is still unclear. Although it has been reported that AD is strongly affected by CNVs, most of AD-causing genes with pathogenic CNVs have not been identified yet. Here, we show that dosage-sensitive ohnologs within CNV regions reported in patients with AD are related to the nervous system and are highly expressed in the brain, similar to other known susceptible genes for AD. We found that CNV regions in patients with AD contained dosage-sensitive genes, which are ohnologs not overlapping with control CNV regions, frequently. Furthermore, these dosage-sensitive genes in pathogenic CNV regions had a strong enrichment in the nervous system for mouse knockout phenotype and high expression in the brain similar to the known susceptible genes for AD. Our results demonstrated that selecting dosage-sensitive ohnologs out of multiple genes with pathogenic CNVs is effective in identifying the causative genes for AD. This methodology can be applied to other diseases caused by dosage imbalance and might help to establish the medical diagnosis by analysis of CNVs.
Collapse
Affiliation(s)
- Mizuka Sekine
- Department of Biology, Faculty of Science, Tohoku University, Sendai, Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Bai C, Gao Y, Li X, Wang K, Xiong H, Shan Z, Zhang P, Wang W, Guan W, Ma Y. MicroRNAs can effectively induce formation of insulin-producing cells from mesenchymal stem cells. J Tissue Eng Regen Med 2017; 11:3457-3468. [DOI: 10.1002/term.2259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/28/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Chunyu Bai
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Yuhua Gao
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Xiangchen Li
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Kunfu Wang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Hui Xiong
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Zhiqiang Shan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Ping Zhang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Wenjie Wang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Weijun Guan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Yuehui Ma
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| |
Collapse
|
7
|
McLellan AS, Langlands K, Kealey T. Exhaustive identification of human class II basic helix-loop-helix proteins by virtual library screening. Mech Dev 2016; 119 Suppl 1:S285-91. [PMID: 14516699 DOI: 10.1016/s0925-4773(03)00130-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular proliferation, specification and differentiation in developing tissues are tightly coordinated by groups of transcription factors in response to extrinsic and intrinsic signals. Furthermore, renewable pools of stem cells in adult tissues are subject to similar regulation. Basic helix-loop-helix (bHLH) proteins are a group of transcription factors that exert such a determinative influence on a variety of developmental pathways from C. elegans to humans, and we wished to exclusively identify novel members from within the whole human bHLH family. We have, therefore, developed an 'empirical custom fingerprint', to define the class II bHLH domain and exclusively identify these proteins in silico. We have identified nine previously uncharacterised human class II proteins, four of which were novel, by interrogating conceptual translations of the GenBank HTGS database. RT-PCR and mammalian 2-hybrid analysis of a subset of the factors demonstrated that they were indeed expressed, and were able to interact with an appropriate binding partner in vitro. Thus, we are now approaching an almost complete listing of human class II bHLH factors.
Collapse
Affiliation(s)
- Andrew S McLellan
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, UK.
| | | | | |
Collapse
|
8
|
Zannino DA, Sagerström CG. An emerging role for prdm family genes in dorsoventral patterning of the vertebrate nervous system. Neural Dev 2015; 10:24. [PMID: 26499851 PMCID: PMC4620005 DOI: 10.1186/s13064-015-0052-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
The embryonic vertebrate neural tube is divided along its dorsoventral (DV) axis into eleven molecularly discrete progenitor domains. Each of these domains gives rise to distinct neuronal cell types; the ventral-most six domains contribute to motor circuits, while the five dorsal domains contribute to sensory circuits. Following the initial neurogenesis step, these domains also generate glial cell types—either astrocytes or oligodendrocytes. This DV pattern is initiated by two morphogens—Sonic Hedgehog released from notochord and floor plate and Bone Morphogenetic Protein produced in the roof plate—that act in concentration gradients to induce expression of genes along the DV axis. Subsequently, these DV-restricted genes cooperate to define progenitor domains and to control neuronal cell fate specification and differentiation in each domain. Many genes involved in this process have been identified, but significant gaps remain in our understanding of the underlying genetic program. Here we review recent work identifying members of the Prdm gene family as novel regulators of DV patterning in the neural tube. Many Prdm proteins regulate transcription by controlling histone modifications (either via intrinsic histone methyltransferase activity, or by recruiting histone modifying enzymes). Prdm genes are expressed in spatially restricted domains along the DV axis of the neural tube and play important roles in the specification of progenitor domains, as well as in the subsequent differentiation of motor neurons and various types of interneurons. Strikingly, Prdm proteins appear to function by binding to, and modulating the activity of, other transcription factors (particularly bHLH proteins). The identity of key transcription factors in DV patterning of the neural tube has been elucidated previously (e.g. the nkx, bHLH and pax families), but it now appears that an additional family is also required and that it acts in a potentially novel manner.
Collapse
Affiliation(s)
- Denise A Zannino
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| |
Collapse
|
9
|
Abstract
MicroRNAs are small noncoding ribonucleotides that regulate mRNA translation or degradation and have major roles in cellular function. MicroRNA (miRNA) levels are deregulated or altered in many diseases. There is overwhelming evidence that miRNAs also play an important role in the regulation of glucose homeostasis and thereby may contribute to the establishment of diabetes. MiRNAs have been shown to affect insulin levels by regulating insulin production, insulin exocytosis, and endocrine pancreas development. Although a large number of miRNAs have been identified from pancreatic β-cells using various screens, functional studies that link most of the identified miRNAs to regulation of pancreatic β-cell function are lacking. This review focuses on miRNAs with important roles in regulation of insulin production, insulin secretion, and β-cell development, and will discuss only miRNAs with established roles in β-cell function.
Collapse
Affiliation(s)
- Sabire Ozcan
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
10
|
Alfano C, Studer M. Neocortical arealization: evolution, mechanisms, and open questions. Dev Neurobiol 2013; 73:411-47. [PMID: 23239642 DOI: 10.1002/dneu.22067] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/03/2012] [Accepted: 12/06/2012] [Indexed: 12/13/2022]
Abstract
The mammalian neocortex is a structure with no equals in the vertebrates and is the seat of the highest cerebral functions, such as thoughts and consciousness. It is radially organized into six layers and tangentially subdivided into functional areas deputed to the elaboration of sensory information, association between different stimuli, and selection and triggering of voluntary movements. The process subdividing the neocortical field into several functional areas is called "arealization". Each area has its own cytoarchitecture, connectivity, and peculiar functions. In the last century, several neuroscientists have investigated areal structure and the mechanisms that have led during evolution to the rising of the neocortex and its organization. The extreme conservation in the positioning and wiring of neocortical areas among different mammalian families suggests a conserved genetic program orchestrating neocortical patterning. However, the impressive plasticity of the neocortex, which is able to rewire and reorganize areal structures and connectivity after impairments of sensory pathways, argues for a more complex scenario. Indeed, even if genetics and molecular biology helped in identifying several genes involved in the arealization process, the logic underlying the neocortical bauplan is still beyond our comprehension. In this review, we will introduce the present knowledge and hypotheses on the ontogenesis and evolution of neocortical areas. Then, we will focus our attention on some open issues, which are still unresolved, and discuss some recent studies that might open new directions to be explored in the next few years.
