1
|
Wu H, Jiang Y, He M, Xu X, Jiang H. Multiple primary tumors in a patient with non‑small‑cell lung cancer harboring mutations in ERCC6 and LYL1: A case report. Oncol Lett 2025; 29:63. [PMID: 39611066 PMCID: PMC11602829 DOI: 10.3892/ol.2024.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Certain types of primary tumor, particularly triple primary tumors with germline mutations, are rare. The present study reports a novel case of the metachronous occurrence of three pathological conditions, namely, non-small-cell lung cancer (NSCLC), early T cell precursor acute lymphoblastic leukemia (ETP-ALL) and SCLC. The present study used next-generation sequencing to aid diagnosis. A 44-year-old male patient presented to The First Affiliated Hospital Zhejiang University School of Medicine (Hangzhou, China) in September 2016.) with a nodule in the right lower lung during an annual checkup. Then, the patient was diagnosed with poorly differentiated NSCLC (T1N2M0; stage IIIA) and underwent surgical resection and biopsy. In September 2018, the patient was diagnosed with ETP-ALL with superficial lymphadenopathy. Germline testing demonstrated germ cell variants of ERCC excision repair 6, chromatin remodeling factor (ERCC6; c.1322A>G) and LYL1 basic helix-loop-helix family member (LYL1; c.587T>A). In November 2020, the patient was diagnosed with SCLC by bronchoscopic biopsy following allogeneic hematopoietic stem cell transplantation. The patient was diagnosed with lung cancer in October 2016 and the treatment were: surgery, chemotherapy, radiotherapy, and targeted therapy. In October 2018, the patient was diagnosed with ETP-ALL and the treatment were: chemotherapy and allogeneic hematopoietic stem cell transplantation. In November 2020, the patient was diagnosed with small cell lung cancer and received chemotherapy and radiotherapy. The patient died at September 2022. The present case highlighted the importance of monitoring germline mutations in patients and their families to facilitate early diagnosis, appropriate treatment and prognostic evolution in the face of rapid recurrent cancer.
Collapse
Affiliation(s)
- Haiying Wu
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Yuxia Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Mingxia He
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaofeng Xu
- Department of Hematology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Huifang Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
2
|
Heidari Horestani M, Schindler K, Baniahmad A. Functional circuits of LYL1 controlled by supraphysiological androgen in prostate cancer cells to regulate cell senescence. Cell Commun Signal 2024; 22:590. [PMID: 39668349 PMCID: PMC11636232 DOI: 10.1186/s12964-024-01970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a public health problem mostly reported in developed countries. The androgen receptor (AR) regulates the development and physiological function of normal prostate as well as the proliferation of cancerous prostate tissue. Treatment with supraphysiological androgen levels (SAL) is used in bipolar androgen therapy and inhibits PCa growth, suggesting SAL induces a tumor suppressive program. It was shown that SAL induces cellular senescence, in PCa cell lines, human tumor samples and in xenografted mouse tumor model. METHODS Transcriptome and ChIP-seq analysis, PCa spheroids, knockdown (KD), co-immunoprecipitation, qRT-PCR, immune detection, in situ histochemistry. RESULTS Here we show that LYL1 is upregulated by the clock gene BHLHE40 in both C4-2 and LNCaP cells and mediates SAL-induced cellular senescence. LYL1 is a transcriptional co-factor with oncogenic activity in leukemia. However, analysis of a large cohort of PCa patients shows that LYL1 expression is reduced during PCa development and reduced expression is significantly associated with reduced overall survival. SAL induces the expression of LYL1 through upregulation of BHLHE40. On the other hand, the KD of LYL1 enhances BHLHE40 expression via a negative feedback loop including p27kip1. Regulatory feedback loops were identified by rescue experiments. Functional analysis revealed that KD of BHLHE40 reduces whereas LYL1 KD enhances p27kip1 levels. The KD of p27kip1 suggests that this cell cycle inhibitor is a mediator of cellular senescence by the BHLHE40 - LYL1 regulatory loop. Interestingly, ChIP-seq data revealed recruitment of both AR and BHLHE40 to the LYL1 gene indicating that LYL1 is a novel direct target of both factors. Furthermore, RNA-seq data from C4-2 cells suggests that LYL1 and BHLHE40 encompass a large overlap of genes by SAL suggesting a co-regulatory activity controlled by androgens. In line with this, co-immunoprecipitation suggests LYL1 is in a complex with BHLHE40 and the AR. CONCLUSIONS Three novel feed-back loops and a novel AR- BHLHE40 / LYL1 -p27kip1 axis has been identified mediating cellular senescence in PCa cells.
Collapse
Affiliation(s)
| | - Katrin Schindler
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany.
| |
Collapse
|
3
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
4
|
LYL1 facilitates AETFC assembly and gene activation by recruiting CARM1 in t(8;21) AML. Proc Natl Acad Sci U S A 2022; 119:e2213718119. [PMID: 36215477 PMCID: PMC9586329 DOI: 10.1073/pnas.2213718119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factors (TFs) play critical roles in hematopoiesis, and their aberrant expression can lead to various types of leukemia. The t(8;21) leukemogenic fusion protein AML1-ETO (AE) is the most common fusion protein in acute myeloid leukemia and can enhance hematopoietic stem cell renewal while blocking differentiation. A key question in understanding AE-mediated leukemia is what determines the choice of AE to activate self-renewal genes or repress differentiation genes. Toward the resolution of this problem, we earlier showed that AE resides in the stable AETFC complex and that its components colocalize on up- or down-regulated target genes and are essential for leukemogenesis. In the current study, using biochemical and genomic approaches, we show that AE-containing complexes are heterogeneous, and that assembly of the larger AETFC (containing AE, CBFβ, HEB, E2A, LYL1, LMO2, and LDB1) requires LYL1. Furthermore, we provide strong evidence that the LYL1-containing AETFC preferentially binds to active enhancers and promotes AE-dependent gene activation. Moreover, we show that coactivator CARM1 interacts with AETFC and facilitates gene activation by AETFC. Collectively, this study describes a role of oncoprotein LYL1 in AETFC assembly and gene activation by recruiting CARM1 to chromatin for AML cell survival.
Collapse
|
5
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
7
|
Gould KA, Bresnick EH. Sequence determinants of DNA binding by the hematopoietic helix-loop-helix transcription factor TAL1: importance of sequences flanking the E-box core. Gene Expr 2018; 7:87-101. [PMID: 9699481 PMCID: PMC6190197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
TAL1 is a helix-loop-helix transcription factor that is essential for hematopoiesis. In vitro DNA binding site selection experiments have previously identified the preferred binding site for TAL1 heterodimers as AACAGATGGT. TAL1 homodimers do not bind DNA with significant affinity. A subset of other E-box sequences is also bound by TAL1 heterodimers. Here, we present an analysis of TAL1 heterodimer DNA binding specificity, using E-boxes derived from genomic clones, which were isolated by immunoadsorption of K562 erythroleukemia cell chromatin with a TAL1 antibody. We show that TAL1 heterodimer binding to a CAGATG E-box is strongly modulated by nucleotides flanking the E-box. A 10 base pair element consisting of the CAGATG E-box and two flanking nucleotides in both the 5' and 3' direction is sufficient for high-affinity binding. Certain mutations of nucleotides in either the 5' (-1 and -2) or 3' (+1 and +2) direction strongly inhibit binding. The importance of flanking nucleotides also exists in the context of nonpreferred E-boxes recognized by TAL1 heterodimers. Although there are no known target genes for TAL1, the regulatory regions of several genes involved in hematopoiesis contain the preferred E-box CAGATG. However, based on our results, the E-boxes in these potential target genes contain flanking sequences that would be expected to significantly reduce TAL1 heterodimer binding in vitro. Thus, additional stabilizing forces, such as protein-protein interactions between TAL1 heterodimers and accessory factors, may be required to confer high-affinity TAL1 heterodimer binding to such sequences.
Collapse
Affiliation(s)
- Karen A. Gould
- University of Wisconsin Medical School Department of Pharmacology, 1300 University Avenue, Madison, WI53706
| | - Emery H. Bresnick
- Address correspondence to Emery H. Bresnick. Tel: (608) 265-6446; Fax: (608) 262-1257; E-mail:
| |
Collapse
|
8
|
Lister JA, Baron MH. Induction of basic helix-loop-helix protein-containing complexes during erythroid differentiation. Gene Expr 2018; 7:25-38. [PMID: 9572395 PMCID: PMC6151944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The involvement of basic helix-loop-helix (bHLH) transcription factors in erythroid differentiation and development has been established by forced expression of the proteins TAL1 and Id1 in cultured cell lines and by targeted disruption of the mouse TAL1 gene. To better understand the mechanism by which bHLH proteins regulate erythropoiesis, we have investigated HLH protein-DNA interactions in mouse erythroleukemia (MEL) cells before and during chemically induced differentiation. Three bHLH (E-box) binding activities were found to be induced in nuclei from differentiating MEL cells. Using specific antisera, we have demonstrated that these complexes are dimers of TAL1 and ubiquitous E proteins. Similar complexes were detected in nuclear extracts from a human erythroid cell line, K562, and from mouse fetal liver. All three bHLH complexes were disrupted in vitro by Id1, a dominant-negative HLH protein that we and others have previously shown to antagonize MEL cell differentiation. During differentiation of an Id1-overexpressing MEL cell line, induction of a complex containing TAL1 and E2A was not only blocked but reduced below the levels seen in undifferentiating cells. These observations are consistent with the idea that TAL1 and Id1 have opposing effects on erythroid differentiation and that the level of TAL1/E2A heterodimer and/or another E protein-containing complex may influence the decision of a cell to terminally differentiate.
