1
|
Barajas-Mora EM, Feeney AJ. Enhancers as regulators of antigen receptor loci three-dimensional chromatin structure. Transcription 2019; 11:37-51. [PMID: 31829768 DOI: 10.1080/21541264.2019.1699383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enhancers are defined as regulatory elements that control transcription in a cell-type and developmental stage-specific manner. They achieve this by physically interacting with their cognate gene promoters. Significantly, these interactions can occur through long genomic distances since enhancers may not be near their cognate promoters. The optimal coordination of enhancer-regulated transcription is essential for the function and identity of the cell. Although great efforts to fully understand the principles of this type of regulation are ongoing, other potential functions of the long-range chromatin interactions (LRCIs) involving enhancers are largely unexplored. We recently uncovered a new role for enhancer elements in determining the three-dimensional (3D) structure of the immunoglobulin kappa (Igκ) light chain receptor locus suggesting a structural function for these DNA elements. This enhancer-mediated locus configuration shapes the resulting Igκ repertoire. We also propose a role for enhancers as critical components of sub-topologically associating domain (subTAD) formation and nuclear spatial localization.
Collapse
Affiliation(s)
- E Mauricio Barajas-Mora
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
2
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Levin-Klein R, Kirillov A, Rosenbluh C, Cedar H, Bergman Y. A novel pax5-binding regulatory element in the igκ locus. Front Immunol 2014; 5:240. [PMID: 24904588 PMCID: PMC4033077 DOI: 10.3389/fimmu.2014.00240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/08/2014] [Indexed: 12/31/2022] Open
Abstract
The Igκ locus undergoes a variety of different molecular processes during B cell development, including V(D)J rearrangement and somatic hypermutations (SHM), which are influenced by cis regulatory regions (RRs) within the locus. The Igκ locus includes three characterized RRs termed the intronic (iEκ), 3′Eκ, and Ed enhancers. We had previously noted that a region of DNA upstream of the iEκ and matrix attachment region (MAR) was necessary for demethylation of the locus in cell culture. In this study, we further characterized this region, which we have termed Dm, for demethylation element. Pre-rearranged Igκ transgenes containing a deletion of the entire Dm region, or of a Pax5-binding site within the region, fail to undergo efficient CpG demethylation in mature B cells in vivo. Furthermore, we generated mice with a deletion of the full Dm region at the endogenous Igκ locus. The most prominent phenotype of these mice is reduced SHM in germinal center B cells in Peyer’s patches. In conclusion, we propose the Dm element as a novel Pax5-binding cis regulatory element, which works in concert with the known enhancers, and plays a role in Igκ demethylation and SHM.
Collapse
Affiliation(s)
- Rena Levin-Klein
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| | - Andrei Kirillov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| | - Chaggai Rosenbluh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| | - Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| |
Collapse
|
4
|
Roth K, Oehme L, Zehentmeier S, Zhang Y, Niesner R, Hauser AE. Tracking plasma cell differentiation and survival. Cytometry A 2013; 85:15-24. [PMID: 24700574 DOI: 10.1002/cyto.a.22355] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/22/2013] [Accepted: 08/18/2013] [Indexed: 01/21/2023]
Abstract
Plasma cells play a crucial role for the humoral immune response as they represent the body's factories for antibody production. The differentiation from a B cell into a plasma cell is controlled by a complex transcriptional network and happens within secondary lymphoid organs. Based on their lifetime, two types of antibody secreting cells can be distinguished: Short-lived plasma cells are located in extrafollicular sites of secondary lymphoid organs such as lymph node medullary cords and the splenic red pulp. A fraction of plasmablasts migrate from secondary lymphoid organs to the bone marrow where they can become long-lived plasma cells. Bone marrow plasma cells reside in special microanatomical environments termed survival niches, which provide factors promoting their longevity. Reticular stromal cells producing the chemokine CXCL12, which is known to attract plasmablasts to the bone marrow but also to promote plasma cell survival, play a crucial role in the maintenance of these niches. In addition, hematopoietic cells are contributing to the niches by providing other soluble survival factors. Here, we review the current knowledge on the factors involved in plasma cell differentiation, their localization and migration. We also give an overview on what is known regarding the maintenance of long lived plasma cells in survival niches of the bone marrow.
Collapse
Affiliation(s)
- Katrin Roth
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Oracki SA, Walker JA, Hibbs ML, Corcoran LM, Tarlinton DM. Plasma cell development and survival. Immunol Rev 2010; 237:140-59. [DOI: 10.1111/j.1600-065x.2010.00940.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Kleinschmidt AM, Nassiri M, Stitt MS, Wasserloos K, Watkins SC, Pitt BR, Jahroudi N. Sequences in intron 51 of the von Willebrand factor gene target promoter activation to a subset of lung endothelial cells in transgenic mice. J Biol Chem 2007; 283:2741-50. [PMID: 18048367 DOI: 10.1074/jbc.m705466200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo analyses of the VWF promoter previously demonstrated that a fragment spanning sequences -487 to +247 targets promoter activation to brain vascular endothelial cells, whereas a longer fragment including 2182 bp of the 5'-flanking sequences, the first exon, and the first intron activated expression in endothelial cells of the heart and muscles as well as the brain of transgenic mice. These results suggested that additional VWF gene sequences were required for expression in other vascular endothelial cells in vivo. We have now identified a region within intron 51 of the VWF gene that is DNase I-hypersensitive (HSS) specifically in non-endothelial cells and interacts with endothelial and non-endothelial specific complexes that contain YY1. We demonstrate that beta-actin is associated with YY1 specifically in the nucleus of non-endothelial cells and is a component of the nuclear protein complexes that interact with the DNase I-hypersensitive region. In vitro transfection analyses demonstrated that HSS sequences containing this YY1-binding site do not significantly affect VWF promoter activity. However, in vivo analyses demonstrated that addition of these sequences to the VWF promoter (-487 to +247) results in promoter activation in lung and brain vascular endothelial cells. These results demonstrate that the HSS sequences in intron 51 of the VWF gene contain cis-acting elements that are necessary for the VWF gene transcription in a subset of lung endothelial cells in vivo.
Collapse
|
7
|
Grange S, Boyes J. Chromatin opening is tightly linked to enhancer activation at the kappa light chain locus. Biochem Biophys Res Commun 2007; 363:223-8. [PMID: 17868643 DOI: 10.1016/j.bbrc.2007.08.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 12/27/2022]
Abstract
Enhancers play an important role in chromatin opening but the temporal relationship between enhancer activation and the generation of an accessible chromatin structure is poorly defined. Recombination enhancers are essential for chromatin opening and subsequent V(D)J recombination at immunoglobulin loci. In mice, the kappa light chain locus displays an open chromatin structure before the lambda locus yet the same proteins, PU.1/PIP, trigger full enhancer activation of both loci. Using primary B cells isolated from distinct developmental stages and an improved method to quantitatively determine hypersensitive site formation, we find the kappa and lambda recombination enhancers become fully hypersensitive soon after transition to large and small pre-B-II cells, respectively. This correlates strictly with the stages at which these loci are activated. Since these cells are short-lived, these data imply that there is a close temporal relationship between full enhancer hypersensitive site formation and locus chromatin opening.
Collapse
Affiliation(s)
- Sarah Grange
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
8
|
Kallies A, Hasbold J, Fairfax K, Pridans C, Emslie D, McKenzie BS, Lew AM, Corcoran LM, Hodgkin PD, Tarlinton DM, Nutt SL. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity 2007; 26:555-66. [PMID: 17509907 DOI: 10.1016/j.immuni.2007.04.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 03/23/2007] [Accepted: 04/05/2007] [Indexed: 02/03/2023]
Abstract
Blimp-1 is considered an essential regulator of the terminal differentiation of B cells into antibody-secreting plasma cells. We show here that Rag1-/- mice reconstituted with fetal liver cells homozygous for a DNA-binding-deficient mutant of Prdm1 (the gene encoding Blimp-1) lack a defined plasma-cell compartment, yet show detectable amounts of all immunoglobulin isotypes. In vitro analysis revealed that Blimp-1 is not required for the initiation of antibody secretion but is essential for subsequent high immunoglobulin production. Blimp-1-independent differentiation was blocked at a preplasmablast stage characterized by decreased Pax5 expression and the activation of plasma-cell genes. Analysis of Blimp-1-sufficient differentiation revealed a phase prior to Blimp-1 expression in which several genes normally repressed by Pax5 are re-expressed, suggesting that plasma-cell differentiation is initiated by the inhibition of Pax5 function. Our results indicate that full plasma-cell differentiation but not commitment to the plasma-cell fate requires the expression of functional Blimp-1.