Collapse
Affiliation(s)
- Christian Alfano
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, Nice, F-06108, France.
| | | |
Collapse
|
11
|
Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron 2012; 73:292-303. [PMID: 22284184 DOI: 10.1016/j.neuron.2011.09.035] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2011] [Indexed: 01/21/2023]
Abstract
Although transcription factors that repress gene expression play critical roles in nervous system development, their mechanism of action remains to be understood. Here, we report that the Olig-related transcription factor Bhlhb5 (also known as Bhlhe22) forms a repressor complex with the PR/SET domain protein, Prdm8. We find that Bhlhb5 binds to sequence-specific DNA elements and then recruits Prdm8, which mediates the repression of target genes. This interaction is critical for repressor function since mice lacking either Bhlhb5 or Prdm8 have strikingly similar cellular and behavioral phenotypes, including axonal mistargeting by neurons of the dorsal telencephalon and abnormal itch-like behavior. We provide evidence that Cadherin-11 functions as target of the Prdm8/Bhlhb5 repressor complex that must be repressed for proper neural circuit formation to occur. These findings suggest that Prdm8 is an obligate partner of Bhlhb5, forming a repressor complex that directs neural circuit assembly in part through the precise regulation of Cadherin-11.
Collapse
|
12
|
Hinton A, Hunter S, Reyes G, Fogel GB, King CC. From pluripotency to islets: miRNAs as critical regulators of human cellular differentiation. ADVANCES IN GENETICS 2012; 79:1-34. [PMID: 22989764 DOI: 10.1016/b978-0-12-394395-8.00001-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) actively regulate differentiation as pluripotent cells become cells of pancreatic endocrine lineage, including insulin-producing β cells. The process is dynamic; some miRNAs help maintain pluripotency, while others drive cell fate decisions. Here, we survey the current literature and describe the biological role of selected miRNAs in maintenance of both mouse and human embryonic stem cell (ESC) pluripotency. Subsequently, we review the increasing evidence that miRNAs act at selected points in differentiation to regulate decisions about early cell fate (definitive endoderm and mesoderm), formation of pancreatic precursor cells, endocrine cell function, as well as epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Andrew Hinton
- Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
13
|
Skaggs K, Martin DM, Novitch BG. Regulation of spinal interneuron development by the Olig-related protein Bhlhb5 and Notch signaling. Development 2011; 138:3199-211. [PMID: 21750031 DOI: 10.1242/dev.057281] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The neural circuits that control motor activities depend on the spatially and temporally ordered generation of distinct classes of spinal interneurons. Despite the importance of these interneurons, the mechanisms underlying their genesis are poorly understood. Here, we demonstrate that the Olig-related transcription factor Bhlhb5 (recently renamed Bhlhe22) plays two central roles in this process. Our findings suggest that Bhlhb5 repressor activity acts downstream of retinoid signaling and homeodomain proteins to promote the formation of dI6, V1 and V2 interneuron progenitors and their differentiated progeny. In addition, Bhlhb5 is required to organize the spatially restricted expression of the Notch ligands and Fringe proteins that both elicit the formation of the interneuron populations that arise adjacent to Bhlhb5(+) cells and influence the global pattern of neuronal differentiation. Through these actions, Bhlhb5 helps transform the spatial information established by morphogen signaling into local cell-cell interactions associated with Notch signaling that control the progression of neurogenesis and extend neuronal diversity within the developing spinal cord.
Collapse
Affiliation(s)
- Kaia Skaggs
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
14
|
Tattikota SG, Poy MN. Re-dicing the pancreatic β-cell: do microRNAs define cellular identity? EMBO J 2011; 30:797-9. [PMID: 21364681 DOI: 10.1038/emboj.2011.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J 2011; 30:835-45. [PMID: 21285947 DOI: 10.1038/emboj.2010.361] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/16/2010] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated β-cells remain unclear. Here, we show that miRNA inactivation in β-cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1-deficient β-cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR-24, miR-26, miR-182 or miR-148 in cultured β-cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA-dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors.
Collapse
|
16
|
Stein R. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Stimulation by lithium of the interaction between the transcription factor CREB and its co-activator TORC. Biosci Rep 2009; 29:77-87. [PMID: 18717645 DOI: 10.1042/bsr20080116] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lithium salts are clinically important drugs used to treat bipolar mood disorder. The mechanisms accounting for the clinical efficacy are not completely understood. Chronic treatment with lithium is required to establish mood stabilization, suggesting the involvement of neuronal plasticity processes. CREB (cAMP-response-element-binding protein) is a transcription factor known to mediate neuronal adaptation. Recently, the CREB-co-activator TORC (transducer of regulated CREB) has been identified as a novel target of lithium and shown to confer an enhancement of cAMP-induced CREB-directed gene transcription by lithium. TORC is sequestered in the cytoplasm and its nuclear translocation controls CREB activity. In the present study, the effect of lithium on TORC function was investigated. Lithium affected neither the nuclear translocation of TORC nor TORC1 transcriptional activity, but increased the promoter occupancy by TORC1 as revealed by chromatin immunoprecipitation assay. In a mammalian two-hybrid assay, as well as in a cell-free GST (glutathione transferase) pull-down assay, lithium enhanced the CREB-TORC1 interaction. Magnesium ions strongly inhibited the interaction between GST-CREB and TORC1 and this effect was reversed by lithium. Thus our results suggest that, once TORC has entered the nucleus, lithium as a cation stimulates directly the binding of TORC to CREB, leading to an increase in cAMP-induced CREB target-gene transcription. This novel mechanism of lithium action is likely to contribute to the clinical mood-stabilizing effect of lithium salts.