Collapse
Affiliation(s)
- James A. Lister
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138
| | - Margaret H. Baron
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138
- Address correspondence to Margaret H. Baron at her present address: The Mount Sinai School of Medicine, Box 1079, Research Building East, Rm 11-70B, 1425 Madison Avenue, New York, NY 10029. Tel: (212) 824-7420; Fax: (212) 996-1029; E-mail:
| |
Collapse
|
9
|
Layton Tovar CF, Mendieta Zerón H. Intracellular Signaling Pathways Involved in Childhood Acute Lymphoblastic Leukemia; Molecular Targets. Indian J Hematol Blood Transfus 2015; 32:141-53. [PMID: 27065575 DOI: 10.1007/s12288-015-0609-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 10/09/2015] [Indexed: 01/17/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by an uncontrolled proliferation of immature lymphoid cells. ALL is the most common hematologic malignancy in early childhood, and it reaches peak incidence between the ages of 2 and 3 years. The prognosis of ALL is associated with aberrant gene expression, in addition to the presence of numerical or structural chromosomal alterations, age, race, and immunophenotype. The Relapse rate with regard to pharmacological treatment rises in childhood; thus, the expression of biomarkers associated with the activation of cell signaling pathways is crucial to establish the disease prognosis. Intracellular pathways involved in ALL are diverse, including Janus kinase/Signal transducers and transcription activators (JAK-STAT), Phosphoinositide-3-kinase-protein kinase B (PI3K-AKT), Ras mitogen-activated protein kinase (Ras-MAPK), Glycogen synthase kinase-3β (GSK-3β), Nuclear factor-kappa beta (NF-κB), and Hypoxia-inducible transcription factor 1α (HIF-1α), among others. In this review, we present several therapeutic targets, intracellular pathways, and molecular markers that are being studied extensively at present.
Collapse
Affiliation(s)
- Cristian Fabián Layton Tovar
- Facultad de Medicina, Universidad Autónoma del Estado de México (UAEMex), Paseo Tollocan esq. Jesús Carranza, Col. Moderna de la Cruz, 50180 Toluca, Estado de Mexico Mexico
| | - Hugo Mendieta Zerón
- Facultad de Medicina, Universidad Autónoma del Estado de México (UAEMex), Paseo Tollocan esq. Jesús Carranza, Col. Moderna de la Cruz, 50180 Toluca, Estado de Mexico Mexico ; Asociación Científica Latina A.C. (ASCILA) and Ciprés Grupo Médico (CGM), Felipe Villanueva sur 1209, Col. Rancho Dolores, 50170 Toluca, Estado de Mexico Mexico
| |
Collapse
|
10
|
El-Menshawy N, Shahin D, Ghazi HF. Prognostic Significance of the Lymphoblastic Leukemia-Derived Sequence 1 (LYL1) GeneExpression in Egyptian Patients with AcuteMyeloid Leukemia. Turk J Haematol 2014; 31:128-35. [PMID: 25035669 PMCID: PMC4102039 DOI: 10.4274/tjh.2012.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/21/2012] [Indexed: 12/01/2022] Open
Abstract
Objective: Aberrant activation of transcription factor genes is the most frequent target of genetic alteration in lymphoid malignancies. The lymphoblastic leukemia-derived sequence 1 (LYL1) gene, which encodes a basic helix-loop helix, was first identified with human T-cell acute leukemia. Recent studies suggest its involvement in myeloid malignancies. We aimed to study the expression percent of oncogene LYL1 in primary and secondary high-risk myeloid leukemia and the impact on prognostic significance in those patients. Materials and Methods: Using quantitative real-time polymerase chain reaction for detection of LYL1 oncogenes, our study was carried out on 39 myeloid leukemia patients including de novo cases, myelodysplastic syndrome (MDS) with transformation, and chronic myelogenous leukemia (CML) in accelerated and blast crisis, in addition to 10 healthy individuals as the reference control. Results: LYL1 expression was increased at least 2 times compared to the controls. The highest expression of this transcription factor was observed in the MDS cases transformed to acute leukemia at 7.3±3.1, p=0.0011. LYL1 expression was found in 68.2%, 75%, and 77.8% of cases of acute myeloid leukemia, CML crisis, and MDS, respectively. Significant correlation of LYL1 overexpression with some subtypes of French-American-British classification was found. There was, for the first time, significant correlation between the blood count at diagnosis and LYL1 expression (p=0.023, 0.002, and 0.031 for white blood cells, hemoglobin, and platelets, respectively). The rate of complete remission was lower with very high levels of LYL1 expression and the risk of relapse increased with higher levels of LYL1 expression, suggesting an unfavorable prognosis for cases with enhanced expression. Conclusion: Overexpression of LYL1 is highly associated with acute myeloid leukemia and shows more expression in MDS with unfavorable prognosis in response to induction chemotherapy. These observations could signal a promising tool for a therapeutic target to basic helix–loop helix protein related to transcription factors, which may improve patient outcome in acute myeloid leukemia, MDS, and CML in blast crisis.
Collapse
Affiliation(s)
- Nadia El-Menshawy
- Mansoura University Faculty of Medicine, Department of Clinical Pathology, Mansoura, Egypt
| | - Doaa Shahin
- Mansoura University Faculty of Medicine, Department of Clinical Pathology, Mansoura, Egypt
| | - Hayam Fathi Ghazi
- Mansoura University Faculty of Medicine, Department of Oncology Medicine, Mansoura, Egypt
| |
Collapse
|
11
|
Lee EJ, Malik A, Pokharel S, Ahmad S, Mir BA, Cho KH, Kim J, Kong JC, Lee DM, Chung KY, Kim SH, Choi I. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis. PLoS One 2014; 9:e92447. [PMID: 24647404 PMCID: PMC3960249 DOI: 10.1371/journal.pone.0092447] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The expression of myogenic regulatory factors (MRFs) consisting of MyoD, Myf5, myogenin (MyoG) and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd) in primary bovine muscle satellite cells (MSCs). RESULTS About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC) and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L), Protein lyl-1 (LYL1), various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle development and reveal the vital regulatory role of MyoG in retaining muscle cell differentiation.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adeel Malik
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Smritee Pokharel
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bilal Ahmad Mir
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kyung Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jihoe Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Joon Chan Kong
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Dong-Mok Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Ki Yong Chung
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, Pyeongchang, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Astolfi A, Vendemini F, Urbini M, Melchionda F, Masetti R, Franzoni M, Libri V, Serravalle S, Togni M, Paone G, Montemurro L, Bressanin D, Chiarini F, Martelli AM, Tonelli R, Pession A. MYCN is a novel oncogenic target in pediatric T-cell acute lymphoblastic leukemia. Oncotarget 2014; 5:120-30. [PMID: 24334727 PMCID: PMC3960194 DOI: 10.18632/oncotarget.1337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/27/2013] [Indexed: 12/30/2022] Open
Abstract
MYCN is an oncogene frequently overexpressed in pediatric solid tumors whereas few evidences suggest his involvement in the pathogenesis of haematologic malignancies. Here we show that MYCN is overexpressed in a relevant proportion (40 to 50%) of adult and pediatric T-cell acute lymphoblastic leukemias (T-ALL). Focusing on pediatric T-ALL, MYCN-expressing samples were found almost exclusively in the TAL1-positive subgroup. Moreover, TAL1 knockdown in T-ALL cell lines resulted in a reduction of MYCN expression, and TAL1 directly binds to MYCN promoter region, suggesting that TAL1 pathway activation could sustain the up-regulation of MYCN. The role of MYCN in T-ALL was investigated by peptide nucleic acid (PNA-MYCN)-mediated transcriptional silencing of MYCN and by siRNAs. MYCN knockdown in T-ALL cell lines resulted in a reduction of cell viability, up to 50%, while no effect was elicited with a mismatch PNA. The inhibitory effect of PNA-MYCN on cell viability was due to a significant increase in apoptosis. PNA-MYCN treatment in pediatric T-ALL samples reduced cell viability of leukemic cells from patients with high MYCN expression, while no effect was obtained in MYCN-negative blast cells. These results showed that MYCN is frequently overexpressed in pediatric T-ALL and suggested his role as a candidate for molecularly-directed therapies.