Collapse
Affiliation(s)
- Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McDevit DC, Nikolajczyk BS. Changes in immunoglobulin–nucleoprotein complex structure mapped by chromatin immunoprecipitation. Mol Immunol 2006; 43:1541-8. [PMID: 16313959 DOI: 10.1016/j.molimm.2005.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/17/2005] [Accepted: 10/19/2005] [Indexed: 11/25/2022]
Abstract
Transcription factor-mediated immunoglobulin (Ig) enhancer activation has been analyzed extensively outside the physiological constraints of chromatin. Towards understanding the role sequence-specific DNA binding proteins identified by these methods play in activating Ig genes during B cell development, we have investigated in vivo interaction between the Ig enhancer activator PU.1 and two target elements, the Igmu and kappa3' enhancers, by chromatin immunoprecipitation (ChIP). By using two antibodies recognizing different PU.1 epitopes in murine B cells, these analyses demonstrate that ChIP results may depend on the availability of the epitope(s) targeted by the immunoprecipitating antibody. Specifically, PU.1 epitope availability at the mu and kappa3' enhancers does not accurately quantitate total PU.1 association. This result suggests the nucleoprotein complexes formed at these various active enhancers is cell type-specific. Interestingly, RAG1-/- but not RAG2-/- pro-B cells lack PU.1/kappa3' association, probably due to limited accessibility of the kappa locus in the former. The more robust association of PU.1 with the kappa3' versus mu enhancer in all but RAG1-/- B lineage cells is not explained by differences in PCR primer efficiency, but likely reflects the different structures formed by the complexes at mu versus kappa3' enhancers. Finally, PU.1 is not associated with an inaccessible mu or kappa3' enhancer chromatin structure in macrophages, again emphasizing the importance cellular protein context plays in PU.1/Ig enhancer association. The demonstration that changes in epitope availability, hence nucleoprotein structure, can be monitored by ChIP suggests using this technique to monitor biologically important changes in nucleoprotein complex structure/composition in situ.
Collapse
Affiliation(s)
- Daniel C McDevit
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | | |
Collapse
|
10
|
Bai Y, Srinivasan L, Perkins L, Atchison ML. Protein acetylation regulates both PU.1 transactivation and Ig kappa 3' enhancer activity. THE JOURNAL OF IMMUNOLOGY 2005; 175:5160-9. [PMID: 16210620 DOI: 10.4049/jimmunol.175.8.5160] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Igkappa gene expression and chromatin structure change during B cell development. At the pre-B cell stage, the locus is relatively hypoacetylated on histone H3, whereas it is hyperacetylated at the plasma cell stage. We find in this study that the histone deacetylase inhibitor, trichostatin A (TSA) stimulated 3' enhancer activity through the PU.1 binding site. TSA also stimulated PU.1 transactivation potential. PU.1 activity was increased by the coactivator acetyltransferase protein, p300, and p300 physically interacted with PU.1 residues 7-30. PU.1 served as a substrate for p300 and was acetylated on lysine residues 170, 171, 206, and 208. Mutation of PU.1 lysines 170 and 171 did not affect PU.1 DNA binding, but did lower the ability of PU.1 to activate transcription in association with p300. Lysine 170 was acetylated in pre-B cells and plasmacytoma cells, but TSA treatment did not stimulate PU.1 acetylation at this residue arguing that a second mechanism can stimulate 3' enhancer activity. Using chromatin immunoprecipitation assays we found that TSA caused preferential acetylation of histone H3 at the 3' enhancer. The relevance of these studies for PU.1 function in transcription and hemopoietic development is discussed.
Collapse
Affiliation(s)
- Yuchen Bai
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
11
|
Liu Z, Garrard WT. Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3' boundary sequence spanning 46 kilobases. Mol Cell Biol 2005; 25:3220-31. [PMID: 15798207 PMCID: PMC1069589 DOI: 10.1128/mcb.25.8.3220-3231.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse immunoglobulin kappa (Igkappa) gene contains an intronic enhancer and two enhancers downstream of its transcription unit. Using chromosome conformation capture technology, we demonstrate that rearranged and actively transcribed Igkappa alleles in MPC-11 plasmacytoma cells exhibit mutual interactions over 22 kb between these three enhancers and Vkappa gene promoters. In addition, the 5' region of the active transcription unit exhibits a continuum of interactions with downstream chromatin segments. We also observe interactions between Ei and E3' with 3' boundary sequences 24 kb downstream of Ed, adjacent to a neighboring housekeeping gene. Very similar interactions between the enhancers are also exhibited by normal B cells isolated from mouse splenic tissue but not by germ line transcriptionally inactive alleles of T cells or P815 mastocytoma cells, which exhibit a seemingly linear chromatin organization. These results fit a looping mechanism for enhancer function like in the beta-globin locus and suggest a dynamic modulation of the spatial organization of the active Igkappa locus. Chromatin immunoprecipitation experiments reveal that the interacting Igkappa gene cis-acting sequences are associated with AP-4, E47, and p65NF-kappaB, potential protein candidates that may be responsible for initiating and/or maintaining the formation of these higher-order complexes. However, S107 plasmacytoma cells that lack NF-kappaB still exhibit mutual interactions between the Igkappa gene enhancers.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148.
| | | |
Collapse
|
12
|
McDevit DC, Perkins L, Atchison ML, Nikolajczyk BS. The Ig kappa 3' enhancer is activated by gradients of chromatin accessibility and protein association. THE JOURNAL OF IMMUNOLOGY 2005; 174:2834-42. [PMID: 15728493 DOI: 10.4049/jimmunol.174.5.2834] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Igkappa locus is recombined following initiation of a signaling cascade during the early pre-B stage of B cell development. The Ig kappa3' enhancer plays an important role in normal B cell development by regulating kappa locus activation. Quantitative analyses of kappa3' enhancer chromatin structure by restriction endonuclease accessibility and protein association by chromatin immunoprecipitation in a developmental series of primary murine B cells and murine B cell lines demonstrate that the enhancer is activated progressively through multiple steps as cells mature. Moderate kappa3' chromatin accessibility and low levels of protein association in pro-B cells are increased substantially as the cells progress from pro- to pre-B, then eventually mature B cell stages. Chromatin immunoprecipitation assays suggest transcriptional regulators of the kappa3' enhancer, specifically PU.1 and IFN regulatory factor-4, exploit enhanced accessibility by increasing association as cells mature. Characterization of histone acetylation patterns at the kappa3' enhancer and experimental inhibition of histone deacetylation suggest changes therein may determine changes in enzyme and transcription factor accessibility. This analysis demonstrates kappa activation is a multistep process initiated in early B cell precursors before Igmu recombination and finalized only after the pre-B cell stage.
Collapse
Affiliation(s)
- Daniel C McDevit
- Department of Medicine, Immunobiology Unit, Evans Memorial Department of Clinical Research, Boston Medical Center, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
13
|
Weil MR, Widlak P, Minna JD, Garner HR. Global survey of chromatin accessibility using DNA microarrays. Genome Res 2004; 14:1374-81. [PMID: 15231753 PMCID: PMC442154 DOI: 10.1101/gr.1396104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increasing number of studies indicate a central role for chromatin remodeling in the regulation of gene expression. Current methods for high-resolution studies of the relationship between chromatin accessibility and transcription are low throughput, making a genome-wide study impractical. To enable the simultaneous measurement of the global chromatin accessibility state at the resolution of single genes, we developed the Chromatin Array technique, in which chromatin is separated by its condensation state using either the solubility differences of mono- and oligonucleosomes in specific buffers or controlled DNase I digestion and selection of the large refractory (condensed) DNA fragments. By probing with a comparative genomic hybridization style microarray, we can determine the condensation state of thousands of individual loci and correlate this with transcriptional activity. Applying this technique to the breast tumor model cell line, MCF7, we found that when the condensation is homogeneous in the population of cells, expression is inversely proportional to the level of accessibility and the two methods of accessibility-based target selection correlate well. Using functional annotation and comparative genomic hybridization data, we have begun to decipher the possible biological implications of the relationship between chromatin accessibility and expression.