Collapse
|
18
|
Mehmood R, Yasuhara N, Oe S, Nagai M, Yoneda Y. Synergistic nuclear import of NeuroD1 and its partner transcription factor, E47, via heterodimerization. Exp Cell Res 2009; 315:1639-52. [PMID: 19272376 DOI: 10.1016/j.yexcr.2009.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 02/13/2009] [Accepted: 02/21/2009] [Indexed: 10/21/2022]
Abstract
The transition from undifferentiated pluripotent cells to terminally differentiated neurons is coordinated by a repertoire of transcription factors. NeuroD1 is a type II basic helix loop helix (bHLH) transcription factor that plays critical roles in neuronal differentiation and maintenance in the central nervous system. Its dimerization with E47, a type I bHLH transcription factor, leads to the transcriptional regulation of target genes. Mounting evidence suggests that regulating the localization of transcription factors contributes to the regulation of their activity during development as defects in their localization underlie a variety of developmental disorders. In this study, we attempted to understand the nuclear import mannerisms of NeuroD1 and E47. We found that the nuclear import of NeuroD1 and E47 is energy-dependent and involves the Ran-mediated pathway. Herein, we demonstrate that NeuroD1 and E47 can dimerize inside the cytoplasm before their nuclear import. Moreover, this dimerization promotes nuclear import as the nuclear accumulation of NeuroD1 was enhanced in the presence of E47 in an in vitro nuclear import assay, and NLS-deficient NeuroD1 was successfully imported into the nucleus upon E47 overexpression. NeuroD1 also had a similar effect on the nuclear accumulation of NLS-deficient E47. These findings suggest a novel role for dimerization that may promote, at least partially, the nuclear import of transcription factors allowing them to function efficiently in the nucleus.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
19
|
Damiani LA, Yingling CM, Leng S, Romo PE, Nakamura J, Belinsky SA. Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res 2008; 68:9005-14. [PMID: 18974146 DOI: 10.1158/0008-5472.can-08-1276] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A better understanding of key molecular changes during transformation of lung epithelial cells could affect strategies to reduce mortality from lung cancer. This study uses an in vitro model to identify key molecular changes that drive cell transformation and the likely clonal outgrowth of preneoplastic lung epithelial cells that occurs in the chronic smoker. Here, we show differences in transformation efficiency associated with DNA repair capacity for two hTERT/cyclin-dependent kinase 4, immortalized bronchial epithelial cell lines after low-dose treatment with the carcinogens methylnitrosourea, benzo(a)pyrene-diolepoxide 1, or both for 12 weeks. Levels of cytosine-DNA methyltransferase 1 (DNMT1) protein increased significantly during carcinogen exposure and were associated with the detection of promoter hypermethylation of 5 to 10 genes in each transformed cell line. Multiple members of the cadherin gene family were commonly methylated during transformation. Stable knockdown of DNMT1 reversed transformation and gene silencing. Moreover, stable knockdown of DNMT1 protein before carcinogen treatment prevented transformation and methylation of cadherin genes. These studies provide a mechanistic link between increased DNMT1 protein, de novo methylation of tumor suppressor genes, and reduced DNA repair capacity that together seem causal for transformation of lung epithelial cells. This finding supports the development of demethylation strategies for primary prevention of lung cancer in smokers.
Collapse
Affiliation(s)
- Leah A Damiani
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | | | | | |
Collapse
|
20
|
Joshi PS, Molyneaux BJ, Feng L, Xie X, Macklis JD, Gan L. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron 2008; 60:258-72. [PMID: 18957218 DOI: 10.1016/j.neuron.2008.08.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/23/2008] [Accepted: 08/05/2008] [Indexed: 12/14/2022]
Abstract
While progenitor-restricted factors broadly specify area identities in developing neocortex, the downstream regulatory elements involved in acquisition of those identities in postmitotic neurons are largely unknown. Here, we identify Bhlhb5, a transcription factor expressed in layers II-V, as a postmitotic regulator of area identity. Bhlhb5 is initially expressed in a high caudomedial to low rostrolateral gradient that transforms into a sharp border between sensory and rostral motor cortices. Bhlhb5 null mice exhibit aberrant expression of area-specific genes and structural organization in the somatosensory and caudal motor cortices. In somatosensory cortex, Bhlhb5 null mice display postsynaptic disorganization of vibrissal barrels. In caudal motor cortex, Bhlhb5 null mice exhibit anomalous differentiation of corticospinal motor neurons, accompanied by failure of corticospinal tract formation. Together, these results demonstrate Bhlhb5's function as an area-specific transcription factor that regulates the postmitotic acquisition of area identities and elucidate the genetic hierarchy between progenitors and postmitotic neurons driving neocortical arealization.
Collapse
Affiliation(s)
- Pushkar S Joshi
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
21
|
Feng L, Xie X, Joshi PS, Yang Z, Shibasaki K, Chow RL, Gan L. Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina. Development 2006; 133:4815-25. [PMID: 17092954 PMCID: PMC2992969 DOI: 10.1242/dev.02664] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian retina comprises six major neuronal cell types and one glial type that are further classified into multiple subtypes based on their anatomical and functional differences. Nevertheless, how these subtypes arise remains largely unknown at the molecular level. Here, we demonstrate that the expression of Bhlhb5, a bHLH transcription factor of the Olig family, is tightly associated with the generation of selective GABAergic amacrine and Type 2 OFF-cone bipolar subtypes throughout retinogenesis. Targeted deletion of Bhlhb5 results in a significant reduction in the generation of these selective bipolar and amacrine subtypes. Furthermore, although a Bhlhb5-null mutation has no effect on the expression of bHLH-class retinogenic genes, Bhlhb5 expression overlaps with that of the pan-amacrine factor NeuroD and the expression of Bhlhb5 and NeuroD is negatively regulated by ganglion cell-competence factor Math5. Our results reveal that a bHLH transcription factor cascade is involved in regulating retinal cell differentiation and imply that Bhlhb5 functions downstream of retinogenic factors to specify bipolar and amacrine subtypes.
Collapse
Affiliation(s)
- Liang Feng
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Xiaoling Xie
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Pushkar S. Joshi
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Zhiyong Yang
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Koji Shibasaki
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | - Robert L. Chow
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Lin Gan
- Center for Aging and Developmental Biology, University of Rochester, Rochester, NY 14642, USA
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, USA
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY 14642, USA
- Author for correspondence ()
| |
Collapse
|
22
|
Belinsky SA, Liechty KC, Gentry FD, Wolf HJ, Rogers J, Vu K, Haney J, Kennedy TC, Hirsch FR, Miller Y, Franklin WA, Herman JG, Baylin SB, Bunn PA, Byers T. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 2006; 66:3338-44. [PMID: 16540689 DOI: 10.1158/0008-5472.can-05-3408] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A sensitive screening approach for lung cancer could markedly reduce the high mortality rate for this disease. Previous studies have shown that methylation of gene promoters is present in exfoliated cells within sputum prior to lung cancer diagnosis. The purpose of the current study is to conduct a nested case-control study of incident lung cancer cases from an extremely high-risk cohort for evaluating promoter methylation of 14 genes in sputum. Controls (n = 92) were cohort members matched to cases (n = 98) by gender, age, and month of enrollment. The comparison of proximal sputum collected within 18 months to >18 months prior to diagnosis showed that the prevalence for methylation of gene promoters increased as the time to lung cancer diagnosis decreased. Six of 14 genes were associated with a >50% increased lung cancer risk. The concomitant methylation of three or more of these six genes was associated with a 6.5-fold increased risk and a sensitivity and specificity of 64%. This is the first study to prospectively examine a large panel of genes for their ability to predict lung cancer and shows the promise of gene promoter hypermethylation in sputum as a molecular marker for identifying people at high risk for cancer incidence.