Collapse
Affiliation(s)
- Annalisa Astolfi
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Francesca Vendemini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Milena Urbini
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Monica Franzoni
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Virginia Libri
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Salvatore Serravalle
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Marco Togni
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giuseppina Paone
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Luca Montemurro
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council-IOR, Bologna, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Pession
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
San-Marina S, Han Y, Liu J, Minden MD. Suspected leukemia oncoproteins CREB1 and LYL1 regulate Op18/STMN1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1164-72. [PMID: 23000483 DOI: 10.1016/j.bbagrm.2012.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/27/2022]
Abstract
Stathmin (STMN1) is a microtubule destabilizing protein with a key role in cell cycle progression and cell migration that is up-regulated in several cancers and may contribute to the malignant phenotype. However, the factors that regulate its expression are not well understood. Loss as well as gain-of-function p53 mutations up-regulate STMN1 and in acute myelogenous leukemia where p53 is predominantly wild-type, STMN1 is also over-expressed. Here we show regulatory control of STMN1 expression by the leucine zipper transcription factor (TF) CREB1 and the basic helix-loop-helix TF LYL1. By ChIP-chip experiments we demonstrate in vivo the presence of LYL1 and CREB1 in close proximity on the STMN1 promoter and using promoter assays we reveal co-regulation of STMN1 by CREB1 and LYL1. By contrast, TAL1, another suspected oncoprotein in leukemia and close relative of LYL1, exerts no regulatory effect on the STMN1 promoter. NLI, LMO2 and GATA2 are previously described co-activators of Tal1/Lyl1-E47 transcriptional complexes and potentiate Lyl1 activation of the STMN1 promoter while having no effect on TAL1 transactivation. Promoter mutations that abrogate CREB1 proximal binding or mutations of the DNA-binding domain of CREB1 abolish LYL1 transcriptional activation. These results show that CRE and Ebox sites function as coordinated units and support previous evidence of joint CREB1-and LYL1 transcription events activating an aberrant subset of promoters in leukemia. CREB1 or LYL1 shRNA knock-down down-regulate STMN1 expression. Because down-regulation of STMN1 has been shown to have anti-proliferative effects, while CREB1 and LYL1 are suspected oncoproteins, interference with CREB1-LYL1 interactions may complement standard chemotherapy and yield additional beneficial effects.
Collapse
Affiliation(s)
- Serban San-Marina
- University Health Network, Princess Margaret Hospital, Toronto ON, Canada.
| | | | | | | |
Collapse
|
14
|
The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors. Nat Immunol 2012; 13:761-9. [PMID: 22772404 DOI: 10.1038/ni.2365] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 06/04/2012] [Indexed: 01/19/2023]
Abstract
Thymopoiesis depends on the recruitment and expansion of bone marrow-derived progenitor populations; tight regulation of these processes is required for maintenance of the homeostasis of the T lineage. Lyl-1, a transcription factor that regulates hematopoietic progenitors, is expressed in thymocyte progenitors until T cell commitment. Here we demonstrate a requirement for Lyl-1 in lymphoid specification and the maintenance of early T lineage progenitors (ETPs). Lyl-1 deficiency resulted in profound defects in the generation of lymphoid-primed multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs) and ETPs. Lyl-1-deficient ETPs and thymocyte progenitors at the CD4(-)CD8(-) double-negative 2 (DN2) stage showed more apoptosis, blocked differentiation and impaired population expansion. We identified Gfi1 as a critical transcriptional target of Lyl-1-mediated lymphopoiesis of T cells. Thus, Lyl-1 is a pivotal component of a transcriptional program that controls the lymphoid specification and maintenance of ETPs.
Collapse
|
15
|
Angiopoietin-2 is a direct transcriptional target of TAL1, LYL1 and LMO2 in endothelial cells. PLoS One 2012; 7:e40484. [PMID: 22792348 PMCID: PMC3391236 DOI: 10.1371/journal.pone.0040484] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
The two related basic helix–loop-helix, TAL1 and LYL1, and their cofactor LIM-only-2 protein (LMO2) are present in blood and endothelial cells. While their crucial role in early hematopoiesis is well established, their function in endothelial cells and especially in angiogenesis is less understood. Here, we identified ANGIOPOIETIN-2 (ANG-2), which encodes a major regulator of angiogenesis, as a direct transcriptional target of TAL1, LYL1 and LMO2. Knockdown of any of the three transcription factors in human blood and lymphatic endothelial cells caused ANG-2 mRNA and protein down-regulation. Transient transfections showed that the full activity of the ANG-2 promoter required the integrity of a highly conserved Ebox-GATA composite element. Accordingly, chromatin immunoprecipitation assays demonstrated that TAL1, LYL1, LMO2 and GATA2 occupied this region of ANG-2 promoter in human endothelial cells. Furthermore, we showed that LMO2 played a central role in assembling TAL1-E47, LYL1-LYL1 or/and LYL1-TAL1 dimers with GATA2. The resulting complexes were able to activate endogenous ANG-2 expression in endothelial cells as well as in non-endothelial cells. Finally, we showed that ANG-2 gene activation during angiogenesis concurred with the up-regulation of TAL1 and LMO2. Altogether, we identified ANG-2 as a bona fide target gene of LMO2-complexes with TAL1 and/or LYL1, highlighting a new function of the three hematopoietic factors in the endothelial lineage.
Collapse
|
16
|
Abstract
LMO2 regulates gene expression by facilitating the formation of multipartite DNA-binding complexes. In B cells, LMO2 is specifically up-regulated in the germinal center (GC) and is expressed in GC-derived non-Hodgkin lymphomas. LMO2 is one of the most powerful prognostic indicators in diffuse large B-cell (DLBCL) patients. However, its function in GC B cells and DLBCL is currently unknown. In this study, we characterized the LMO2 transcriptome and transcriptional complex in DLBCL cells. LMO2 regulates genes implicated in kinetochore function, chromosome assembly, and mitosis. Overexpression of LMO2 in DLBCL cell lines results in centrosome amplification. In DLBCL, the LMO2 complex contains some of the traditional partners, such as LDB1, E2A, HEB, Lyl1, ETO2, and SP1, but not TAL1 or GATA proteins. Furthermore, we identified novel LMO2 interacting partners: ELK1, nuclear factor of activated T-cells (NFATc1), and lymphoid enhancer-binding factor1 (LEF1) proteins. Reporter assays revealed that LMO2 increases transcriptional activity of NFATc1 and decreases transcriptional activity of LEF1 proteins. Overall, our studies identified a novel LMO2 transcriptome and interactome in DLBCL and provides a platform for future elucidation of LMO2 function in GC B cells and DLBCL pathogenesis.
Collapse
|
17
|
Souroullas GP, Goodell MA. A new allele of Lyl1 confirms its important role in hematopoietic stem cell function. Genesis 2011; 49:441-8. [PMID: 21387538 DOI: 10.1002/dvg.20743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/20/2010] [Accepted: 02/19/2011] [Indexed: 11/12/2022]
Abstract
Lyl1 codes for a bHLH protein that is an important regulator of hematopoietic stem cell function. An existing mutant allele of Lyl1 features a lacZ gene inserted in-frame into the fourth exon, leaving behind the N-terminus and the DNA-binding basic region, resulting in a translated chimeric protein. Here, we have generated a null allele, which allowed us to examine residual function of the N-terminus in the absence of a bHLH region. The new Lyl1-/- mouse model exhibited a reduced ability to generate lymphoid lineages and a somewhat more severe hematopoietic repopulation defect when transplanting purified hematopoietic stem cells. Our data show that in the absence of the HLH but presence of the N-terminus, residual function of the Lyl1 is detectable but relatively minor. The new model may be of use for studies of Lyl1 in which a null allele is required, or for which presence of the LacZ may complicate the combined use of additional mouse models bearing the lacZ marker.
Collapse
Affiliation(s)
- George P Souroullas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
18
|
Abstract
Lymphopoiesis generates mature B, T, and NK lymphocytes from hematopoietic stem cells via a series of increasingly restricted developmental intermediates. The transcriptional networks that regulate these fate choices are composed of both common and lineage-specific components, which combine to create a cellular context that informs the developmental response to external signals. E proteins are an important factor during lymphopoiesis, and E2A in particular is required for normal T- and B-cell development. Although the other E proteins, HEB and E2-2, are expressed during lymphopoiesis and can compensate for some of E2A's activity, E2A proteins have non-redundant functions during early T-cell development and at multiple checkpoints throughout B lymphopoiesis. More recently, a role for E2A has been demonstrated in the generation of lymphoid-primed multipotent progenitors and shown to favor their specification toward lymphoid over myeloid lineages. This review summarizes both our current understanding of the wide-ranging functions of E proteins during the development of adaptive lymphocytes and the novel functions of E2A in orchestrating a lymphoid-biased cellular context in early multipotent progenitors.