Collapse
Affiliation(s)
- M Ryan Weil
- Program in Molecular Biophysics, Division of Cell and Molecular Biology, Southwestern Graduate School of Biomedical Science, UT Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | |
Collapse
|
14
|
Linderson Y, Eberhard D, Malin S, Johansson A, Busslinger M, Pettersson S. Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes. EMBO Rep 2004; 5:291-6. [PMID: 14993928 PMCID: PMC1299001 DOI: 10.1038/sj.embor.7400089] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 11/20/2003] [Accepted: 12/11/2003] [Indexed: 12/31/2022] Open
Abstract
PU.1 and Pax5 are important regulators of immunoglobulin heavy-chain (IgH) gene expression in B lineage cells. We have previously shown that PU.1 can potentiate the transcription of an IgH HS1,2 enhancer-linked reporter gene, and that Pax5 represses the same enhancer in transient transfection assays. Here we report that PU.1, like Pax5, can recruit and physically interact with a member of the Groucho family of co-repressors, Grg4. As a consequence, PU.1 in conjunction with Pax5 represses enhancer function in a position-dependent manner when Grg4 is recruited. Interestingly, Grg4 levels decrease following B-cell activation, suggesting temporal regulation of Grg4. Moreover, the joining-chain promoter, with an activity pattern and architecture resembling HS1,2 can also be repressed by the combinatorial action of Pax5/PU.1/Grg4. These data indicate that Pax5 depends on PU.1, acting in cis, for stable recruitment of Grg co-repressors to B-cell-specific genes.
Collapse
Affiliation(s)
- Ylva Linderson
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dirk Eberhard
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
- Present address: Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Stephen Malin
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Annica Johansson
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Sven Pettersson
- Microbiology and Tumorbiology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
- Tel: +46 8 524 866 86; Fax: +46 8 33 15 47; E-mail:
| |
Collapse
|
15
|
Xu L, Tsuji K, Mostowski H, Candotti F, Rosenberg A. Evidence that the mouse 3' kappa light chain enhancer confers position-independent transgene expression in T- and B-lineage cells. Hum Gene Ther 2003; 14:1753-64. [PMID: 14670126 DOI: 10.1089/104303403322611764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the major obstacles for successful application of murine leukemia virus (MLV) vectors to genetic therapy of lymphocyte disorders is low levels of transgene expression or the eventual loss of expression. To overcome this problem, an improved retroviral vector was constructed utilizing the myeloproliferative sarcoma virus (MPSV) long terminal repeat (LTR), which provided a significantly higher level of transgene expression in human lymphoid cells than did MLV vectors. Nevertheless, transgene expression remained low in a large percentage of transduced cells. To address whether lymphocyte enhancer elements might improve transgene expression mediated by retroviral vectors in lymphocytes, we cloned the mouse immunoglobulin 3' kappa light chain enhancer gene (mE3') into the MPSV vector. We found that the mE3' conferred a higher, more uniform and sustained level of expression in transduced T- and B-cell lines, and in primary T cells, than did the control vector lacking this element. Integration sites were diverse and a single copy of the proviral genome was present in all examined transduced cells. The mE3' failed to enhance transgene expression in most nonlymphoid cells, indicating it is relatively lineage-specific. Taken together, these results provide strong evidence that the mE3' functions as a locus control region (LCR) in conferring enhanced integration-site-independent expression of a retroviral transgene.
Collapse
Affiliation(s)
- Lai Xu
- Division of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
In the mammalian immune system, V(D)J rearrangement of immunoglobulin (Ig) and T-cell receptor (TCR) genes is regulated in a lineage- and stage-specific fashion. Because each of the seven loci capable of rearrangement utilizes the same recombination machinery, it is thought that V(D)J recombination of each antigen receptor locus is regulated through the differential accessibility of each locus to the V(D)J recombination machinery. Accumulating evidence indicates that chromatin remodeling mediated by DNA methylation and demethylation plays important roles in regulating V(D)J recombination and germline transcription through the Ig and TCR loci. DNA demethylation within the antigen receptor loci appears to be regulated by cis-elements also required for coordinated V(D)J recombination and germline transcription. In this paper, we critically examine the relationship between demethylation and V(D)J recombination as well as the mechanism to regulate DNA demethylation within the antigen receptor loci.
Collapse
Affiliation(s)
- Matthew Inlay
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | |
Collapse
|
17
|
Merluzzi S, Moretti M, Altamura S, Zwollo P, Sigvardsson M, Vitale G, Pucillo C. CD40 stimulation induces Pax5/BSAP and EBF activation through a APE/Ref-1-dependent redox mechanism. J Biol Chem 2003; 279:1777-86. [PMID: 14594818 DOI: 10.1074/jbc.m305418200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD40 is a member of the growing tumor necrosis factor receptor family that has been shown to play important roles in T cell-mediated B lymphocyte activation. Ligation of B cell CD40 by CD154, mainly expressed on activated T cells, stimulates B cell proliferation, differentiation, isotype switching, up-regulation of surface molecules contributing to antigen presentation, development of the germinal center, and the humoral memory response. In this study we demonstrate that the redox factor APE/Ref-1 acts as a key signaling intermediate in response to CD40-mediated B cell activation. The transcription factors Pax5a or BSAP (B cell lineage-specific activator protein) and EBF (early B cell factor) are constitutively expressed in spleen B cells and CD40 cross-linking induces increases in Pax5a and EBF binding activity compared with nonstimulated B cells. We show that upon CD40 antibody-mediated cross-linking, APE/Ref-1 translocates from the cytoplasm to the nucleus of activated B cells, where it modulates the DNA binding activity of both Pax5a and EBF. Moreover, we show that the repression of APE/Ref-1 protein production is able to block CD40-mediated Pax5a activation. We also provide evidence that APE/Ref-1 can modulate the cooperative activation of the blk promoter operated by Pax5a and EBF and that APE/Ref-1 might directly regulate EBF functional activity. Finally, we show that the interaction between Pax5a and EBF enhances EBF binding activity to its consensus sequence, suggesting that Pax5a can physically interact with EBF and modulate its DNA binding activity.
Collapse
Affiliation(s)
- Sonia Merluzzi
- Dipartimento di Scienze e Tecnologie Biomediche, M.A.T.I. Center of Excellence, Piazzale Kolbe 4, Università degli Studi di Udine, 33100 Udine, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol 2003; 21:205-30. [PMID: 12524387 DOI: 10.1146/annurev.immunol.21.120601.141138] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma cells are terminally differentiated final effectors of the humoral immune response. Plasma cells that result from antigen activation of B-1 and marginal zone B cells provide the first, rapid response to antigen. Plasma cells that develop after a germinal center reaction provide higher-affinity antibody and often survive many months in the bone marrow. Transcription factors Bcl-6 and Pax5, which are required for germinal center B cells, block plasmacytic differentiation and repress Blimp-1 and XBP-1, respectively. When Bcl-6-dependent repression of Blimp-1 is relieved, Blimp-1 ensures that plasmacytic development is irreversible by repressing BCL-6 and PAX5. In plasma cells, Blimp-1, XBP-1, IRF4, and other regulators cause cessation of cell cycle, decrease signaling from the B cell receptor and communication with T cells, inhibit isotype switching and somatic hypermutation, downregulate CXCR5, and induce copious immunoglobulin synthesis and secretion. Thus, commitment to plasmacytic differentiation involves inhibition of activities associated with earlier B cell developmental stages as well as expression of the plasma cell phenotype.
Collapse
Affiliation(s)
- Kathryn L Calame
- Department of Microbiology and Biochemistry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
19
|
Morsi AS, Godfrey RE, Chipman JK, Minchin SD. Characterisation of the connexin32 promoter and changes in response element complexes in rat liver and hepatocytes during culture associated with oxidative stress. Toxicol In Vitro 2003; 17:191-9. [PMID: 12650673 DOI: 10.1016/s0887-2333(03)00003-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatic gap junctional intercellular communication (GJIC), mediated principally by connexin 32, provides a mechanism for regulating multicellular activities between neighbouring cells. The control of Cx32 gene expression at the transcriptional level has been investigated in rat liver tissue and in primary rat hepatocytes during culture. Several response elements have been identified and characterised using the electrophoretic mobility shift assay. Nuclear protein extract prepared from rat primary hepatocytes cultured for 2 h gave a larger number of DNA-protein complexes than observed with extracts from liver in vivo, including complexes containing Sp1. In contrast, nuclear extracts prepared from primary rat hepatocytes cultured for 96 h, and subject to oxidative stress, gave altered DNA-protein complexes when compared to those from hepatocytes cultured for 2 h. These results indicate that culture conditions, known to cause a loss of connexin expression, can modulate the transcription of Cx32 in hepatocytes by affecting the regulatory trans/cis-interactions of redox-sensitive zinc finger proteins within the promoter.