Collapse
Affiliation(s)
- Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Elias MC, Tozer KR, Silber JR, Mikheeva S, Deng M, Morrison RS, Manning TC, Silbergeld DL, Glackin CA, Reh TA, Rostomily RC. TWIST is expressed in human gliomas and promotes invasion. Neoplasia 2006; 7:824-37. [PMID: 16229805 PMCID: PMC1501937 DOI: 10.1593/neo.04352] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 04/21/2005] [Accepted: 05/18/2005] [Indexed: 11/18/2022] Open
Abstract
TWIST, a basic helix-loop-helix (bHLH) transcription factor that regulates mesodermal development, has been shown to promote tumor cell metastasis and to enhance survival in response to cytotoxic stress. Our analysis of rat C6 glioma cell-derived cDNA revealed TWIST expression, suggesting that the gene may play a role in the genesis and physiology of primary brain tumors. To further delineate a possible oncogenic role for TWIST in the central nervous system (CNS), we analyzed TWIST expression in human gliomas and normal brain by using reverse transcription polymerase chain reaction, Northern blot analysis, in situ hybridization, and immunohistochemistry. TWIST expression was detected in the large majority of human glioma-derived cell lines and human gliomas examined. Levels of TWIST mRNA were associated with the highest grade gliomas, and increased TWIST expression accompanied transition from low grade to high grade in vivo, suggesting a role for TWIST in promoting malignant progression. In accord, elevated TWIST mRNA abundance preceded the spontaneous malignant transformation of cultured mouse astrocytes hemizygous for p53. Overexpression of TWIST protein in a human glioma cell line significantly enhanced tumor cell invasion, a hallmark of high-grade gliomas. These findings support roles for TWIST both in early glial tumorigenesis and subsequent malignant progression. TWIST was also expressed in embryonic and fetal human brain, and in neurons, but not glia, of mature brain, indicating that, in gliomas, TWIST may promote the functions also critical for CNS development or normal neuronal physiology.
Collapse
Affiliation(s)
- Maria C Elias
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McMiller TL, Johnson CM. Molecular characterization of HLH-17, a C. elegans bHLH protein required for normal larval development. Gene 2005; 356:1-10. [PMID: 16014321 PMCID: PMC2040385 DOI: 10.1016/j.gene.2005.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/18/2005] [Accepted: 05/04/2005] [Indexed: 11/24/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor family regulates numerous developmental events in eukaryotic cells. In the model system, C. elegans, thirty-seven bHLH proteins have been identified via genome-wide sequence analysis and fourteen have been genetically characterized to date. These proteins influence cell fate specification of neural lineages and differentiation of myogenic lineages and have distinct roles in somatic gonadogenesis. We report here on the molecular characterization of HLH-17, a protein whose putative bHLH domain is homologous to the mammalian bHLH proteins BETA3 and bHLHB5. The gene hlh-17 is transcriptionally active at all developmental stages, with the highest steady state accumulation of hlh-17 mRNA during embryogenesis. An upstream hlh-17 sequence drives expression of GFP in the sheath cells of the cephalic sensilla. Finally, animals that are defective in HLH-17 via RNAi display egg-laying defects, while those carrying null mutations in hlh-17 do not develop beyond the L2 stage and are less attracted to potassium and sodium ions. We propose that hlh-17 affects the ability of C. elegans to respond to food cues, with possible downstream effects on insulin-signaling genes involved in the normal development and reproductive viability of the worm.
Collapse
Affiliation(s)
| | - Casonya M. Johnson
- Corresponding author. Tel.: +443 885 3394; fax: +443 885 8285. E-mail address: (C.M. Johnson)
| |
Collapse
|
25
|
Ohkawara T, Shintani T, Saegusa C, Yuasa-Kawada J, Takahashi M, Noda M. A novel basic helix–loop–helix (bHLH) transcriptional repressor, NeuroAB, expressed in bipolar and amacrine cells in the chick retina. ACTA ACUST UNITED AC 2004; 128:58-74. [PMID: 15337318 DOI: 10.1016/j.molbrainres.2004.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors are implicated in cell fate determination and differentiation in neurogenesis. We identified a novel chick bHLH transcription factor, NeuroAB. A phylogenetic tree prepared from bHLH sequences suggested that NeuroAB belongs to the BETA3 group in the Atonal-related protein family (ARPs). In situ hybridization and immunostaining indicated that NeuroAB is expressed predominantly in postmitotic bipolar cells and GABAergic amacrine cells in the retina. Reporter and DNA pull down assays indicated that NeuroAB functions as a transcriptional repressor by binding to the E-box sequence, and its activity is modulated by phosphorylation at a specific serine residue that fits the consensus phosphorylation site for glycogen synthase kinase 3beta (GSK3beta). Since members of the BETA3 group possess this consensus site, it is suggested that their activities are commonly regulated by GSK3beta or other kinases bearing the same substrate specificity. We found that the expression of GSK3beta is spatially and temporally regulated in the developing retina; its strong expression was observed in ganglion cells from E8 and a subset of amacrine cells from E12. These findings suggest that NeuroAB is involved in the maturation and maintenance of bipolar cells and GABAergic amacrine cells and regulation by GSK3beta plays an important role in retinogenesis.