Collapse
Affiliation(s)
- Renée F de Pooter
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
19
|
Capron C, Lacout C, Lécluse Y, Wagner-Ballon O, Kaushik AL, Cramer-Bordé E, Sablitzky F, Duménil D, Vainchenker W. LYL-1 deficiency induces a stress erythropoiesis. Exp Hematol 2011; 39:629-42. [PMID: 21420467 DOI: 10.1016/j.exphem.2011.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/02/2011] [Accepted: 02/26/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE LYL-1 is a transcription factor containing a basic helix-loop-helix motif closely related to SCL/TAL-1, a regulator of erythroid differentiation. Because LYL-1 is expressed in erythroid cell populations, we addressed its role in erythropoiesis using knockin mice. MATERIALS AND METHODS Erythropoiesis of LYL-1(-/-) mice was studied by progenitor assays, flow cytometry, reconstitution assays, and functional tests. Expression of LYL-1, SCL, and GATA-1 was assessed at messenger RNA level by quantitative reverse transcription polymerase chain reaction. RESULTS LYL-1(-/-) mice displayed decreased erythropoiesis with a partial arrest in differentiation, and enhanced apoptosis associated with decreased Bcl-x(L) expression in the bone marrow (BM). In addition, LYL-1(-/-) BM cells were severely impaired in their abilities to reconstitute the erythroid lineage in competitive assays, suggesting a cell autonomous abnormality of erythropoiesis. In parallel, erythroid progenitor and precursor cells were significantly increased in the spleen of LYL-1(-/-) mice. Expression of LYL-1 was differentially regulated during maturation of erythroblasts and strikingly different between spleen- and BM-derived erythroblasts. Expression of LYL-1 decreased during erythroid differentiation in the spleen whereas it increased in the BM to reach the same level in mature erythroblasts as in the soleen. Loss of Lyl-1 expression was accompanied with an increase of SCL/TAL-1 and GATA-1 transcripts in spleen but not in BM-derived erythroblasts. Furthermore, phenylhydrazine-induced stress erythropoiesis was elevated in LYL-1(-/-) mice and mutant BM and spleen erythroid progenitors were hypersensitive to erythropoietin. CONCLUSIONS Taken together, these results suggest that LYL-1 plays a definite role in erythropoiesis, albeit with different effects in BM specifically regulating basal erythropoiesis, and spleen, controlling stress-induced erythropoiesis.
Collapse
Affiliation(s)
- Claude Capron
- INSERM U1009, IFR 54, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lukov GL, Goodell MA. LYL1 degradation by the proteasome is directed by a N-terminal PEST rich site in a phosphorylation-independent manner. PLoS One 2010; 5. [PMID: 20844761 PMCID: PMC2937031 DOI: 10.1371/journal.pone.0012692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/08/2010] [Indexed: 11/18/2022] Open
Abstract
Background The Lymphoblastic leukemia 1 (LYL1) gene is a proto-oncogenic transcription factor found upregulated in patients with T-cell acute lymphoblastic leukemia (T-cell ALL). Initially, the upregulation was described to be as a result of a translocation. However, further studies revealed that transcriptional upregulation of LYL1could also occur without translocations. In addition, post-translational mechanisms, such as protein degradation could influence LYL1 expression as well. Methodology/Principal Findings In this study, we considered possible post-translational regulation of Lyl1, and investigated fundamental mechanisms governing LYL1 degradation in cell-based culture assays. We identify a PEST sequence motif located in the N-terminus of LYL1, which determines the efficiency of LYL1 degradation by the proteasome. The absence of the PEST degradation site leads to accumulation or upregulation of LYL1. We also show that LYL1 is phosphorylated by MAPK at S36, and determined that proteasomal degradation of LYL1 occurs in a phosphorylation-independent manner. Conclusions/Significance Understanding LYL1 degradation is a step forward not only towards deciphering the normal function and regulation of LYL1, but could suggest post-translational mechanisms for upregulation of LYL1 that may contribute to its oncogenic role.
Collapse
Affiliation(s)
- Georgi L. Lukov
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Margaret A. Goodell
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Lukov GL, Rossi L, Souroullas GP, Mao R, Goodell MA. The expansion of T-cells and hematopoietic progenitors as a result of overexpression of the lymphoblastic leukemia gene, Lyl1 can support leukemia formation. Leuk Res 2010; 35:405-12. [PMID: 20705338 DOI: 10.1016/j.leukres.2010.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 12/31/2022]
Abstract
This study investigates the function of the lymphoblastic leukemia gene, Lyl1 in the hematopoietic system and its oncogenic potential in the development of leukemia. Overexpression of Lyl1 in mouse bone marrow cells caused T-cell increase in the peripheral blood and expansion of the hematopoietic progenitors in culture and in the bone marrow. These observations were the result of increased proliferation and suppressed apoptosis of the progenitor cells caused by the Lyl1-overexpression. Our studies present substantial evidence supporting the secondary, pro-leukemic effect of Lyl1 in early hematopoietic progenitors with the potential to cause expansion of malignant cells with a stem/early progenitor-like phenotype.
Collapse
Affiliation(s)
- Georgi L Lukov
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
22
|
Souroullas GP, Salmon JM, Sablitzky F, Curtis DJ, Goodell MA. Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival. Cell Stem Cell 2009; 4:180-6. [PMID: 19200805 DOI: 10.1016/j.stem.2009.01.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/15/2008] [Accepted: 01/09/2009] [Indexed: 12/01/2022]
Abstract
Scl and Lyl1 encode two related basic-helix-loop-helix transcription factors implicated in T cell acute lymphoblastic leukemia. Previous studies showed that Scl is essential for embryonic and adult erythropoiesis, while Lyl1 is important for B cell development. Single-knockout mice have not revealed an essential function for Scl or Lyl1 in adult hematopoietic stem cells (HSCs). To determine if maintenance of HSCs in single-knockout mice is due to functional redundancy, we generated Lyl1;Scl-conditional double-knockout mice. Here, we report a striking genetic interaction between the two genes, with a clear dose dependence for the presence of Scl or Lyl1 alleles for HSC function. Bone marrow repopulation assays and analyses demonstrated rapid loss of hematopoietic progenitors due to apoptosis. The function of HSCs could be rescued by a single allele of Lyl1 but not Scl. These results show that expression of at least one of these factors is essential for maintenance of adult HSC function.
Collapse
Affiliation(s)
- George P Souroullas
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
23
|
San-Marina S, Han Y, Suarez Saiz F, Trus MR, Minden MD. Lyl1 interacts with CREB1 and alters expression of CREB1 target genes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:503-17. [PMID: 18160048 DOI: 10.1016/j.bbamcr.2007.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 11/26/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor family contains key regulators of cellular proliferation and differentiation as well as the suspected oncoproteins Tal1 and Lyl1. Tal1 and Lyl1 are aberrantly over-expressed in leukemia as a result of chromosomal translocations, or other genetic or epigenetic events. Protein-protein and protein-DNA interactions described so far are mediated by their highly homologous bHLH domains, while little is known about the function of other protein domains. Hetero-dimers of Tal1 and Lyl1 with E2A or HEB, decrease the rate of E2A or HEB homo-dimer formation and are poor activators of transcription. In vitro, these hetero-dimers also recognize different binding sites from homo-dimer complexes, which may also lead to inappropriate activation or repression of promoters in vivo. Both mechanisms are thought to contribute to the oncogenic potential of Tal1 and Lyl1. Despite their bHLH structural similarity, accumulating evidence suggests that Tal1 and Lyl1 target different genes. This raises the possibility that domains flanking the bHLH region, which are distinct in the two proteins, may participate in target recognition. Here we report that CREB1, a widely-expressed transcription factor and a suspected oncogene in acute myelogenous leukemia (AML) was identified as a binding partner for Lyl1 but not for Tal1. The interaction between Lyl1 and CREB1 involves the N terminal domain of Lyl1 and the Q2 and KID domains of CREB1. The histone acetyl-transferases p300 and CBP are recruited to these complexes in the absence of CREB1 Ser 133 phosphorylation. In the Id1 promoter, Lyl1 complexes direct transcriptional activation. We also found that in addition to Id1, over-expressed Lyl1 can activate other CREB1 target promoters such as Id3, cyclin D3, Brca1, Btg2 and Egr1. Moreover, approximately 50% of all gene promoters identified by ChIP-chip experiments were jointly occupied by CREB1 and Lyl1, further strengthening the association of Lyl1 with Cre binding sites. Given the newly recognized importance of CREB1 in AML, the ability of Lyl1 to modulate promoter responses to CREB1 suggests that it plays a role in the malignant phenotype by occupying different promoters than Tal1.