Collapse
Affiliation(s)
- A S Morsi
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
20
|
Liu ZM, George-Raizen JB, Li S, Meyers KC, Chang MY, Garrard WT. Chromatin structural analyses of the mouse Igkappa gene locus reveal new hypersensitive sites specifying a transcriptional silencer and enhancer. J Biol Chem 2002; 277:32640-9. [PMID: 12080064 DOI: 10.1074/jbc.m204065200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify new regulatory elements within the mouse Igkappa locus, we have mapped DNase I hypersensitive sites (HSs) in the chromatin of B cell lines arrested at different stages of differentiation. We have focused on two regions encompassing 50 kilobases suspected to contain new regulatory elements based on our previous high level expression results with yeast artificial chromosome-based mouse Igkappa transgenes. This approach has revealed a cluster of HSs within the 18-kilobase intervening sequence, which we cloned and sequenced in its entirety, between the Vkappa gene closest to the Jkappa region. These HSs exhibit pro/pre-B cell-specific transcriptional silencing of a Vkappa gene promoter in transient transfection assays. We also identified a plasmacytoma cell-specific HS in the far downstream region of the locus, which in analogous transient transfection assays proved to be a powerful transcriptional enhancer. Deletional analyses reveal that for each element multiple DNA segments cooperate to achieve either silencing or enhancement. The enhancer sequence is conserved in the human Igkappa gene locus, including NF-kappaB and E-box sites that are important for the activity. In summary, our results pinpoint the locations of presumptive regulatory elements for future knockout studies to define their functional roles in the native locus.
Collapse
Affiliation(s)
- Zhi-Mei Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | |
Collapse
|
21
|
Tagoh H, Himes R, Clarke D, Leenen PJM, Riggs AD, Hume D, Bonifer C. Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev 2002; 16:1721-37. [PMID: 12101129 PMCID: PMC186377 DOI: 10.1101/gad.222002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Expression of the gene for the macrophage colony stimulating factor receptor (CSF-1R), c-fms, has been viewed as a hallmark of the commitment of multipotent precursor cells to macrophages. Lineage-restricted expression of the gene is controlled by conserved elements in the proximal promoter and within the first intron. To investigate the developmental regulation of c-fms at the level of chromatin structure, we developed an in vitro system to examine the maturation of multipotent myeloid precursor cells into mature macrophages. The dynamics of chromatin fine structure alterations and transcription factor occupancy at the c-fms promoter and intronic enhancer was examined by in vivo DMS and UV-footprinting. We show that the c-fms gene is already transcribed at low levels in early myeloid precursors on which no CSF-1R surface expression can be detected. At this stage of myelopoiesis, the formation of transcription factor complexes on the promoter was complete. By contrast, occupancy of the enhancer was acutely regulated during macrophage differentiation. Our data show that cell-intrinsic differentiation decisions at the c-fms locus precede the appearance of c-fms on the cell surface. They also suggest that complex lineage-specific enhancers such as the c-fms intronic enhancer regulate local chromatin structure through the coordinated assembly and disassembly of distinct transcription factor complexes.
Collapse
Affiliation(s)
- Hiromi Tagoh
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Maës J, O'Neill LP, Cavelier P, Turner BM, Rougeon F, Goodhardt M. Chromatin remodeling at the Ig loci prior to V(D)J recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:866-74. [PMID: 11441093 DOI: 10.4049/jimmunol.167.2.866] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rearrangement of Ig H and L chain genes is highly regulated and takes place sequentially during B cell development. Several lines of evidence indicate that chromatin may modulate accessibility of the Ig loci for V(D)J recombination. In this study, we show that remodeling of V and J segment chromatin occurs before V(D)J recombination at the endogenous H and kappa L chain loci. In recombination-activating gene-deficient pro-B cells, there is a reorganization of nucleosomal structure over the H chain J(H) cluster and increased DNase I sensitivity of V(H) and J(H) segments. The pro-B/pre-B cell transition is marked by a decrease in the DNase I sensitivity of V(H) segments and a reciprocal increase in the nuclease sensitivity of Vkappa and Jkappa segments. In contrast, J(H) segments remain DNase I sensitive, and their nucleosomal organization is maintained in mu(+) recombination-activating gene-deficient pre-B cells. These results indicate that initiation of rearrangement is associated with changes in the chromatin structure of both V and J segments, whereas stopping recombination involves changes in only V segment chromatin. We further find an increase in histone H4 acetylation at both the H and kappa L chain loci at the pro-B cell stage. Although histone H4 acetylation appears to be an early change associated with B cell commitment, acetylation alone is not sufficient to promote subsequent modifications in Ig chromatin.
Collapse
Affiliation(s)
- J Maës
- Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée Centre National de la Recherche Scientifique 1960, Département d'Immunologie, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Kaplan MH, Zong RT, Herrscher RF, Scheuermann RH, Tucker PW. Transcriptional activation by a matrix associating region-binding protein. contextual requirements for the function of bright. J Biol Chem 2001; 276:21325-30. [PMID: 11294836 DOI: 10.1074/jbc.m100836200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bright (B cell regulator of IgH transcription) is a B cell-specific, matrix associating region-binding protein that transactivates gene expression from the IgH intronic enhancer (E mu). We show here that Bright has multiple contextual requirements to function as a transcriptional activator. Bright cannot transactivate via out of context, concatenated binding sites. Transactivation is maximal on integrated substrates. Two of the three previously identified binding sites in E mu are required for full Bright transactivation. The Bright DNA binding domain defined a new family, which includes SWI1, a component of the SWI.SNF complex shown to have high mobility group-like DNA binding characteristics. Similar to one group of high mobility group box proteins, Bright distorts E mu binding site-containing DNA on binding, supporting the concept that it mediates E mu remodeling. Transfection studies further implicate Bright in facilitating spatially separated promoter-enhancer interactions in both transient and stable assays. Finally, we show that overexpression of Bright leads to enhanced DNase I sensitivity of the endogenous E mu matrix associating regions. These data further suggest that Bright may contribute to increased gene expression by remodeling the immunoglobulin locus during B cell development.
Collapse
Affiliation(s)
- M H Kaplan
- Institute for Molecular and Cellular Biology, University of Texas at Austin, Austin, Texas 78712-1075, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The B lineage commitment factor Pax5 (BSAP) is expressed throughout B cell development. To investigate its late function, we generated a mouse strain carrying a floxed Pax5 allele that was conditionally inactivated by CD19-cre or Mx-cre expression. Pax5 deletion resulted in the preferential loss of mature B cells, inefficient lymphoblast formation, and reduced serum IgG levels. Mature B cells radically changed their gene expression pattern in response to Pax5 inactivation. Most B cell antigens were downregulated on the cell surface, and the transcription of B cell-specific genes was decreased, whereas the expression of non-B lymphoid genes was activated in Pax5-deficient B cells. These data demonstrate that Pax5 is essential for maintaining the identity and function of B cells during late B lymphopoiesis.
Collapse
Affiliation(s)
- M Horcher
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | |
Collapse
|
25
|
Nutt SL, Eberhard D, Horcher M, Rolink AG, Busslinger M. Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int Rev Immunol 2001; 20:65-82. [PMID: 11342298 DOI: 10.3109/08830180109056723] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite being one of the most intensively studied cell types, the molecular basis of B cell specification is largely unknown. The Pax5 gene encoding the transcription factor BSAP is required for progression of B-lymphopoiesis beyond the pro-B cell stage. Pax5-deficient pro-B cells are, however, not yet committed to the B-lymphoid lineage, but instead have a broad lymphomyeloid developmental potential. Pax5 appears to mediate B-lineage commitment by repressing the transcription of non-B-lymphoid genes and by simultaneously activating the expression of B-lineage-specific genes. Pax5 thus functions both as a transcriptional repressor and activator, depending on its interactions with corepressors of the Groucho protein family or with positive regulators such as the TATA-binding protein. Once committed to the B-lineage, B cells require Pax5 function to maintain their B-lymphoid identity throughout B cell development.