Collapse
Affiliation(s)
- Takeshi Ohkawara
- Division of Molecular Neurobiology, National Institute for Basic Biology, and Department of Molecular Biomechanics, Graduate University for Advanced Studies, Okazaki 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004. [PMID: 15199405 DOI: 10.1172/jci200420935] [Citation(s) in RCA: 468] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bone marrow stromal cells (MSCs) have the capability under specific conditions of differentiating into various cell types such as osteocytes, chondrocytes, and adipocytes. Here we demonstrate a highly efficient and specific induction of cells with neuronal characteristics, without glial differentiation, from both rat and human MSCs using gene transfection with Notch intracellular domain (NICD) and subsequent treatment with bFGF, forskolin, and ciliary neurotrophic factor. MSCs expressed markers related to neural stem cells after transfection with NICD, and subsequent trophic factor administration induced neuronal cells. Some of them showed voltage-gated fast sodium and delayed rectifier potassium currents and action potentials compatible with characteristics of functional neurons. Further treatment of the induced neuronal cells with glial cell line-derived neurotrophic factor (GDNF) increased the proportion of tyrosine hydroxylase-positive and dopamine-producing cells. Transplantation of these GDNF-treated cells showed improvement in apomorphine-induced rotational behavior and adjusting step and paw-reaching tests following intrastriatal implantation in a 6-hydroxy dopamine rat model of Parkinson disease. This study shows that a population of neuronal cells can be specifically generated from MSCs and that induced cells may allow for a neuroreconstructive approach.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113:1701-10. [PMID: 15199405 PMCID: PMC420509 DOI: 10.1172/jci20935] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 04/20/2004] [Indexed: 12/19/2022] Open
Abstract
Bone marrow stromal cells (MSCs) have the capability under specific conditions of differentiating into various cell types such as osteocytes, chondrocytes, and adipocytes. Here we demonstrate a highly efficient and specific induction of cells with neuronal characteristics, without glial differentiation, from both rat and human MSCs using gene transfection with Notch intracellular domain (NICD) and subsequent treatment with bFGF, forskolin, and ciliary neurotrophic factor. MSCs expressed markers related to neural stem cells after transfection with NICD, and subsequent trophic factor administration induced neuronal cells. Some of them showed voltage-gated fast sodium and delayed rectifier potassium currents and action potentials compatible with characteristics of functional neurons. Further treatment of the induced neuronal cells with glial cell line-derived neurotrophic factor (GDNF) increased the proportion of tyrosine hydroxylase-positive and dopamine-producing cells. Transplantation of these GDNF-treated cells showed improvement in apomorphine-induced rotational behavior and adjusting step and paw-reaching tests following intrastriatal implantation in a 6-hydroxy dopamine rat model of Parkinson disease. This study shows that a population of neuronal cells can be specifically generated from MSCs and that induced cells may allow for a neuroreconstructive approach.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ik Tsen Heng J, Tan SS. The role of class I HLH genes in neural development--have they been overlooked? Bioessays 2003; 25:709-16. [PMID: 12815726 DOI: 10.1002/bies.10299] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Helix-loop-helix (HLH) genes encode for transcription factors affecting a whole variety of developmental programs, including neurogenesis. At least seven functional classes (denoted I to VII) of HLH genes exist, (1) with subclass members exhibiting homo- and heterodimerisation for proper DNA binding and transcriptional regulation of downstream target genes. In the developing nervous system, members of class II, V and VI have been most extensively studied concerning their roles in neural programming. In contrast, the function of class I proteins (such as E12 and E47) is poorly defined and the orthodox view relegates them to general dimerisation duties that are necessary for the activity of the other classes. However, closer scrutiny of the spatiotemporal expression patterns of class I factors, combined with recent biochemical evidence, would suggest that class I proteins possess specific functions during early neural differentiation. This essay supports this possibility, in addition to putting forward the hypothesis that, outside their general dimerisation activity, class I genes have independent roles in regulating neurogenesis.
Collapse
Affiliation(s)
- Julian Ik Tsen Heng
- Brain Development Group, The Howard Florey Institute, University of Melbourne, Parkville VIC 3010, Melbourne Australia
| | | |
Collapse
|
29
|
Xu ZP, Dutra A, Stellrecht CM, Wu C, Piatigorsky J, Saunders GF. Functional and structural characterization of the human gene BHLHB5, encoding a basic helix-loop-helix transcription factor. Genomics 2002; 80:311-8. [PMID: 12213201 DOI: 10.1006/geno.2002.6833] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genes encoding basic helix-loop-helix (bHLH) transcription factors have been implicated in many aspects of neural development, including cell growth, differentiation, and cell migration. Using both genomic and cDNA mouse and human clones encoding a neural-specific bHLH protein, human BHLHB5 was cloned and mapped to a region on chromosome 8q13 that segregates with Duane syndrome. Genomic sequence analysis of human BHLHB5 and mouse Bhlhb5 revealed that they contain a single exon encoding 381- and 355-amino-acid bHLH proteins, respectively. Multiple amino acid sequence alignments of the Bhlhb5 family members revealed several conserved motifs and an identical 147-amino-acid carboxy-terminal region that contains a 60-amino-acid bHLH domain. A 27-bp trinucleotide repeat (CAG)(9) encoding polyserine was found in human BHLHB5, but only one CAG was found at the corresponding position in the mouse Bhlhb5 and hamster BETA3 genes. Northern blot analysis of human BHLHB5 revealed brain-specific expression with the highest abundance in the cerebellum. Mouse Bhlhb5 can strongly repress a human PAX6 promoter.
Collapse
Affiliation(s)
- Zheng-Ping Xu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, Maryland 20890, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kim MH, Gunnersen J, Augustine C, Tan SS. Region-specific expression of the helix-loop-helix gene BETA3 in developing and adult brains. Mech Dev 2002; 114:125-8. [PMID: 12175497 DOI: 10.1016/s0925-4773(02)00036-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Members of the basic helix-loop-helix (bHLH) transcription factor family are crucial regulators of neuronal cell generation and cell fate. A number of bHLH genes are expressed in the developing cerebral cortex, including MASH-1, neurogenin2 and NeuroD implying the existence of a regulatory and possibly redundant network of family members. BETA3 is a novel member originally cloned from pancreatic cells but we report here highly restricted expression patterns in developing forebrain structures that are highly stage-specific. We show that BETA3 mRNA is found in both neocortex and archicortex, mainly in cells that have reached their migratory destinations but is largely absent from proliferative zones. These expression data would suggest that BETA3 function is linked to the establishment rather than the initiation of neuronal fates.
Collapse
Affiliation(s)
- Mary H Kim
- Brain Development Laboratory, Howard Florey Institute, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | |
Collapse
|
31
|
Gunnersen JM, Augustine C, Spirkoska V, Kim M, Brown M, Tan SS. Global analysis of gene expression patterns in developing mouse neocortex using serial analysis of gene expression. Mol Cell Neurosci 2002; 19:560-73. [PMID: 11988023 DOI: 10.1006/mcne.2001.1098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Molecular inventories of the developing mouse neocortex before and after birth were generated using the global gene expression profiling tool serial analysis of gene expression (SAGE). Libraries were generated from embryonic day 15 and postnatal day 1 mouse neocortex and more than 40,000 tags were collected (20,211 and 22,001 tags, representing 11,706 and 12,402 transcripts, respectively). Comparison of the two libraries resulted in the identification of 321 transcripts that were differentially expressed (P < 0.05). Differential expression was independently verified for selected genes by Northern blotting, and in situ hybridization revealed spatial expression patterns in the neocortex. Differentially expressed transcripts included genes known to be important in neocortical development (e.g., brain factor 1, neuroD2, and Id2), genes not previously associated with neocortical development (such as brahma-related gene 1, receptor for activated C-kinase I, hypermethylated in cancer 2, and Evi9), and genes of unknown identity or function.