Collapse
Affiliation(s)
- Serban San-Marina
- Ontario Cancer Institute/Princess Margaret Hospital, 610 University Avenue 9-111, Toronto, Ontario, Canada M5G 2M9
| | | | | | | | | |
Collapse
|
24
|
Zhong Y, Jiang L, Hiai H, Toyokuni S, Yamada Y. Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice. Oncogene 2007; 26:6937-47. [PMID: 17486074 DOI: 10.1038/sj.onc.1210494] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LYL1, a member of the class II basic helix-loop-helix transcription factors, is aberrantly expressed in a fraction of human T-cell acute lymphoblastic leukemia. Here, we generated transgenic mice ubiquitously overexpressing LYL1 using a construct expressing full-length cDNA driven by a human elongation factor 1alpha promoter. Four independent lines exhibiting high LYL1 expression were established. Of these transgenic mice, 96% displayed loss of hair with a short kinked tail. Furthermore, 30% of them developed malignant lymphoma, with an average latent period of 352 days. In these mice, histological examination revealed tumor cell infiltration in multiple organs and immunohistochemical analysis showed that the infiltrated tumor cells were either CD3 or CD45R/B220-positive; fluorescence-activated cell sorter analysis indicated that each tumor consisted either of mainly CD4, CD8 double-positive T cells or mature B cells; the clonality of LYL1-induced lymphoma was confirmed by T-cell receptor rearrangement and immunoglobulin heavy-chain gene rearrangement analyses. Mammalian two-hybrid analysis and luciferase assay suggested that excess LYL1 blocked the dimerization of E2A and thus inhibited the regulatory activity of E2A on the CD4 promoter. Reverse transcription-polymerase chain reaction results showed that the expression of certain E2A/HEB target genes was downregulated. Taken together, our results provide direct evidence that aberrant expression of LYL1 plays a role in lymphomagenesis.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Dimerization
- Gene Rearrangement, T-Lymphocyte
- Helix-Loop-Helix Motifs
- Humans
- Immunophenotyping
- Immunoprecipitation
- Luciferases/metabolism
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Transgenic
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Cell Acute Lymphocytic Leukemia Protein 1
- Two-Hybrid System Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Y Zhong
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
25
|
Boos MD, Yokota Y, Eberl G, Kee BL. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. ACTA ACUST UNITED AC 2007; 204:1119-30. [PMID: 17452521 PMCID: PMC2118569 DOI: 10.1084/jem.20061959] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Id2 transcriptional repressor is essential for development of natural killer (NK) cells, lymphoid tissue–inducing (LTi) cells, and secondary lymphoid tissues. Id2 was proposed to regulate NK and LTi lineage specification from multipotent progenitors through suppression of E proteins. We report that NK cell progenitors are not reduced in the bone marrow (BM) of Id2−/− mice, demonstrating that Id2 is not essential for NK lineage specification. Rather, Id2 is required for development of mature (m) NK cells. We define the mechanism by which Id2 functions by showing that a reduction in E protein activity, through deletion of E2A, overcomes the need for Id2 in development of BM mNK cells, LTi cells, and secondary lymphoid tissues. However, mNK cells are not restored in the blood or spleen of Id2−/−E2A−/− mice, suggesting a role for Id2 in suppression of alternative E proteins after maturation. Interestingly, the few splenic mNK cells in Id2−/− and Id2−/−E2A−/− mice have characteristics of thymus-derived NK cells, which develop in the absence of Id2, implying a differential requirement for Id2 in BM and thymic mNK development. Our findings redefine the essential functions of Id2 in lymphoid development and provide insight into the dynamic regulation of E and Id proteins during this process.
Collapse
Affiliation(s)
- Markus D Boos
- Committee on Immunology, University of Chicago, Chicago, IL 60657, USA
| | | | | | | |
Collapse
|
26
|
Capron C, Lécluse Y, Kaushik AL, Foudi A, Lacout C, Sekkai D, Godin I, Albagli O, Poullion I, Svinartchouk F, Schanze E, Vainchenker W, Sablitzky F, Bennaceur-Griscelli A, Duménil D. The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 2006; 107:4678-86. [PMID: 16514064 DOI: 10.1182/blood-2005-08-3145] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractHematopoietic stem cells (HSCs) arise, self-renew, or give rise to all hematopoietic lineages through the effects of transcription factors activated by signaling cascades. Lyl-1 encodes a transcription factor containing a basic helix-hoop-helix (bHLH) motif closely related to scl/tal, which controls numerous decisions in embryonic and adult hematopoiesis. We report here that Lyl-1 null mice are viable and display normal blood cell counts, except for a reduced number of B cells resulting from a partial block after the pro-B stage. Nevertheless, the deletion of Lyl-1 results in a diminution in the frequency of immature progenitors (Lin–, CD34–, sca-1+, c-kit+ [LSK], and LSK-side population [LSK-SP]) and in S12 colony-forming unit (CFU-S12) and long-term culture-initiating cell (LTC-IC) content in embryonic day 14 fetal liver (E14 FL) and adult bone marrow (BM). More important, Lyl-1–/– E14 FL cells and BM are severely impaired in their competitive reconstituting abilities, especially with respect to B and T lineage reconstitution. Thus, ablation of Lyl-1 quantitatively and functionally affects HSCs, a cell population that transcribes Lyl-1 more actively than their differentiated progenies. Our results demonstrate for the first time that Lyl-1 functions are important for HSC properties and B-cell differentiation and that they are largely distinct from scl functions.
Collapse
Affiliation(s)
- Claude Capron
- Institut National de la Santé et de la Recherche Médicicale (INSERM) U362, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Reschly EJ, Spaulding C, Vilimas T, Graham WV, Brumbaugh RL, Aifantis I, Pear WS, Kee BL. Notch1 promotes survival of E2A-deficient T cell lymphomas through pre-T cell receptor-dependent and -independent mechanisms. Blood 2006; 107:4115-21. [PMID: 16449526 PMCID: PMC1895288 DOI: 10.1182/blood-2005-09-3551] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 01/13/2006] [Indexed: 11/20/2022] Open
Abstract
Loss of E2A transcription factor activity or activation of the intracellular form of Notch1 (ICN) leads to the development of leukemia or lymphoma in humans or mice, respectively. Current models propose that ICN functions by suppressing E2A through a pre-T cell receptor (TCR)-dependent mechanism. Here we show that lymphomas arising in E2A(-/-) mice require the activation of Notch1 for their survival and have accumulated mutations in, or near, the Notch1 PEST domain, resulting in increased stability and signaling. In contrast, lymphomas arising in p53(-/-) mice show the activation of Notch1, but no mutations were identified in ICN. The requirement for Notch1 signaling in E2A(-/-) lymphomas cannot be overcome by ectopic expression of pTalpha; however, pTalpha is required for optimal survival and expansion of these cells. Our findings indicate that the activation of Notch1 is an important "second hit" for the transformation of E2A(-/-) T cell lymphomas and that Notch1 promotes survival through pre-TCR-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Erica J Reschly
- Department of Pathology, MC1089, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hall MA, Slater NJ, Begley CG, Salmon JM, Van Stekelenburg LJ, McCormack MP, Jane SM, Curtis DJ. Functional but abnormal adult erythropoiesis in the absence of the stem cell leukemia gene. Mol Cell Biol 2005; 25:6355-62. [PMID: 16024775 PMCID: PMC1190361 DOI: 10.1128/mcb.25.15.6355-6362.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated that the stem cell leukemia gene (SCL) is essential for both embryonic and adult erythropoiesis. We have examined erythropoiesis in conditional SCL knockout mice for at least 6 months after loss of SCL function and report that SCL was important but not essential for the generation of mature red blood cells. Although SCL-deleted mice were mildly anemic with increased splenic erythropoiesis, they responded appropriately to endogenous erythropoietin and hemolytic stress, a measure of late erythroid progenitors. However, SCL was more important for the proliferation of early erythroid progenitors because the predominant defects in SCL-deleted erythropoiesis were loss of in vitro growth of the burst-forming erythroid unit and an in vivo growth defect revealed by transplant assays. With respect to erythroid maturation, SCL-deleted proerythroblasts could generate more mature erythroblasts and circulating red blood cells. However, SCL was required for normal expression of TER119, one of the few proposed target genes of SCL. The unexpected finding that SCL-independent erythropoiesis can proceed in the adult suggests that alternate factors can replace the essential functions of SCL and raises the possibility that similar mechanisms also explain the relatively minor defects previously observed in SCL-null hematopoietic stem cells.
Collapse
Affiliation(s)
- Mark A Hall
- Rotary Bone Marrow Research Laboratories, P.O. Royal Melbourne Hospital, Grattan St., Parkville, Melbourne 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Meng YS, Khoury H, Dick JE, Minden MD. Oncogenic potential of the transcription factor LYL1 in acute myeloblastic leukemia. Leukemia 2005; 19:1941-7. [PMID: 16094422 DOI: 10.1038/sj.leu.2403836] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The LYL1 gene encodes a basic helix-loop-helix transcription factor involved in T-cell acute lymphoblastic leukemia. Using real-time quantitative RT-PCR assay, we found that the expression of LYL1 was at higher levels in the majority cases of acute myeloblastic leukemia (AML) or myelodysplastic syndrome when compared to normal bone marrow. Our study also showed that LYL1 was highly expressed in most AML cell lines and in CD34+ AML cells. To determine whether LYL1 had an affect on the phenotype and behavior of myeloid cells, we introduced full-length LYL1 cDNA into K562 cells using electroporation and U937 cells with retroviral infection. Both of the derivative cell lines with overexpression of LYL1 had an increased growth rate and clonogenecity. Forced expression of LYL1 in K562 cells enhanced spontaneous and hemin-induced erythroid differentiation but blocked spontaneous as well as PMA-induced megakaryocytic differentiation. Overexpression of LYL1 in U937 cells blocked all-trans retinoic acid-induced monocytic differentiation. The LYL1-transfected U937 cells were also more resistant to the cytotoxic drug cytarabine. These results demonstrate that LYL1 may play a role in early hematopoiesis and may be a potential oncogenic factor in AML.