Collapse
MESH Headings
- Animals
- Antigens, CD19/biosynthesis
- Antigens, CD19/genetics
- B-Lymphocyte Subsets/cytology
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Coculture Techniques
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Developmental
- Gene Rearrangement, B-Lymphocyte
- Genes, Immunoglobulin
- Genes, myc
- Hematopoiesis/genetics
- Humans
- Interleukin-7/physiology
- Mice
- Mice, Knockout
- Models, Biological
- PAX5 Transcription Factor
- Proteins/genetics
- Proteins/physiology
- Repressor Proteins/physiology
- Stromal Cells/cytology
- Transcription Factor TFIID
- Transcription Factors/physiology
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- S L Nutt
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
26
|
Kontaraki J, Chen HH, Riggs A, Bonifer C. Chromatin fine structure profiles for a developmentally regulated gene: reorganization of the lysozyme locus before trans-activator binding and gene expression. Genes Dev 2000; 14:2106-22. [PMID: 10950873 PMCID: PMC316862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The chicken lysozyme locus is activated in a stepwise fashion during myeloid differentiation. We have used this locus as a model to study at high resolution changes in chromatin structure both in chicken cell lines representing various stages of macrophage differentiation and in primary cells from transgenic mice. In this study we have addressed the question of whether chromatin rearrangements can be detected in myeloid precursor cells at a stage well before overt transcription of the lysozyme gene begins. In addition to restriction enzyme accessibility assays and DMS footprinting, we have applied new, very sensitive techniques to assay for chromatin changes. Particularly informative was UV photofootprinting, using terminal transferase-dependent PCR and nonradioactive detection. We find that the basic chromatin structure in lysozyme nonexpressing hematopoietic precursor cells is highly similar to the pattern found in fully differentiated lysozyme-expressing cells. In addition, we find that only in nonexpressing cells are dimethylsulfate footprints and UV photofootprints affected by trichostatin, an inhibitor of histone deacetylation. These results are interpreted to mean that most chromatin pattern formation is complete before the binding of end-stage trans-activators, supporting the notion that heritable chromatin structure is central to the stable epigenetic programs that guide development.
Collapse
Affiliation(s)
- J Kontaraki
- University of Leeds, Molecular Medicine Unit, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | |
Collapse
|
27
|
Chromatin fine structure profiles for a developmentally regulated gene: reorganization of the lysozyme locus before trans-activator binding and gene expression. Genes Dev 2000. [DOI: 10.1101/gad.14.16.2106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chicken lysozyme locus is activated in a stepwise fashion during myeloid differentiation. We have used this locus as a model to study at high resolution changes in chromatin structure both in chicken cell lines representing various stages of macrophage differentiation and in primary cells from transgenic mice. In this study we have addressed the question of whether chromatin rearrangements can be detected in myeloid precursor cells at a stage well before overt transcription of the lysozyme gene begins. In addition to restriction enzyme accessibility assays and DMS footprinting, we have applied new, very sensitive techniques to assay for chromatin changes. Particularly informative was UV photofootprinting, using terminal transferase-dependent PCR and nonradioactive detection. We find that the basic chromatin structure in lysozyme nonexpressing hematopoietic precursor cells is highly similar to the pattern found in fully differentiated lysozyme-expressing cells. In addition, we find that only in nonexpressing cells are dimethylsulfate footprints and UV photofootprints affected by trichostatin, an inhibitor of histone deacetylation. These results are interpreted to mean that most chromatin pattern formation is complete before the binding of end-stage trans-activators, supporting the notion that heritable chromatin structure is central to the stable epigenetic programs that guide development.
Collapse
|
28
|
Abstract
Recombination activating gene-1 (RAG-1) andRAG-2 are expressed in lymphoid cells undergoing the antigen receptor gene rearrangement. A study of the regulation of the mouse RAG-2 promoter showed that the lymphocyte-specific promoter activity is conferred 80 nucleotide (nt) upstream of RAG-2. Using an electrophoretic mobility shift assay, it was shown that a B-cell–specific transcription protein, Pax-5, and a T-cell–specific transcription protein, GATA-3, bind to the −80 to −17 nt region in B cells and T cells, respectively. Mutation of the RAG-2 promoter for Pax-5– and GATA-3–binding sites results in the reduction of promoter activity in B cells and T cells. These results indicate that distinct DNA binding proteins, Pax-5 and GATA-3, may regulate the murine RAG-2 promoter in B and T lineage cells, respectively.
Collapse
|
29
|
Abstract
Abstract
Recombination activating gene-1 (RAG-1) andRAG-2 are expressed in lymphoid cells undergoing the antigen receptor gene rearrangement. A study of the regulation of the mouse RAG-2 promoter showed that the lymphocyte-specific promoter activity is conferred 80 nucleotide (nt) upstream of RAG-2. Using an electrophoretic mobility shift assay, it was shown that a B-cell–specific transcription protein, Pax-5, and a T-cell–specific transcription protein, GATA-3, bind to the −80 to −17 nt region in B cells and T cells, respectively. Mutation of the RAG-2 promoter for Pax-5– and GATA-3–binding sites results in the reduction of promoter activity in B cells and T cells. These results indicate that distinct DNA binding proteins, Pax-5 and GATA-3, may regulate the murine RAG-2 promoter in B and T lineage cells, respectively.
Collapse
|
30
|
Kovac CR, Emelyanov A, Singh M, Ashouian N, Birshtein BK. BSAP (Pax5)-importin alpha 1 (Rch1) interaction identifies a nuclear localization sequence. J Biol Chem 2000; 275:16752-7. [PMID: 10748034 DOI: 10.1074/jbc.m001551200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BSAP (Pax5) is an essential transcription factor for early B cell and central nervous system development. In later B cell development, BSAP has been implicated in the regulation of 3' Ig enhancers and a number of B cell-specific genes. Previous studies have suggested a role for BSAP-interacting proteins in the regulation of the function of BSAP. Using the yeast two-hybrid system, we identified importin alpha1 (Rch1) as a BSAP-interacting protein. Importin alpha proteins have been shown to escort proteins into the nucleus through interaction with a nuclear localization signal (NLS), composed of short stretches of basic amino acids. A predicted NLS in BSAP (NKRKRDE, located at amino acids 195-201 in the central domain) was confirmed to be essential for interaction with importin alpha1 by the yeast two-hybrid assay. Physical interaction between BSAP and importin alpha1 was detected in vitro by a glutathione S-transferase (GST) pulldown assay. The NLS sequence in BSAP conferred nuclear localization to green fluorescent protein (GFP)-BSAP fusion proteins. Although the N-terminal paired (DNA-binding) domain of BSAP also conferred nuclear localization when coupled to green fluorescent protein, this domain did not bind to importin alpha1 in the yeast two-hybrid assay. The NLS sequence in the central domain of BSAP binds to the C-terminal 98-amino acid fragment of importin alpha1.
Collapse
Affiliation(s)
- C R Kovac
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
31
|
Spicuglia S, Payet D, Tripathi RK, Rameil P, Verthuy C, Imbert J, Ferrier P, Hempel WM. TCRalpha enhancer activation occurs via a conformational change of a pre-assembled nucleo-protein complex. EMBO J 2000; 19:2034-45. [PMID: 10790370 PMCID: PMC305700 DOI: 10.1093/emboj/19.9.2034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The TCR alpha enhancer (Ealpha) has served as a paradigm for studying how enhancers organize trans-activators into nucleo-protein complexes thought to recruit and synergistically stimulate the transcriptional machinery. Little is known, however, of either the extent or dynamics of Ealpha occupancy by nuclear factors during T cell development. Using dimethyl sulfate (DMS) in vivo footprinting, we demonstrate extensive Ealpha occupancy, encompassing both previously identified and novel sites, not only in T cells representing a developmental stage where Ealpha is known to be active (CD4(+)CD8(+)-DP cells), but surprisingly, also in cells at an earlier developmental stage where Ealpha is not active (CD4(-)CD8(-)-DN cells). Partial occupancy was also established in B-lymphoid but not non-lymphoid cells. In vivo DNase I footprinting, however, implied developmentally induced changes in nucleo-protein complex topography. Stage-specific differences in factor composition at Ealpha sequences were also suggested by EMSA analysis. These results, which indicate that alterations in the structure of a pre-assembled nucleo-protein complex correlate with the onset of Ealpha activity, may exemplify one mechanism by which enhancers can rapidly respond to incoming stimuli.