Collapse
Affiliation(s)
- J M Gunnersen
- Howard Florey Institute, University of Melbourne, Royal Parade, Parkville 3010, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Bramblett DE, Copeland NG, Jenkins NA, Tsai MJ. BHLHB4 is a bHLH transcriptional regulator in pancreas and brain that marks the dimesencephalic boundary. Genomics 2002; 79:402-12. [PMID: 11863370 DOI: 10.1006/geno.2002.6708] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned a basic helix-loop-helix (bHLH) factor gene, Bhlhb4, from a mouse beta-cell line. Fluorescence in situ hybridization (FISH) and genetic mapping place Bhlhb4 at the telomeric end of mouse chromosome 2 (H3-H4), syntenic to human chromosome 20q13. Based on phylogenetic analysis, BHLHB4 belongs to a new subgroup of bHLH factors including at least four previously identified mouse bHLH factors: BHLHB5, MIST1, OLIG1, OLIG2, and OLIG3. In the developing nervous system, Bhlhb4 was found to mark the dimesencephalic boundary, suggesting that Bhlhb4 may have a role in diencephalic regionalization. In the pancreas, Bhlhb4 is expressed in a transient fashion that suggests a role in the pancreatic endocrine cell lineage. Transfection experiments show that BHLHB4 can repress transcriptional activation mediated through the pancreatic beta-cell specific insulin promoter enhancer RIPE3. Together, these data suggest that BHLHB4 may modulate the expression of genes required for the differentiation and/or maintenance of pancreatic and neuronal cell types.
Collapse
Affiliation(s)
- Debra E Bramblett
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
33
|
Yoshida S, Ohbo K, Takakura A, Takebayashi H, Okada T, Abe K, Nabeshima Y. Sgn1, a basic helix-loop-helix transcription factor delineates the salivary gland duct cell lineage in mice. Dev Biol 2001; 240:517-30. [PMID: 11784080 DOI: 10.1006/dbio.2001.0473] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The salivary system in mammals is comprised of three independently developed pairs of organs, the parotid, submaxillar, and sublingual glands. Each gland is composed of various ductal and acinar cell types that fulfill multiple roles. However, the molecular mechanisms regulating their biogenesis and functions are still largely unknown. In this paper, we report that two class B basic helix-loop-helix (bHLH) transcriptional regulators delineate the ductal and the acinar cells in salivary glands. Sgn1, a novel class B bHLH factor, is specifically expressed in the salivary duct cells, while the acinar cells are characterized by the expression of another class B bHLH factor, Mist1. The molecular nature of Sgn1 was also investigated: it binds to specific sequences of DNA as a dimer with a class A bHLH factor and acts as a negative transcriptional regulator against other bHLH factors. This study provides an important cue towards better understanding of the generation and function of multiple cell types in salivary glands. In addition, Sgn1 expression exhibits a reverse relationship with the development of male phenotypes, suggesting its role in gender dimorphism in the salivary glands.
Collapse
Affiliation(s)
- S Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Moore AW, Barbel S, Jan LY, Jan YN. A genomewide survey of basic helix-loop-helix factors in Drosophila. Proc Natl Acad Sci U S A 2000; 97:10436-41. [PMID: 10973473 PMCID: PMC27042 DOI: 10.1073/pnas.170301897] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors play important roles in the specification of tissue type during the development of animals. We have used the information contained in the recently published genomic sequence of Drosophila melanogaster to identify 12 additional bHLH proteins. By sequence analysis we have assigned these proteins to families defined by Atonal, Hairy-Enhancer of Split, Hand, p48, Mesp, MYC/USF, and the bHLH-Per, Arnt, Sim (PAS) domain. In addition, one single protein represents a unique family of bHLH proteins. mRNA in situ analysis demonstrates that the genes encoding these proteins are expressed in several tissue types but are particularly concentrated in the developing nervous system and mesoderm.
Collapse
Affiliation(s)
- A W Moore
- Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94143-0725, USA
| | | | | | | |
Collapse
|
35
|
Wang J, Jani-Sait SN, Escalon EA, Carroll AJ, de Jong PJ, Kirsch IR, Aplan PD. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci U S A 2000; 97:3497-502. [PMID: 10737801 PMCID: PMC16268 DOI: 10.1073/pnas.97.7.3497] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have cloned the genomic breakpoints for a balanced t(14;21)(q11. 2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia. Sequence analysis of the genomic breakpoints indicated that the translocation had been mediated by an illegitimate V(D)J recombination event that disrupted the T-cell receptor (TCR) alpha locus and placed the TCR alpha locus enhancer on the derivative 21 chromosome. We identified a previously unreported transcript, designated BHLHB1 (for basic domain, helix-loop-helix protein, class B, 1) that had been activated by the translocation. BHLHB1 mapped to the region of chromosome 21 that has been proposed to be responsible, at least in part, for the learning deficits seen in children with Down's syndrome. Although BHLHB1 expression normally is restricted to neural tissues, T-cell lymphoblasts with the t(14;21)(q11.2;q22) also expressed high levels of BHLHB1 mRNA. Expression of BHLHB1 dramatically inhibited E2A-mediated transcription activation in NIH 3T3 fibroblasts and Jurkat T cells. This observation suggests that BHLHB1, similar to SCL/TAL1, may exert a leukemogenic effect through a functional inactivation of E2A or related proteins.
Collapse
Affiliation(s)
- J Wang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ, Turner DL. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 2000; 127:693-702. [PMID: 10648228 DOI: 10.1242/dev.127.4.693] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors are known to function during mammalian neurogenesis. Here we show that transient transfection of vectors expressing neuroD2, MASH1, ngn1 or related neural bHLH proteins, with their putative dimerization partner E12, can convert mouse P19 embryonal carcinoma cells into differentiated neurons. Transfected cells express numerous neuron-specific proteins, adopt a neuronal morphology and are electrically excitable. Thus, the expression of neural bHLH proteins is sufficient to confer a neuronal fate on uncommitted mammalian cells. Neuronal differentiation of transfected cells is preceded by elevated expression of the cyclin-dependent kinase inhibitor p27(Kip1) and cell cycle withdrawal. This demonstrates that the bHLH proteins can link neuronal differentiation to withdrawal from the cell cycle, possibly by activating the expression of p27(Kip1). The ability to generate mammalian neurons by transient expression of neural bHLH proteins should create new opportunities for studying neurogenesis and devising neural repair strategies.