Collapse
Affiliation(s)
- Y-S Meng
- Department of Cellular and Molecular Biology, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, Canada
| | | | | | | |
Collapse
|
30
|
Jain A, Ma CA, Lopez-Granados E, Means G, Brady W, Orange JS, Liu S, Holland S, Derry JMJ. Specific NEMO mutations impair CD40-mediated c-Rel activation and B cell terminal differentiation. J Clin Invest 2005; 114:1593-602. [PMID: 15578091 PMCID: PMC529497 DOI: 10.1172/jci21345] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypomorphic mutations in the zinc finger domain of NF-kappaB essential modulator (NEMO) cause X-linked hyper-IgM syndrome with ectodermal dysplasia (XHM-ED). Here we report that patient B cells are characterized by an absence of Ig somatic hypermutation (SHM) and defective class switch recombination (CSR) despite normal induction of activation-induced cytidine deaminase (AID) and Iepsilon-Cepsilon transcripts. This indicates that AID expression alone is insufficient to support neutralizing antibody responses. Furthermore, we show that patient B cells stimulated with CD40 ligand are impaired in both p65 and c-Rel activation, and whereas addition of IL-4 can enhance p65 activity, c-Rel activity remains deficient. This suggests that these NF-kappaB components have different activation requirements and that IL-4 can augment some but not all NEMO-dependent NF-kappaB signaling. Finally, using microarray analysis of patient B cells we identified downstream effects of impaired NF-kappaB activation and candidate factors that may be necessary for CSR and SHM in B cells.
Collapse
Affiliation(s)
- Ashish Jain
- Laboratory of Host Defense, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Asnafi V, Beldjord K, Libura M, Villarese P, Millien C, Ballerini P, Kuhlein E, Lafage-Pochitaloff M, Delabesse E, Bernard O, Macintyre E. Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood 2004; 104:4173-80. [PMID: 15054041 DOI: 10.1182/blood-2003-11-3944] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Postnatal thymic involution occurs progressively throughout the first 3 decades of life. It predominantly affects T-cell receptor (TCR) alphabeta-lineage precursors, with a consequent proportional increase in multipotent thymic precursors. We show that T-acute lymphoblastic leukemias (T-ALLs) demonstrate a similar shift with age from predominantly TCR expressing to an immature (IM0/delta/gamma) stage of maturation arrest. Half demonstrate HOX11, HOX11L2, SIL-TAL1, or CALM-AF10 deregulation, with each being associated with a specific, age-independent stage of maturation arrest. HOX11 and SIL-TAL represent alphabeta-lineage oncogenes, whereas HOX11L2 expression identifies an intermediate alphabeta/gammadelta-lineage stage of maturation arrest. In keeping with preferential alphabeta-lineage involution, the incidence of SIL-TAL1 and HOX11L2 deregulation decreased with age. In contrast, HOX11 deregulation became more frequent, suggesting longer latency. TAL1/LMO1 deregulation is more frequent in alphabeta-lineage T-ALL, when it is predominantly due to SIL-TAL1 rearrangements in children but to currently unknown mechanisms in adolescents and adults. LMO2 was more frequently coexpressed with LYL1, predominantly in IM0/delta/gamma adult cases, than with TAL1. These age-related changes in phenotype and oncogenic pathways probably reflect progressive changes in the thymic population at risk of malignant transformation.
Collapse
Affiliation(s)
- Vahid Asnafi
- Necker-Enfants-Malades and Trousseau, Assistance Publique-Hopitaux de Paris, INSERM EMIU210 and Université Paris V, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ, Look AT. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102:262-8. [PMID: 12637319 DOI: 10.1182/blood-2002-10-3221] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rearrangements of the MLL locus, located on human chromosome 11q23, are frequent in both infant and therapy-related leukemias. Gene expression analysis of MLL-rearranged B-precursor acute lymphoblastic leukemias (MLL B-ALLs) has identified these cases as a unique subtype of leukemia, characterized by the expression of genes associated with both lymphoid and myeloid hematopoietic lineages. Here we show that MLL fusions also generate a distinct genetic subtype of T-lineage ALL (MLL T-ALL), in which leukemic cells are characterized by an early arrest in thymocyte differentiation, with suggestive evidence of commitment to the gammadelta lineage. Interestingly, multiple genes linked to cell proliferation (eg, PCNA, MYC, CDK2, and POLA) were down-regulated in MLL-fusion samples, relative to those transformed by other T-ALL oncogenes (P <.000 001, Fisher exact test). Overall, MLL T-ALL cases consistently demonstrated increased levels of expression of a subset of major HOX genes--HOXA9, HOXA10, and HOXC6--and the MEIS1 HOX coregulator (P <.008, one-sided Wilcoxon test), a pattern of gene expression that was reiterated in MLL B-ALLs. However, expression of myeloid lineage genes, previously reported in MLL B-ALLs, was not identified in T-lineage cases with this abnormality, suggesting that myeloid gene dysregulation is dispensable in leukemic transformation mediated by MLL fusion proteins. Our findings implicate dysregulation of HOX gene family members as a dominant mechanism of leukemic transformation induced by chimeric MLL oncogenes.
Collapse
Affiliation(s)
- Adolfo A Ferrando
- Department of Pediatric Oncology, Mayer-630, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Engel I, Murre C. Disruption of pre-TCR expression accelerates lymphomagenesis in E2A-deficient mice. Proc Natl Acad Sci U S A 2002; 99:11322-7. [PMID: 12172006 PMCID: PMC123255 DOI: 10.1073/pnas.162373999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The helix-loop-helix proteins E47 and E12, which are encoded by the E2A gene, regulate several stages of T cell development. In addition, mice deficient for E2A are highly susceptible to thymic lymphoma. Here we report that the development of lymphoma in E2A-deficient mice did not require pre- and recombinase-activating gene expression. Rather, we found that, whereas illegitimate DNA rearrangement did not play a major role in the development of these lymphomas, defects that prevented pre-T cell antigen receptor expression tended to accelerate lymphomagenesis in E2A-deficient mice. These data and previous observations also provide insight into the role of Notch in lymphoma development. Specifically, we propose that Notch activation indirectly modulates E2A activity through induction of pre-Talpha expression, ultimately leading to the development of lymphoma.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Genes, T-Cell Receptor beta
- Genotype
- Homeodomain Proteins/genetics
- Homozygote
- Lymphatic Metastasis/immunology
- Lymphoma/genetics
- Lymphoma/immunology
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Thymus Neoplasms/genetics
- Thymus Neoplasms/immunology
- Transcription Factors/deficiency
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Isaac Engel
- Division of Biology, University of California at San Diego, La Jolla, CA 92093-0366, USA
| | | |
Collapse
|
34
|
Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR, Look AT. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1:75-87. [PMID: 12086890 DOI: 10.1016/s1535-6108(02)00018-1] [Citation(s) in RCA: 808] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human T cell leukemias can arise from oncogenes activated by specific chromosomal translocations involving the T cell receptor genes. Here we show that five different T cell oncogenes (HOX11, TAL1, LYL1, LMO1, and LMO2) are often aberrantly expressed in the absence of chromosomal abnormalities. Using oligonucleotide microarrays, we identified several gene expression signatures that were indicative of leukemic arrest at specific stages of normal thymocyte development: LYL1+ signature (pro-T), HOX11+ (early cortical thymocyte), and TAL1+ (late cortical thymocyte). Hierarchical clustering analysis of gene expression signatures grouped samples according to their shared oncogenic pathways and identified HOX11L2 activation as a novel event in T cell leukemogenesis. These findings have clinical importance, since HOX11 activation is significantly associated with a favorable prognosis, while expression of TAL1, LYL1, or, surprisingly, HOX11L2 confers a much worse response to treatment. Our results illustrate the power of gene expression profiles to elucidate transformation pathways relevant to human leukemia.
Collapse
Affiliation(s)
- Adolfo A Ferrando
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Funato N, Ohtani K, Ohyama K, Kuroda T, Nakamura M. Common regulation of growth arrest and differentiation of osteoblasts by helix-loop-helix factors. Mol Cell Biol 2001; 21:7416-28. [PMID: 11585922 PMCID: PMC99914 DOI: 10.1128/mcb.21.21.7416-7428.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular differentiation entails the coordination of cell cycle arrest and tissue-specific gene expression. We investigated the involvement of basic helix-loop-helix (bHLH) factors in differentiation of osteoblasts using the human osteoblastic cell line MG63. Serum starvation induced growth arrest at G1 phase, accompanied by expression of cyclin-dependent kinase inhibitor p21(WAF1/Cip1). Reporter assays with the p21 gene promoter demonstrated that the combination of E2A (E12 or E47) and coactivator CBP was responsible for p21 induction independent of p53. Twist inhibited E2A-CBP-dependent activation of the exogenous and endogenous p21 promoters. Ids similarly inhibited the exogenously transfected p21 promoter; however less antagonistic effect on the endogenous p21 promoter was observed. Twist was predominantly present in nuclei in MG63 cells growing in complete medium, while it localized mainly in the cytoplasm after serum starvation. The fibroblast growth factor receptor 3 gene (FGFR3), which generates signals leading to differentiation of osteoblasts, was found to be controlled by the same transcriptional regulation as the p21 gene. E2A and Twist influenced alkaline phosphatase expression, a consensus marker of osteoblast differentiation. Expression of E2A and FGFR3 was seen at the location of osteoblast differentiation in the calvaria of mouse embryos, implicating bHLH molecules in physiological osteoblast differentiation. These results demonstrate that a common regulatory system is involved in at least two distinct steps in osteoblastic differentiation. Our results also provide the molecular basis of Saethre-Chotzen syndrome, caused by mutations of the TWIST and FGFR3 genes.