Collapse
Affiliation(s)
- S Spicuglia
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Case 906, 13288 Marseille and INSERM U119, 27 boulevard Leï Roure, 13009 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Maitra S, Atchison M. BSAP can repress enhancer activity by targeting PU.1 function. Mol Cell Biol 2000; 20:1911-22. [PMID: 10688639 PMCID: PMC110809 DOI: 10.1128/mcb.20.6.1911-1922.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/1999] [Accepted: 12/08/1999] [Indexed: 11/20/2022] Open
Abstract
PU.1 and BSAP are transcription factors crucial for proper B-cell development. Absence of PU.1 results in loss of B, T, and myeloid cells, while absence of BSAP results in an early block in B-cell differentiation. Both of these proteins bind to the immunoglobulin kappa chain 3' enhancer, which is developmentally regulated during B-cell differentiation. We find here that BSAP can repress 3' enhancer activity. This repression can occur in plasmacytoma lines or in a non-B-cell line in which the enhancer is activated by addition of the appropriate enhancer binding transcription factors. We show that the transcription factor PU.1 is a target of the BSAP-mediated repression. Although PU.1 and BSAP can physically interact through their respective DNA binding domains, this interaction does not affect DNA binding. When PU.1 function is assayed in isolation on a multimerized PU.1 binding site, BSAP targets a portion of the PU.1 transactivation domain (residues 7 to 30) for repression. The BSAP inhibitory domain (residues 358 to 385) is needed for this repression. Interestingly, the coactivator protein p300 can eliminate this BSAP-mediated repression. We also show that PU.1 can inhibit BSAP transactivation and that this repression requires PU.1 amino acids 7 to 30. Transfection of p300 resulted in only a partial reversal of PU.1-mediated repression of BSAP. When PU.1 function is assayed in the context of the immunoglobulin kappa chain 3' enhancer and associated binding proteins, BSAP represses PU.1 function by a distinct mechanism. This repression does not require the PU.1 transactivation or PEST domains and cannot be reversed by p300 expression. The possible roles of BSAP and PU.1 antagonistic activities in hematopoietic development are discussed.
Collapse
Affiliation(s)
- S Maitra
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
33
|
Li S, Hammer RE, George-Raizen JB, Meyers KC, Garrard WT. High-level rearrangement and transcription of yeast artificial chromosome-based mouse Ig kappa transgenes containing distal regions of the contig. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:812-24. [PMID: 10623827 DOI: 10.4049/jimmunol.164.2.812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse Ig kappa L chain gene locus has been extensively studied, but to date high-level expression of germline transgenes has not been achieved. Reasoning that each end of the locus may contain regulatory elements because these regions are not deleted upon V kappa-J kappa joining, we used yeast artificial chromosome-based techniques to fuse distal regions of the contig to create transgene miniloci. The largest minilocus (290 kb) possessed all members of the upstream V kappa 2 gene family including their entire 5' and 3' flanking sequences, along with one member of a downstream V kappa 21 gene family. In addition, again using yeast artificial chromosome-based technology, we created Ig kappa miniloci that contained differing lengths of sequences 5' of the most distal V kappa 2 gene family member. In transgenic mice, Ig kappa miniloci exhibited position-independent and copy number-dependent germline transcription. Ig kappa miniloci were rearranged in tissue and developmental stage-specific manners. The levels of rearrangement and transcription of the distal and proximal V kappa gene families were similar to their endogenous counterparts and appeared to be responsive to allelic exclusion, but were differentially sensitive to numerous position effects. The minilocus that contained the longest 5' region exhibited significantly greater recombination of the upstream V kappa 2 genes but not the downstream V kappa 21 gene, providing evidence for a local recombination stimulating element. These results provide evidence that our miniloci contain nearly all regulatory elements required for bona fide Ig kappa gene expression, making them useful substrates for functional analyses of cis-acting sequences in the future.
Collapse
MESH Headings
- Alleles
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Chromosomes, Artificial, Yeast/genetics
- Chromosomes, Artificial, Yeast/immunology
- Contig Mapping
- Crosses, Genetic
- Gene Dosage
- Gene Rearrangement, B-Lymphocyte, Light Chain/genetics
- Genes, Immunoglobulin/genetics
- Genetic Markers/immunology
- Germ Cells/immunology
- Germ Cells/metabolism
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Immunoglobulin kappa-Chains/chemistry
- Immunoglobulin kappa-Chains/genetics
- Mice
- Mice, Transgenic
- Multigene Family/immunology
- Reproducibility of Results
- Transcription, Genetic/immunology
- Transgenes/immunology
Collapse
Affiliation(s)
- S Li
- Department of Molecular Biology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | |
Collapse
|
34
|
BSAP/Pax5A Expression Blocks Survival and Expansion of Early Myeloid Cells Implicating Its Involvement in Maintaining Commitment to the B-Lymphocyte Lineage. Blood 1999. [DOI: 10.1182/blood.v94.11.3621.423k38_3621_3632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early B lymphopoiesis is marked by plasticity between the myeloid and B lineages. An attractive model for B-lineage development is that commitment to this lineage is partly determined by the ordered expression of genes that prohibit switching to the myeloid lineage. In this regard, whereas the role of the B-cell–specific transcription factor BSAP/Pax5A in regulating B-lymphoid–restricted gene expression has been well-established, its role in maintaining B-lineage commitment is unclear. Thus, BSAP/Pax5A was constitutively expressed in the multipotent EML cell line, which can be directed toward the myeloid lineage by culture with interleukin-3 (IL-3) and retinoic acid. EML cells expressing BSAP/Pax5A successfully acquired the myeloid lineage markers CD11b and F4/80 in response to IL-3 and retinoic acid, indicating differentiation to the myeloid lineage. However, these early myeloid cells failed to expand in culture with granulocyte-macrophage colony-stimulating factor and were directed instead toward an apoptotic pathway. In parallel, primary bone marrow stem cells transduced with retrovirus constitutively expressing BSAP/Pax5A began myeloid cell differentiation, but like the transformed EML model failed to expand in response to myeloid growth factors. These studies identify a role for BSAP/Pax5A in suppressing the response to myeloid growth factors, which may be a component of the regulatory processes that limit plasticity of early B-lymphoid progenitors.
Collapse
|
35
|
BSAP/Pax5A Expression Blocks Survival and Expansion of Early Myeloid Cells Implicating Its Involvement in Maintaining Commitment to the B-Lymphocyte Lineage. Blood 1999. [DOI: 10.1182/blood.v94.11.3621] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEarly B lymphopoiesis is marked by plasticity between the myeloid and B lineages. An attractive model for B-lineage development is that commitment to this lineage is partly determined by the ordered expression of genes that prohibit switching to the myeloid lineage. In this regard, whereas the role of the B-cell–specific transcription factor BSAP/Pax5A in regulating B-lymphoid–restricted gene expression has been well-established, its role in maintaining B-lineage commitment is unclear. Thus, BSAP/Pax5A was constitutively expressed in the multipotent EML cell line, which can be directed toward the myeloid lineage by culture with interleukin-3 (IL-3) and retinoic acid. EML cells expressing BSAP/Pax5A successfully acquired the myeloid lineage markers CD11b and F4/80 in response to IL-3 and retinoic acid, indicating differentiation to the myeloid lineage. However, these early myeloid cells failed to expand in culture with granulocyte-macrophage colony-stimulating factor and were directed instead toward an apoptotic pathway. In parallel, primary bone marrow stem cells transduced with retrovirus constitutively expressing BSAP/Pax5A began myeloid cell differentiation, but like the transformed EML model failed to expand in response to myeloid growth factors. These studies identify a role for BSAP/Pax5A in suppressing the response to myeloid growth factors, which may be a component of the regulatory processes that limit plasticity of early B-lymphoid progenitors.
Collapse
|
36
|
Abstract
Knockout studies have shown that PU.1 is required for the normal development of many blood cell lineages, yet overexpression of this transcription factor in erythroid cells can lead to erythroleukemia. Thus, how the tissue-specific expression of PU.1 is regulated is important to our understanding of hematopoiesis. In this study, we showed that B and macrophage cell lines expressing PU.1 contained DNase I-hypersensitive sites in intron 1 and were hypomethylated at three MspI sites flanking exon 1. Results from studies using several T-cell lines suggested that the pattern of methylation changed as these cells matured. A pre-T cell line that expresses PU.1 contained DNase I-hypersensitive sites in intron 1 and was also hypomethylated at both MspI sites. Other immature T-cell lines had methylated at least one of the MspI sites and displayed no hypersensitive sites. Mature T-cell lines had a methylation pattern more similar to that of fibroblasts. Treatment of an immature T-cell line with 5-azacytidine resulted in the expression of PU.1 transcripts. These data suggest that the tissue-specific expression of PU.1 is controlled by chromatin structure and DNA methylation and that this may be a mechanism used to shut off PU.1 expression in specific cell lineages during hematopoiesis.