Collapse
Affiliation(s)
- M H Farah
- Mental Health Research Institute, Neuroscience Program, and Department of Biology, University of Michigan, Ann Arbor, MI 48104-1687, USA
| | | | | | | | | | | |
Collapse
|
37
|
Narumi O, Mori S, Boku S, Tsuji Y, Hashimoto N, Nishikawa S, Yokota Y. OUT, a novel basic helix-loop-helix transcription factor with an Id-like inhibitory activity. J Biol Chem 2000; 275:3510-21. [PMID: 10652346 DOI: 10.1074/jbc.275.5.3510] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors belonging to the basic helix-loop-helix (bHLH) family are involved in various cell differentiation processes. We report the isolation and functional characterization of a novel bHLH factor, termed OUT. OUT, structurally related to capsulin/epicardin/Pod-1 and ABF-1/musculin/MyoR, is expressed mainly in the adult mouse reproductive organs, such as the ovary, uterus, and testis, and is barely detectable in tissues of developing embryos. Physical association of OUT with the E protein was predicted from the primary structure of OUT and confirmed by co-immunoprecipitation. However, unlike other bHLH factors, this novel protein failed to bind E-box or N-box DNA sequences and inhibited DNA binding of homo- and heterodimers consisting of E12 and MyoD in gel mobility shift assays. In luciferase assays, OUT inhibited the induction of E-box-dependent transactivation by MyoD-E12 heterodimers. Deletion studies identified the domain responsible for the inhibitory action of OUT in its bHLH and C-terminal regions. Moreover, terminal differentiation of C2C12 myoblasts was inhibited by exogenous introduction of OUT. These inhibitory functions of OUT closely resemble those of the helix-loop-helix inhibitor Id proteins. Based on these findings, we propose that this novel protein functions as a negative regulator of bHLH factors through the formation of a functionally inactive heterodimeric complex.
Collapse
Affiliation(s)
- O Narumi
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho 53, Sakyo-ku, 606-8507 Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Kataoka H, Murayama T, Yokode M, Mori S, Sano H, Ozaki H, Yokota Y, Nishikawa S, Kita T. A novel snail-related transcription factor Smuc regulates basic helix-loop-helix transcription factor activities via specific E-box motifs. Nucleic Acids Res 2000; 28:626-33. [PMID: 10606664 PMCID: PMC102498 DOI: 10.1093/nar/28.2.626] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Snail family proteins are zinc finger transcriptional regulators first identified in Drosophila which play critical roles in cell fate determination. We identified a novel Snail -related gene from murine skeletalmusclecells designated Smuc. Northern blot analysis showed that Smuc was highly expressed in skeletal muscle and thymus. Smuc contains five putative DNA-binding zinc finger domains in its C-terminal half. In electrophoretic mobility shift assays, recombinant zinc finger domains of Smuc specifically bound to CAGGTG and CACCTG E-box motifs (CANNTG). Because basic helix-loop-helix transcription factors (bHLH) bind to the same E-box sequences, we examined whether Smuc competes with the myogenic bHLH factor MyoD for DNA binding. Smuc inhibited the binding of a MyoD-E12 complex to the CACCTG E-box sequence in a dose-dependent manner and suppressed the transcriptional activity of MyoD-E12. When heterologously targeted to the thymidine kinase promoter as fusion proteins with the GAL4 DNA-binding domain, the non-zinc finger domain of Smuc acted as a transcriptional repressor. Furthermore, overexpression of Smuc in myoblasts repressed transactivation of muscle differentiation marker Troponin T. Thus, Smuc might regulate bHLH transcription factors by zinc finger domains competing for E-box binding, and non-zinc finger repressor domains might also confer transcriptional repression to control differentiation processes.
Collapse
Affiliation(s)
- H Kataoka
- Department of Geriatric Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The endocrine pancreas is an organ of enormous importance, since its dysfunction causes diabetes, one of the most common human diseases in the world. Regulation of pancreatic endocrine cell determination and differentiation requires a unique set of transcription factors, including basic helix-loop-helix and homeodomain-containing proteins. The physiological role of individual transcription factor has been characterized by gene disruption in the mouse. The results indicate that these genes are not only involved in tissue-specific activation of downstream target genes for islet-specific hormones, but also critical for the proper islet morphogenesis. Future elucidation of the genetic relationship of these genes will lead to a better understanding of the molecular mechanisms controlling endocrine pancreas formation and will contribute to the development of new therapeutic approaches to diabetes.
Collapse
Affiliation(s)
- H P Huang
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
40
|
Bramblett DE, Huang HP, Tsai MJ. Pancreatic islet development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 47:255-315. [PMID: 10582089 DOI: 10.1016/s1054-3589(08)60114-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D E Bramblett
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
41
|
Miyachi T, Maruyama H, Kitamura T, Nakamura S, Kawakami H. Structure and regulation of the human NeuroD (BETA2/BHF1) gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:223-31. [PMID: 10366743 DOI: 10.1016/s0169-328x(99)00112-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we isolated and characterized the human NeuroD (BETA2/BHF1) gene. This gene was found to consist of two exons and one intron. The promoter regions were well-conserved compared with the mouse NeuroD gene. Two transcription start points (TSPs) were determined by the oligo-capping method. One TATA box was located at -31 bp from the lower TSP. The results of a transient transfection assay using the human neuroblastoma cell line IMR-32 and hamster insulin tumor cell line HIT-T15 suggested that there are at least three positive regulatory regions in the promoter. In these regions, four E boxes (CANNTG), named the E1 to E4 boxes, and two GC boxes were present. Cotransfection of the NeuroD expression vector into IMR-32 cells enhanced the NeuroD promoter activity by about 4-fold. A deletion and mutation analysis revealed that the E1 and E4 boxes, especially the E1 box, are associated with autoactivation and that E2 and E3 boxes are not associated with autoactivation. As mutation analysis of E3 box showed a decrease in the enhancer activity to the basal level, it showed that the E3 box is important to activate the NeuroD transcription. These results raised the possibility that the NeuroD gene expression is positively regulated through the E box sequence, not only by NeuroD itself but also by another E box binding protein.
Collapse
Affiliation(s)
- T Miyachi
- Third Department of Internal Medicine, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | |
Collapse
|
42
|
Shushan EB, Cerasi E, Melloul D. Regulation of the insulin gene by glucose: stimulation of trans-activation potency of human PDX-1 N-terminal domain. DNA Cell Biol 1999; 18:471-9. [PMID: 10390156 DOI: 10.1089/104454999315196] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The beta cells in pancreatic islets of Langerhans increase insulin gene transcription in response to glucose. The pancreatic and duodenal homeobox-1 (PDX-1) plays a major role in glucose-induced insulin transcription. We studied the functional regions of the human PDX-1 protein fused to the DNA-binding domain of the transcription factor Gal4. The results indicate that the N-terminal domain of the hPDX-1, required for transactivation (amino acids 1-120) in transfected betaTC6 and HeLa cells, is also regulated by extracellular glucose concentrations in transfected rat islets. Deletion analyses have led to the mapping of two regions within the N terminus that are essential for its trans-activation properties. One sequence spans amino acids 97-120 in transfected islet and HeLa cells or amino acids 77-120 in betaTC6 cells; the other includes the highly conserved B box (amino acids 31-41). We thus present evidence of a glucose effect on hPDX-1 trans-activation activity, in addition to the previously described regulatory effect on its DNA-binding activity.