Collapse
MESH Headings
- Alkaline Phosphatase/metabolism
- Basic Helix-Loop-Helix Transcription Factors
- Blotting, Western
- Bromodeoxyuridine/metabolism
- Cell Differentiation
- Cell Division
- Cell Line
- Culture Media, Serum-Free/pharmacology
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclins/genetics
- Cyclins/metabolism
- Cytoplasm/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- G1 Phase
- Genes, Reporter
- Helix-Loop-Helix Motifs
- Humans
- Immunohistochemistry
- Microscopy, Fluorescence
- Models, Biological
- Models, Genetic
- Mutation
- Nuclear Proteins/metabolism
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
- Skull/embryology
- Skull/pathology
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Twist-Related Protein 1
Collapse
Affiliation(s)
- N Funato
- Human Gene Sciences Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
36
|
Suzuki H, Fukunishi Y, Kagawa I, Saito R, Oda H, Endo T, Kondo S, Bono H, Okazaki Y, Hayashizaki Y. Protein-protein interaction panel using mouse full-length cDNAs. Genome Res 2001; 11:1758-65. [PMID: 11591653 PMCID: PMC311163 DOI: 10.1101/gr.180101] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed a novel assay system for systematic analysis of protein-protein interactions (PPIs) that is characteristic of a PCR-mediated rapid sample preparation and a high-throughput assay system based on the mammalian two-hybrid method. Using gene-specific primers, we successfully constructed the assay samples by two rounds of PCR with up to 3.6 kb from the first-round PCR fragments. In the assay system, we designed all the steps to be performed by adding only samples, reagents, and cells into 384-well assay plates using two types of semiautomatic multiple dispensers. The system enabled us examine more than 20,000 assay wells per day. We detected 145 interactions in our pilot study using 3500 samples derived from mouse full-length enriched cDNAs. Analysis of the interaction data showed both several significant interaction clusters and predicted functions of a few uncharacterized proteins. In combination with our comprehensive mouse full-length cDNA clone bank covering a large part of the whole genes, our high-throughput assay system will discover many interactions to facilitate understanding of the function of uncharacterized proteins and the molecular mechanism of crucial biological processes, and also enable completion of a rough draft of the entire PPI panel in certain cell types or tissues of mouse within a short time.
Collapse
Affiliation(s)
- H Suzuki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Murre C. Role of helix-loop-helix proteins in lymphocyte development. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:39-44. [PMID: 11232313 DOI: 10.1101/sqb.1999.64.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C Murre
- Department of Biology, 0366, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
38
|
Bucher K, Sofroniew MV, Pannell R, Impey H, Smith AJ, Torres EM, Dunnett SB, Jin Y, Baer R, Rabbitts TH. The T cell oncogene Tal2 is necessary for normal development of the mouse brain. Dev Biol 2000; 227:533-44. [PMID: 11071772 DOI: 10.1006/dbio.2000.9920] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription factors are commonly involved in leukemia by activation through chromosomal translocations and normally function in cell type(s) that differ from that of the tumor. TAL2 is a member of a basic helix-loop-helix gene family specifically involved in T cell leukemogenesis. Null mutations of Tal2 have been made in mice to determine its function during development. Tal2 null mutant mice show no obvious defects of hematopoiesis. During embryogenesis, Tal2 expression is restricted to the developing midbrain, dorsal diencephalon, and rostroventral diencephalic/telencephalic boundary, partly along presumptive developing fiber tracts. The null mutant mice are viable at birth but growth become progressively retarded and they do not survive to reproductive age. Tal2-deficient mice show a distinct dysgenesis of the midbrain tectum. Due to loss of superficial gray and optical layers, the superior colliculus is reduced in size and the inferior colliculus is abnormally rounded and protruding. Death is most likely due to progressive hydrocephalus which appears to be caused by obstruction of the foramen of Monro (the connection between the ventricles of the forebrain). Thus, in addition to its oncogenicity when ectopically expressed, Tal2 normally plays a pivotal role in brain development and without this gene, mice cannot survive to maturity.
Collapse
Affiliation(s)
- K Bucher
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Firestein R, Cui X, Huie P, Cleary ML. Set domain-dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Mol Cell Biol 2000; 20:4900-9. [PMID: 10848615 PMCID: PMC85941 DOI: 10.1128/mcb.20.13.4900-4909.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian SET domain-containing proteins define a distinctive class of chromatin-associated factors that are targets for growth control signals and oncogenic activation. SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9, contains both SET and chromo domains, signature motifs for proteins that contribute to epigenetic control of gene expression through effects on the regional organization of chromatin structure. In this report we demonstrate that SUV39H1 represses transcription in a transient transcriptional assay when tethered to DNA through the GAL4 DNA binding domain. Under these conditions, SUV39H1 displays features of a long-range repressor capable of acting over several kilobases to silence basal promoters. A possible role in chromatin-mediated gene silencing is supported by the localization of exogenously expressed SUV39H1 to nuclear bodies with morphologic features suggestive of heterochromatin in interphase cells. In addition, we show that SUV39H1 is phosphorylated specifically at the G(1)/S cell cycle transition and when forcibly expressed suppresses cell growth. Growth suppression as well as the ability of SUV39H1 to form nuclear bodies and silence transcription are antagonized by the oncogenic antiphosphatase Sbf1 that when hyperexpressed interacts with the SET domain and stabilizes the phosphorylated form of SUV39H1. These studies suggest a phosphorylation-dependent mechanism for regulating the chromatin organizing activity of a mammalian su(var) protein and implicate the SET domain as a gatekeeper motif that integrates upstream signaling pathways to epigenetic regulation and growth control.
Collapse
Affiliation(s)
- R Firestein
- Department of Pathology, Stanford University Medical Center, CA 94305, USA
| | | | | | | |
Collapse
|
40
|
Engel I, Murre C. Ectopic expression of E47 or E12 promotes the death of E2A-deficient lymphomas. Proc Natl Acad Sci U S A 1999; 96:996-1001. [PMID: 9927682 PMCID: PMC15339 DOI: 10.1073/pnas.96.3.996] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1998] [Accepted: 11/30/1998] [Indexed: 11/18/2022] Open
Abstract
Mice with null mutations in the E2A gene are highly susceptible to the spontaneous development of thymic lymphomas. To understand better how E2A deficiency may contribute to lymphomagenesis, we have observed the consequences of enforced expression of the E2A gene products E12 and E47 in cell lines derived from lymphomas that arose spontaneously in E2A-deficient mice. E2A-expressing cells are steadily eliminated from lymphoma cultures into which E47 or E12 was introduced. The mechanism underlying the loss of E2A-expressing cells does not involve an arrest in cell-cycle progression. Rather, the E2A proteins activate a programmed cell death pathway in these lymphomas. This E2A-mediated cell death appears to be preceded by a loss of mitochondrial transmembrane potential. These data provide direct evidence that E2A gene products can act as tumor suppressors.
Collapse
Affiliation(s)
- I Engel
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0366, USA
| | | |
Collapse
|
41
|
Ferrier R, Nougarede R, Doucet S, Kahn-Perles B, Imbert J, Mathieu-Mahul D. Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105. Oncogene 1999; 18:995-1005. [PMID: 10023675 DOI: 10.1038/sj.onc.1202374] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The LYL1 gene was first identified upon the molecular characterization of the t(7;9)(q35;p13) translocation associated with some human T-cell acute leukemias (T-ALLs). In adult tissues, LYL1 expression is restricted to hematopoietic cells with the notable exclusion of the T cell lineage. LYL1 encodes a basic helix-loop-helix (bHLH) protein highly related to TAL-1, whose activation is also associated with a high proportion of human T-ALLs. A yeast two-hybrid system was used to identify proteins that specifically interact with LYL1 and might mediate its activities. We found that p105, the precursor of NF-kappaB1 p50, was the major LYL1-interacting protein in this system. The association between LYL1 and p105 was confirmed both in vitro and in vivo in mammalian cells. Biochemical studies indicated that the interaction was mediated by the bHLH motif of LYL1 and the ankyrin-like motifs of p105. Ectopic expression of LYL1 in a human T cell line caused a significant decrease in NF-kappaB-dependent transcription, associated with a reduced level of NF-kappaB1 proteins.
Collapse
Affiliation(s)
- R Ferrier
- Institut de Génétique Moléculaire, UMR 5535, Montpellier, France
| | | | | | | | | | | |
Collapse
|
42
|
Grütz GG, Bucher K, Lavenir I, Larson T, Larson R, Rabbitts TH. The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. EMBO J 1998; 17:4594-605. [PMID: 9707419 PMCID: PMC1170789 DOI: 10.1093/emboj/17.16.4594] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The LIM-only protein LMO2 is expressed aberrantly in acute T-cell leukaemias as a result of the chromosomal translocations t(11;14) (p13;q11) or t(7;11) (q35;p13). In a transgenic model of tumorigenesis by Lmo2, T-cell acute leukaemias arise after an asymptomatic phase in which an accumulation of immature CD4(-) CD8(-) double negative thymocytes occurs. Possible molecular mechanisms underlying these effects have been investigated in T cells from Lmo2 transgenic mice. Isolation of DNA-binding sites by CASTing and band shift assays demonstrates the presence of an oligomeric complex involving Lmo2 which can bind to a bipartite DNA motif comprising two E-box sequences approximately 10 bp apart, which is distinct from that found in erythroid cells. This complex occurs in T-cell tumours and it is restricted to the immature CD4(- )CD8(-) thymocyte subset in asymptomatic transgenic mice. Thus, ectopic expression of Lmo2 by transgenesis, or by chromosomal translocations in humans, may result in the aberrant protein interactions causing abnormal regulation of gene expression, resulting in a blockage of T-cell differentiation and providing precursor cells for overt tumour formation.