Collapse
Affiliation(s)
- L Amaravadi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|
37
|
Hagman J, Wheat W, Fitzsimmons D, Hodsdon W, Negri J, Dizon F. Pax-5/BSAP: regulator of specific gene expression and differentiation in B lymphocytes. Curr Top Microbiol Immunol 1999; 245:169-94. [PMID: 10533313 DOI: 10.1007/978-3-642-57066-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J Hagman
- Division of Basic Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Analysis of Linked Human ɛ and γ Transgenes: Effect of Locus Control Region Hypersensitive Sites 2 and 3 or a Distal YY1 Mutation on Stage-Specific Expression Patterns. Blood 1999. [DOI: 10.1182/blood.v93.10.3540.410k28_3540_3549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stage-specific expression of the human β-like globin genes is controlled by interactions between regulatory elements near the individual genes and additional elements located upstream in the Locus Control Region (LCR). Elucidation of the mechanisms that govern these interactions could suggest strategies to reactivate fetal (γ) or embryonic (ɛ) genes in individuals with severe hemoglobinopathies. This study extends an earlier analysis of a transgenic construct, HS3ɛγ, testing: (A) the effect of substitution of HS2 for HS3 on stage-specific expression of the ɛ and γ genes and, (B) the role of an evolutionarily conserved YY1 binding site in transcriptional regulation of the γ gene. The data show that both HS3ɛγ and HS2ɛγ can individually support embryonic expression of ɛ and fetal expression of Aγ. Thus, the cis regulators of distinct expression patterns for ɛ and γ are likely to reside near the genes, rather than in specific hypersensitive sites of the LCR. Alterations in Aγ expression patterns observed in transgenic lines carrying a construct with a mutation in a conserved YY1 binding site at −1086 indicate that this site might function to facilitate active transcription of the γ gene in fetal life.
Collapse
|
39
|
Lauring J, Schlissel MS. Distinct factors regulate the murine RAG-2 promoter in B- and T-cell lines. Mol Cell Biol 1999; 19:2601-12. [PMID: 10082526 PMCID: PMC84053 DOI: 10.1128/mcb.19.4.2601] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recombination activating genes RAG-1 and RAG-2 are expressed in a lymphoid-cell-specific and developmentally regulated fashion. To understand the transcriptional basis for this regulation, we have cloned and characterized the murine RAG-2 promoter. The promoter was lymphoid cell specific, showing activity in various B- and T-cell lines but little activity in nonlymphoid cells. To our surprise, however, the promoter was regulated differently in B and T cells. Using nuclear extracts from B-cell lines, we found that the B-cell-specific transcription factor BSAP (Pax-5) could bind to a conserved sequence critical for promoter activity. BSAP activated the promoter in transfected cells, and the BSAP site was occupied in a tissue-specific manner in vivo. An overlapping DNA sequence binding to a distinct factor was necessary for promoter activity in T cells. Full promoter activity in T cells was also dependent on a more distal DNA sequence whose disruption had no effect on B-cell activity. The unexpected finding that a B-cell-specific factor regulates the RAG-2 promoter may explain some of the recently observed differences in the regulation of RAG transcription between B and T cells.
Collapse
Affiliation(s)
- J Lauring
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
40
|
Asenbauer H, Combriato G, Klobeck HG. The immunoglobulin lambda light chain enhancer consists of three modules which synergize in activation of transcription. Eur J Immunol 1999; 29:713-24. [PMID: 10064089 DOI: 10.1002/(sici)1521-4141(199902)29:02<713::aid-immu713>3.0.co;2-m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
V(D)J rearrangement, high level expression and somatic hypermutation of assembled Ig genes is tightly controlled by a number of regulatory sequence elements located in the vicinity of the J-, (D)-, and C-gene segments. During B cell maturation these elements become accessible to binding of trans-acting factors, reflecting the opening of the chromatin structure through an as yet unidentified mechanism. The mapping of regions of an altered chromatin structure (DNase I hypersensitivity) therefore is a powerful approach in identifying regulatory sequence elements. We here show that the human Ig lambda enhancer consists of three modules previously identified by us as DNase I-hypersensitive sites HSS-1, -2, and -3. The three sequence elements synergize in transcriptional activation of a reporter gene and together constitute a powerful tissue-specific enhancer which is a much stronger transcriptional activator than the kappa enhancers alone or in combination. We further show that the accessibility of the kappa and lambda enhancer elements for DNase I in the chromatin of a pre-B cell line (207) correlates with the transcriptional enhancer activities of kappa and lambda enhancer constructs. This finding is in support of an ordered model for Ig light chain activation (kappa before lambda).
Collapse
Affiliation(s)
- H Asenbauer
- Adolf-Butenandt-Institut Molekularbiologie der Ludwig-Maximilians-Universität, München, Germany
| | | | | |
Collapse
|
41
|
Qiu G, Stavnezer J. Overexpression of BSAP/Pax-5 Inhibits Switching to IgA and Enhances Switching to IgE in the I.29μ B Cell Line. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
B cell-specific activator protein (BSAP)/Pax-5 is a paired domain DNA-binding protein expressed in the developing nervous system, testis, and in all B lineage cells, except terminally differentiated plasma cells. BSAP regulates transcription of several genes expressed in B cells and also the activity of the 3′ IgH enhancer. As it has binding sites within or 5′ to the switch regions of nearly all Ig heavy chain C region genes and also is known to increase transcription of the germline ε RNA, BSAP has been hypothesized to be involved in regulation of Ab class switch recombination. To directly examine the effects of BSAP on isotype switching, we use a tetracycline-regulated expression system to overexpress BSAP in the surface IgM+ I.29μ B cell line, a mouse cell line that can be induced to undergo class switch recombination. We find that overexpression of BSAP inhibits switching to IgA in I.29μ cells stimulated with LPS + TGF-β1 + nicotinamide, but enhances switching to IgE in cells stimulated with LPS + IL-4 + nicotinamide. Parallel to its effects on switching, overexpression of BSAP inhibits germline α RNA expression and the transcriptional activity of the germline α promoter, while enhancing activity of the germline ε promoter. Proliferation of I.29μ cells is not affected in this system. The possible mechanisms and significance of the effect of BSAP on isotype switching are discussed.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Molecular Genetics and Microbiology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
42
|
Affiliation(s)
- J R Gorman
- Howard Hughes Medical Institute, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
43
|
Abstract
The Ig kappa 3' enhancer is required for high levels of Ig kappa gene expression. We now show that kappa 3' enhancer function increases five- to eightfold after stimulation of primary murine B cells with phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin. In the presence of cyclosporin A this induction is almost halved, suggesting that transcription factors of the NFAT family contribute to kappa 3' enhancer induction. Indeed, we identify a novel NFAT binding site which is required for full enhancer function. We find that this site is transcriptionally active in stimulated B cells, T cells and fibroblasts and that both PMA and ionomycin are required for maximal induction. Time course analysis of the components of the protein-DNA complex in primary lymphocytes reveals that both NFATp and NFATc are present in the complex after 15 min, while only NFATc is detectable after 4 h. This suggests that NFATc plays the dominant role in controlling long-term responses of this transcription factor family. Furthermore, JunB, JunD, FosB and cFos form part of the DNA-protein complex in Bal-17 B cells. Complex formation as well as transcriptional activity can also be induced by crosslinking of surface Ig. We have, thus, identified a unique NFAT complex in B cells that contributes to Ig kappa gene expression.