Collapse
Affiliation(s)
- E B Shushan
- Department of Endocrinology & Metabolism, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
43
|
Tamura M, Noda M. Identification of DERMO-1 as a member of helix-loop-helix type transcription factors expressed in osteoblastic cells. J Cell Biochem 1999; 72:167-76. [PMID: 10022499 DOI: 10.1002/(sici)1097-4644(19990201)72:2<167::aid-jcb1>3.0.co;2-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several members of the basic helix-loop-helix (bHLH) type of transcription factors have now been reported, and almost every member of this class has been implicated in transcriptional regulation in cell type determination and differentiation. Previously, we reported that dominant negative HLH proteins are involved in osteoblastic phenotype expression, such as osteocalcin, and hence differentiation (Tamura and Noda [1994] J. Cell Biol. 126:773-782). In this work, we used degenerate PCR cloning in order to identify cDNA clones encoding bHLH proteins expressed in osteoblastic osteosarcoma ROS17/2.8 cells. Sequence analyses of the 47 clones revealed that 11 clones encoded products with a characteristic motif of the bHLH transcription factor family. Of these clones, sequences in the amplified region of seven clones were homologous to the mouse twist, and three clones were homologous to the mouse twist-related HLH protein, Dermo-1. To confirm Dermo-1 mRNA expression in osteoblastic cells, we performed reverse transcription polymerase chain reaction (RT-PCR) analysis using mRNA from ROS17/2.8 cells and MC3T3-E1 cells by Dermo-1 specific primers and Northern blot analysis. These analyses demonstrated that Dermo-1 mRNA was expressed in these osteoblast-like cell lines. Nucleotide sequence analysis of the partial rat Dermo-1 cDNA cloned from ROS17/2.8 library revealed that it has the highest degree of homology with the mouse Dermo-1 cDNA, and the partial amino acid sequence deduced from the obtained rat Dermo-1 was identical with the corresponding region of the mouse Dermo-1 amino acid sequence. To further examine the role of Dermo-1 in the regulation of osteoblastic differentiation, we examined mRNA levels of Dermo-1 and twist in C3H10T1/2 cells treated with recombinant human bone morphogenetic protein (rhBMP)-2. Using the RT-PCR method, the mRNA levels of Dermo-1 and twist were found to be decreased by the treatment with rhBMP-2 in C3H10T1/2 cells. We also observed that the mRNA level of Dermo-1 was decreased about fourfold by the treatment with rhBMP-2 in C3H10T1/2 cells by Northern blot analysis. Moreover, Dermo-1 mRNA was detected at lower levels in 21-day-old differentiated MC3T3-E1 cells compared with 3-day-old undifferentiated MC3T3-E1 cells. These results suggested that Dermo-1 could be involved in the osteoblastic differentiation in a negative manner.
Collapse
Affiliation(s)
- M Tamura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | |
Collapse
|
44
|
Korzh V, Sleptsova I, Liao J, He J, Gong Z. Expression of zebrafish bHLH genes ngn1 and nrd defines distinct stages of neural differentiation. Dev Dyn 1998; 213:92-104. [PMID: 9733104 DOI: 10.1002/(sici)1097-0177(199809)213:1<92::aid-aja9>3.0.co;2-t] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two zebrafish bHLH genes, neurogenin-related gene I (ngn1) and neuroD (nrd), have been isolated. ngn1 expression is initiated at the end of gastrulation in the neural plate and defines broad domains of cells that probably possess an ability to develop as neurons. This finding suggests that ngn1 may play a role during determination of cell fate in neuroblasts. ngn1 and pax-b are expressed in a mutually exclusive manner. nrd expression follows that of ngn1 in restricted populations of cells selected from ngn1-positive clusters of cells. The earliest nrd-positive cells in the brain and the trunk are a subset of the primary neurons. ngn1 is not expressed in the eye. Here, nrd transcription is activated at 25 hours postfertilization in the ventral retina. Expression of islet-1 occurs in nrd-positive cells after expression of nrd, and the expression of the two genes partially overlaps in time. These observations suggest that during eye development nrd expression may follow expression of some other neurodetermination gene(s). This supports the idea that expression of nrd is a necessary step leading toward overt neuronal differentiation.
Collapse
Affiliation(s)
- V Korzh
- Institute of Molecular Agrobiology, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
45
|
Stellrecht CM, DeMayo FJ, Finegold MJ, Tsai MJ. Tissue-specific and developmental regulation of the rat insulin II gene enhancer, RIPE3, in transgenic mice. J Biol Chem 1997; 272:3567-72. [PMID: 9013607 DOI: 10.1074/jbc.272.6.3567] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The rat insulin II gene enhancer, RIPE3 (-126 to -86), mediates beta-islet cell-specific activity in transfection assays. To investigate the in vivo activity of RIPE3, we generated mice carrying a transgene consisting of three copies of RIPE3 linked to a minimal chicken ovalbumin promoter in conjunction with sequences encoding the human growth hormone gene. 13 transgenic mice were obtained, 11 of which expressed the transgene, as determined by serum radioimmunoassay for human growth hormone. Expression of the transgene was assessed for cell specificity by immunocytochemistry. The pancreatic islet cells invariably stained for growth hormone, while the acinar and ductal cells did not. Staining of adjacent sections for insulin, glucagon, and somatostatin revealed that growth hormone was expressed in the beta-cell in all of the mice analyzed, but in some mice alpha-cells also contained growth hormone. RNase protection analysis revealed that the tissues that consistently express the transgene in these animals are the pancreas and brain. Developmental analysis revealed that the transgene was expressed in the pancreatic bud at embryonic day 9.5, corresponding to the temporal expression pattern of the insulin gene. These results signify that an element as small as 41 base pairs is capable of regulating pancreatic temporal and spatial gene expression in vivo.
Collapse
Affiliation(s)
- C M Stellrecht
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
46
|
Chen B, Lim RW. Physical and Functional Interactions between the Transcriptional Inhibitors Id3 and ITF-2b. J Biol Chem 1997. [DOI: 10.1074/jbc.272.4.2459] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|