Collapse
Affiliation(s)
- G G Grütz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|
43
|
Dumonteil E, Laser B, Constant I, Philippe J. Differential regulation of the glucagon and insulin I gene promoters by the basic helix-loop-helix transcription factors E47 and BETA2. J Biol Chem 1998; 273:19945-54. [PMID: 9685329 DOI: 10.1074/jbc.273.32.19945] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin and glucagon genes are expressed in the beta and alpha cells of the islets of Langerhans, respectively. The factors controlling their cell- and islet-specific expression are poorly known. Insulin-enhancer factor-1 (IEF1) has previously been shown to interact with the E boxes of the rat insulin I and II genes and was proposed to play a critical role in beta cell-specific expression. BETA2, a recently identified basic helix-loop-helix (bHLH) protein, binds with high affinity and transactivates the rat insulin II gene upon dimerization with the ubiquitous bHLH protein E47. We show here that the heterodimer E47/BETA2 also binds and transactivates the rat insulin I and glucagon genes and exhibits the same characteristics as IEF1. In transfection experiments, the E boxes of the insulin I and glucagon genes confer transcriptional activity in both insulin- and glucagon-producing cells, which is increased by overexpression of E47 and BETA2. However, overexpression of E47 inhibits only E box-mediated glucagon gene expression, whereas it activates insulin gene transcription, indicating that the E boxes of the insulin and glucagon genes display gene-specific characteristics. We conclude that the heterodimer E47/BETA2 represents an islet-specific factor that controls both insulin and glucagon gene transcription and that the E47/BETA2 ratio may be important for regulated gene expression.
Collapse
Affiliation(s)
- E Dumonteil
- Unité de Diabétologie Clinique, Centre Médical Universitaire, CH-1211 Genève 4, Switzerland
| | | | | | | |
Collapse
|
44
|
Bigger CB, Melnikova IN, Gardner PD. Sp1 and Sp3 regulate expression of the neuronal nicotinic acetylcholine receptor beta4 subunit gene. J Biol Chem 1997; 272:25976-82. [PMID: 9325332 DOI: 10.1074/jbc.272.41.25976] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors play important roles in signal transduction within the nervous system. The receptors exist in a variety of functionally distinct subtypes that are determined by their subunit structures. The subunits are encoded by 11 genes, alpha2-alpha9 and beta2-beta4. Three of the genes, alpha3, alpha5, and beta4, are tightly clustered, and their encoded proteins make up the predominant receptor subtype in the peripheral nervous system. The tight linkage of the genes suggests there may be a common regulatory mechanism underlying their expression. However, although their expression patterns significantly overlap, they are not identical, indicating that independent regulatory mechanisms must also exist. Our studies have focused upon the gene encoding the beta4 subunit for which we have identified several transcriptional regulatory elements. One of these elements, E2, specifically interacts with the general transcription factor Sp1. Here we show that another member of the Sp family of factors, Sp3, can specifically interact with E2 whereas two other members, Sp2 and Sp4, cannot. Co-transfection experiments indicate that Sp3 can transactivate a beta4 promoter/reporter gene construct and, furthermore, that Sp1 and Sp3 can transactivate the beta4 reporter construct synergistically. The transactivation is dependent upon an intact E2 and may involve direct interactions between Sp1 and Sp3.
Collapse
Affiliation(s)
- C B Bigger
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas 78245-3207, USA
| | | | | |
Collapse
|
45
|
Elefanty AG, Robb L, Begley CG. Factors involved in leukaemogenesis and haemopoiesis. BAILLIERE'S CLINICAL HAEMATOLOGY 1997; 10:589-614. [PMID: 9421618 DOI: 10.1016/s0950-3536(97)80028-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review describes the chromosomal abnormalities in T-cell acute lymphoblastic leukaemia (ALL) which result in the over-expression of the gene SCL, which encodes a helix-loop-helix transcription factor. Also described are how gene targeting studies have revealed a key role for SCL in normal haemopoiesis. Next, the BCR-ABL fusion protein, seen in chronic myeloid leukaemia (CML) and in some patients with ALL, is discussed. Finally, the involvement of members of the core-binding factor (CBF) gene family in leukaemogenesis are described. Members of this gene family are involved in the generation of fusion proteins as a result of t(8;21) and inv(16), the most common translocations associated with acute myeloid leukaemia (AML). They provide a useful model of the way in which aberrant transcriptional function, brought about through genetic alterations, can modify haemopoietic development.
Collapse
Affiliation(s)
- A G Elefanty
- Division of Cancer and Haematology, Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | |
Collapse
|
46
|
Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL, Chun J, Huey B, Pinkel D, Murre C. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997; 17:4782-91. [PMID: 9234734 PMCID: PMC232330 DOI: 10.1128/mcb.17.8.4782] [Citation(s) in RCA: 331] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The E2A gene products, E12 and E47, are critical for proper early B-cell development and commitment to the B-cell lineage. Here we reveal a new role for E2A in T-lymphocyte development. Loss of E2A activity results in a partial block at the earliest stage of T-lineage development. This early T-cell phenotype precedes the development of a T-cell lymphoma which occurs between 3 and 9 months of age. The thymomas are monoclonal and highly malignant and display a cell surface phenotype similar to that of immature thymocytes. In addition, the thymomas generally express high levels of c-myc. As assayed by comparative genomic hybridization, each of the tumor populations analyzed showed a nonrandom gain of chromosome 15, which contains the c-myc gene. Taken together, the data suggest that the E2A gene products play a role early in thymocyte development that is similar to their function in B-lineage determination. Furthermore, the lack of E2A results in development of T-cell malignancies, and we propose that E2A inactivation is a common feature of a wide variety of human T-cell proliferative disorders, including those involving the E2A heterodimeric partners tal-1 and lyl-1.
Collapse
Affiliation(s)
- G Bain
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Expression of the Id Family Helix-Loop-Helix Regulators During Growth and Development in the Hematopoietic System. Blood 1997. [DOI: 10.1182/blood.v89.9.3155] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo better understand the molecular mechanism(s) by which growth and differentiation of the primitive hematopoietic stem cell is initiated, as well as the means by which the maturing cell can commit to development along a specific cell lineage, we elected to study the Id family of helix-loop-helix (HLH) transcriptional regulators. Some members of the HLH family are expressed in a stage-specific manner during hematopoietic development and can regulate the ability of immature hematopoietic cells to terminally differentiate. None of the four Id family genes were detected in the most primitive progenitors. Id-1 was widely expressed in proliferating bi- and unipotential progenitors, but its expression was downregulated in cells of increasing maturity; conversely, Id-2 and, to a limited extent, Id-3 gene expression increased as cells matured and lost proliferative capacity. Id-2 expression ran counter to that of Id-1 not only during maturation, but during periods of cell growth and arrest as well. This is quite distinct from the nonhematopoietic tissues, in which these two factors are coordinately expressed and suggests that Id-1 and Id-2 might be regulating very different events during hematopoiesis than they regulate in other cell types.
Collapse
|
48
|
Prasad KS, Brandt SJ. Target-dependent effect of phosphorylation on the DNA binding activity of the TAL1/SCL oncoprotein. J Biol Chem 1997; 272:11457-62. [PMID: 9111058 DOI: 10.1074/jbc.272.17.11457] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of the TAL1 (or SCL) gene, initially identified through its involvement by a recurrent chromosomal translocation, is the most frequent gain-of-function mutation recognized in T-cell acute lymphoblastic leukemia. The translational products of this gene contain the basic domain helix-loop-helix motif characteristic of a family of transcription factors that bind to a consensus nucleotide sequence termed the E-box. Previous work established that the TAL1 proteins are phosphorylated exclusively on serine and identified Ser122 as a substrate for the mitogen-activated protein kinase ERK-1. We provide evidence that an additional serine residue, Ser172, located in a conserved region proximal to the DNA binding domain and sharing homology with a similarly positioned sequence in the HLH oncoprotein LYL1, can be phosphorylated in vitro and in vivo by the catalytic subunit of cAMP-dependent protein kinase. Phosphorylation was found to alter TAL1 DNA binding activity in a target-dependent manner that was influenced by both the specific CANNTG E-box core motif and its flanking sequences. In contrast, the ability of TAL1 to interact with the E2A gene product E12 and its subcellular localization in transfected COS cells were unaffected by Ser172 phosphorylation. These results suggest this serine residue has a regulatory function and indicate a mechanism by which phosphorylation could affect DNA binding site discrimination.
Collapse
Affiliation(s)
- K S Prasad
- Department of Medicine,Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|