Collapse
Affiliation(s)
- K B Meyer
- The Wellcome/CRC Institute of Cancer and Developmental Biology, Department of Pathology, University of Cambridge, GB.
| | | |
Collapse
|
44
|
Nutt SL, Morrison AM, Dörfler P, Rolink A, Busslinger M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J 1998; 17:2319-33. [PMID: 9545244 PMCID: PMC1170575 DOI: 10.1093/emboj/17.8.2319] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Pax-5 gene codes for the transcription factor BSAP which is essential for the progression of adult B lymphopoiesis beyond an early progenitor (pre-BI) cell stage. Although several genes have been proposed to be regulated by BSAP, CD19 is to date the only target gene which has been genetically confirmed to depend on this transcription factor for its expression. We have now taken advantage of cultured pre-BI cells of wild-type and Pax-5 mutant bone marrow to screen a large panel of B lymphoid genes for additional BSAP target genes. Four differentially expressed genes were shown to be under the direct control of BSAP, as their expression was rapidly regulated in Pax-5-deficient pre-BI cells by a hormone-inducible BSAP-estrogen receptor fusion protein. The genes coding for the B-cell receptor component Ig-alpha (mb-1) and the transcription factors N-myc and LEF-1 are positively regulated by BSAP, while the gene coding for the cell surface protein PD-1 is efficiently repressed. Distinct regulatory mechanisms of BSAP were revealed by reconstituting Pax-5-deficient pre-BI cells with full-length BSAP or a truncated form containing only the paired domain. IL-7 signalling was able to efficiently induce the N-myc gene only in the presence of full-length BSAP, while complete restoration of CD19 synthesis was critically dependent on the BSAP protein concentration. In contrast, the expression of the mb-1 and LEF-1 genes was already reconstituted by the paired domain polypeptide lacking any transactivation function, suggesting that the DNA-binding domain of BSAP is sufficient to recruit other transcription factors to the regulatory regions of these two genes. In conclusion, these loss- and gain-of-function experiments demonstrate that BSAP regulates four newly identified target genes as a transcriptional activator, repressor or docking protein depending on the specific regulatory sequence context.
Collapse
Affiliation(s)
- S L Nutt
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
45
|
Scholz H, Bossone SA, Cohen HT, Akella U, Strauss WM, Sukhatme VP. A far upstream cis-element is required for Wilms' tumor-1 (WT1) gene expression in renal cell culture. J Biol Chem 1997; 272:32836-46. [PMID: 9407061 DOI: 10.1074/jbc.272.52.32836] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To identify novel cis-regulatory elements responsible for the tissue-restricted expression pattern of the Wilms' tumor-1 (WT1) gene, we mapped a total of 11 DNase I-hypersensitive sites in the 5'-flanking region and first intron of the human gene, six of which were specific for WT1 expressing cell lines. A 1.4-kilobase (kb) fragment from the mouse wt1 5'-flanking region contained cross-hybridizing sequence with significant homology to a region of DNase I hypersensitivity in the human WT1 gene which bound to nuclear matrix in human fetal kidney 293 cells. None of the DNase I-hypersensitive sites/matrix attachment regions, either alone or in combination, were sufficient for tissue-specific WT1 expression in transient and stably transfected cell lines. However, stable transfection of an approximately 620-kb yeast artificial chromosome (YAC) that carried the entire mouse wt1 locus into 293 cells resulted in wt1 (trans)gene expression at a level of approximately 30% of the endogenous human gene. Deletion of the 1.4-kb cross-hybridizing mouse fragment, located approximately 15 kb upstream of the transcription start site, caused complete loss of wt1 gene expression in the YAC-transfected 293 cells. In summary, we have identified a far upstream element that contains a region of DNase I hypersensitivity and that binds to nuclear matrix. This element includes phylogenetically conserved sequence and is required, although not sufficient, for mouse wt1 gene expression in human fetal kidney cells in culture.
Collapse
Affiliation(s)
- H Scholz
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Pax-5 codes for the transcription factor BSAP which is expressed in all B-lymphoid tissues in addition to the developing central nervous system and testis. Within the B-lymphoid lineage, Pax-5 expression is already detected in the earliest B cell progenitors and persists up to the mature B cell stage. Targeted inactivation of the Pax-5 gene in the mouse germline revealed a differential dependency of fetal and adult B-lymphopoiesis on this transcription factor. Pax-5 is required for the differentiation of the earliest B-lineage-committed precursor cells in the fetal liver. In contrast, B cell development in the adult bone marrow progresses up to an early pro-B cell stage in the absence of Pax-5 function. The expression of CD19, Ig alpha (mb-1) and N-myc is severely reduced in Pax-5-deficient pro-B cells. These BSAP target genes are, however, unlikely to explain the early developmental block based on their known function in B cell development. Moreover, VH-to-DHJH rearrangements at the immunoglobulin heavy-chain locus are approximately 50-fold reduced in Pax-5-deficient pro B-cells, while the DH-to-JH rearrangements occur at a normal frequency. However, the expression of rearranged mu heavy-chain transgenes does not allow Pax-5-deficient pro-B cells to develop further to the pre-B cell stage. Together these data demonstrate therefore that B cell development in the Pax-5 deficient bone marrow is arrested at an early pro-B cell stage which is not yet responsive to pre-B cell receptor signaling.
Collapse
Affiliation(s)
- S L Nutt
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | |
Collapse
|
47
|
Bonifer C, Jägle U, Huber MC. The chicken lysozyme locus as a paradigm for the complex developmental regulation of eukaryotic gene loci. J Biol Chem 1997; 272:26075-8. [PMID: 9334168 DOI: 10.1074/jbc.272.42.26075] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- C Bonifer
- Institut für Biologie III der Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg im Breisgau, Germany
| | | | | |
Collapse
|
48
|
Goyenechea B, Klix N, Yélamos J, Williams GT, Riddell A, Neuberger MS, Milstein C. Cells strongly expressing Ig(kappa) transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers. EMBO J 1997; 16:3987-94. [PMID: 9233808 PMCID: PMC1170022 DOI: 10.1093/emboj/16.13.3987] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The V regions of immunoglobulin kappa transgenes are targets for hypermutation in germinal centre B cells. We show by use of modified transgenes that the recruitment of hypermutation is substantially impaired by deletion of the nuclear matrix attachment region (MAR) which flanks the intron-enhancer (Ei). Decreased mutation is also obtained if Ei, the core region of the kappa3'-enhancer (E3') or the E3'-flank are removed individually. A broad correlation between expression and mutation is indicated not only by the fact that the deletions affecting mutation also give reduced transgene expression, but especially by the finding that, within a single mouse, transgene mutation was considerably reduced in germinal centre B cells that poorly expressed the transgene as compared with strongly expressing cells. We also observed that the diminished mutation in transgenes carrying regulatory element deletions was manifested by an increased proportion of B cells in which the transgene had not been targeted at all for mutation rather than in the extent of mutation accumulation once targeted. Since mutations appear to be incorporated stepwise, the results point to a connection between transcription initiation and the clonal recruitment of hypermutation, with hypermutation being more fastidious than transcription in requiring the presence of a full complement of regulatory elements.
Collapse
Affiliation(s)
- B Goyenechea
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Shi Y, Lee JS, Galvin KM. Everything you have ever wanted to know about Yin Yang 1...... BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1332:F49-66. [PMID: 9141463 DOI: 10.1016/s0304-419x(96)00044-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Y Shi
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
50
|
Nutt SL, Urbánek P, Rolink A, Busslinger M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev 1997; 11:476-91. [PMID: 9042861 DOI: 10.1101/gad.11.4.476] [Citation(s) in RCA: 321] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Pax5 gene coding for the transcription factor BSAP has an essential role in B lymphopoiesis and midbrain development. Here we present a detailed analysis of the B-cell phenotype of Pax5 mutant mice that revealed a differential dependency of fetal and adult B lymphopoiesis on this transcriptional regulator. B-cell development is arrested in the bone marrow at the early pro-B (pre-BI) cell stage, which is characterized by expression of the early markers c-kit, CD43, lambda5, VpreB, and HSA and the absence of the later markers CD25 and BP-1. These pre-BI cells fail to express the BSAP target gene CD19 and are capable of long-term proliferation in vitro in the presence of stromal cells and IL-7. B-lymphoid progenitors could not be detected in the fetal liver of Pax5 mutant embryos. However, Pax5-deficient fetal liver cells gave rise to the development of pre-BI cells in bone marrow on transplantation into lethally irradiated mice. These data indicate different functions of Pax5 in the distinctive microenvironments of fetal liver and adult bone marrow. As shown by PCR analyses, the pre-BI cells in Pax5-deficient bone marrow have undergone D(H)-to-J(H) rearrangement of the immunoglobulin heavy-chain locus at normal frequency. In contrast, V(H)-to-D(H)J(H) rearrangements were reduced approximately 50-fold in Pax5-deficient pre-BI cells, suggesting a role for Pax5 in the developmental pathway controlling V-to-DJ recombination.
Collapse
Affiliation(s)
- S L Nutt
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|